27,469 research outputs found

    Simulation of Water Distribution Systems

    Get PDF
    In this paper a software package offering a means of simulating complex water distribution systems is described. It has been developed in the course of our investigations into the applicability of neural networks and fuzzy systems for the implementation of decision support systems in operational control of industrial processes with case-studies taken from the water industry. Examples of how the simulation package have been used in a design and testing of the algorithms for state estimation, confidence limit analysis and fault detection are presented. Arguments for using a suitable graphical visualization techniques in solving problems like meter placement or leakage diagnosis are also given and supported by a set of examples

    Fault Detection and Diagnosis for Residential