216 research outputs found

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Fault analysis using state-of-the-art classifiers

    Get PDF
    Fault Analysis is the detection and diagnosis of malfunction in machine operation or process control. Early fault analysis techniques were reserved for high critical plants such as nuclear or chemical industries where abnormal event prevention is given utmost importance. The techniques developed were a result of decades of technical research and models based on extensive characterization of equipment behavior. This requires in-depth knowledge of the system and expert analysis to apply these methods for the application at hand. Since machine learning algorithms depend on past process data for creating a system model, a generic autonomous diagnostic system can be developed which can be used for application in common industrial setups. In this thesis, we look into some of the techniques used for fault detection and diagnosis multi-class and one-class classifiers. First we study Feature Selection techniques and the classifier performance is analyzed against the number of selected features. The aim of feature selection is to reduce the impact of irrelevant variables and to reduce computation burden on the learning algorithm. We introduce the feature selection algorithms as a literature survey. Only few algorithms are implemented to obtain the results. Fault data from a Radio Frequency (RF) generator is used to perform fault detection and diagnosis. Comparison between continuous and discrete fault data is conducted for the Support Vector Machines (SVM) and Radial Basis Function Network (RBF) classifiers. In the second part we look into one-class classification techniques and their application to fault detection. One-class techniques were primarily developed to identify one class of objects from all other possible objects. Since all fault occurrences in a system cannot be simulated or recorded, one-class techniques help in identifying abnormal events. We introduce four one-class classifiers and analyze them using Receiver-Operating Characteristic (ROC) curve. We also develop a feature extraction method for the RF generator data which is used to obtain results for one-class classifiers and Radial Basis Function Network two class classification. To apply these techniques for real-time verification, the RIT Fault Prediction software is built. LabView environment is used to build a basic data management and fault detection using Radial Basis Function Network. This software is stand alone and acts as foundation for future implementations

    Smart Substation Network Fault Classification Based on a Hybrid Optimization Algorithm

    Get PDF
    Accurate network fault diagnosis in smart substations is key to strengthening grid security. To solve fault classification problems and enhance classification accuracy, we propose a hybrid optimization algorithm consisting of three parts: anti-noise processing (ANP), an improved separation interval method (ISIM), and a genetic algorithm-particle swarm optimization (GA-PSO) method. ANP cleans out the outliers and noise in the dataset. ISIM uses a support vector machine (SVM) architecture to optimize SVM kernel parameters. Finally, we propose the GA-PSO algorithm, which combines the advantages of both genetic and particle swarm optimization algorithms to optimize the penalty parameter. The experimental results show that our proposed hybrid optimization algorithm enhances the classification accuracy of smart substation network faults and shows stronger performance compared with existing methods

    Smart Substation Network Fault Classification Based on a Hybrid Optimization Algorithm

    Get PDF
    Accurate network fault diagnosis in smart substations is key to strengthening grid security. To solve fault classification problems and enhance classification accuracy, we propose a hybrid optimization algorithm consisting of three parts: anti-noise processing (ANP), an improved separation interval method (ISIM), and a genetic algorithm-particle swarm optimization (GA-PSO) method. ANP cleans out the outliers and noise in the dataset. ISIM uses a support vector machine (SVM) architecture to optimize SVM kernel parameters. Finally, we propose the GA-PSO algorithm, which combines the advantages of both genetic and particle swarm optimization algorithms to optimize the penalty parameter. The experimental results show that our proposed hybrid optimization algorithm enhances the classification accuracy of smart substation network faults and shows stronger performance compared with existing methods

    Intelligent energy management system : techniques and methods

    Get PDF
    ABSTRACT Our environment is an asset to be managed carefully and is not an expendable resource to be taken for granted. The main original contribution of this thesis is in formulating intelligent techniques and simulating case studies to demonstrate the significance of the present approach for achieving a low carbon economy. Energy boosts crop production, drives industry and increases employment. Wise energy use is the first step to ensuring sustainable energy for present and future generations. Energy services are essential for meeting internationally agreed development goals. Energy management system lies at the heart of all infrastructures from communications, economy, and society’s transportation to the society. This has made the system more complex and more interdependent. The increasing number of disturbances occurring in the system has raised the priority of energy management system infrastructure which has been improved with the aid of technology and investment; suitable methods have been presented to optimize the system in this thesis. Since the current system is facing various problems from increasing disturbances, the system is operating on the limit, aging equipments, load change etc, therefore an improvement is essential to minimize these problems. To enhance the current system and resolve the issues that it is facing, smart grid has been proposed as a solution to resolve power problems and to prevent future failures. This thesis argues that smart grid consists of computational intelligence and smart meters to improve the reliability, stability and security of power. In comparison with the current system, it is more intelligent, reliable, stable and secure, and will reduce the number of blackouts and other failures that occur on the power grid system. Also, the thesis has reported that smart metering is technically feasible to improve energy efficiency. In the thesis, a new technique using wavelet transforms, floating point genetic algorithm and artificial neural network based hybrid model for gaining accurate prediction of short-term load forecast has been developed. Adopting the new model is more accuracy than radial basis function network. Actual data has been used to test the proposed new method and it has been demonstrated that this integrated intelligent technique is very effective for the load forecast. Choosing the appropriate algorithm is important to implement the optimization during the daily task in the power system. The potential for application of swarm intelligence to Optimal Reactive Power Dispatch (ORPD) has been shown in this thesis. After making the comparison of the results derived from swarm intelligence, improved genetic algorithm and a conventional gradient-based optimization method, it was concluded that swam intelligence is better in terms of performance and precision in solving optimal reactive power dispatch problems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Radial Basis Function Neural Networks : A Review

    Get PDF
    Radial Basis Function neural networks (RBFNNs) represent an attractive alternative to other neural network models. One reason is that they form a unifying link between function approximation, regularization, noisy interpolation, classification and density estimation. It is also the case that training RBF neural networks is faster than training multi-layer perceptron networks. RBFNN learning is usually split into an unsupervised part, where center and widths of the Gaussian basis functions are set, and a linear supervised part for weight computation. This paper reviews various learning methods for determining centers, widths, and synaptic weights of RBFNN. In addition, we will point to some applications of RBFNN in various fields. In the end, we name software that can be used for implementing RBFNNs

    Applications of Computational Intelligence to Power Systems

    Get PDF
    In power system operation and control, the basic goal is to provide users with quality electricity power in an economically rational degree for power systems, and to ensure their stability and reliability. However, the increased interconnection and loading of the power system along with deregulation and environmental concerns has brought new challenges for electric power system operation, control, and automation. In the liberalised electricity market, the operation and control of a power system has become a complex process because of the complexity in modelling and uncertainties. Computational intelligence (CI) is a family of modern tools for solving complex problems that are difficult to solve using conventional techniques, as these methods are based on several requirements that may not be true all of the time. Developing solutions with these “learning-based” tools offers the following two major advantages: the development time is much shorter than when using more traditional approaches, and the systems are very robust, being relatively insensitive to noisy and/or missing data/information, known as uncertainty

    An Integrated DC Series Arc Fault Detection Method for Different Operating Conditions

    Get PDF

    Information Theory and Its Application in Machine Condition Monitoring

    Get PDF
    Condition monitoring of machinery is one of the most important aspects of many modern industries. With the rapid advancement of science and technology, machines are becoming increasingly complex. Moreover, an exponential increase of demand is leading an increasing requirement of machine output. As a result, in most modern industries, machines have to work for 24 hours a day. All these factors are leading to the deterioration of machine health in a higher rate than before. Breakdown of the key components of a machine such as bearing, gearbox or rollers can cause a catastrophic effect both in terms of financial and human costs. In this perspective, it is important not only to detect the fault at its earliest point of inception but necessary to design the overall monitoring process, such as fault classification, fault severity assessment and remaining useful life (RUL) prediction for better planning of the maintenance schedule. Information theory is one of the pioneer contributions of modern science that has evolved into various forms and algorithms over time. Due to its ability to address the non-linearity and non-stationarity of machine health deterioration, it has become a popular choice among researchers. Information theory is an effective technique for extracting features of machines under different health conditions. In this context, this book discusses the potential applications, research results and latest developments of information theory-based condition monitoring of machineries
    corecore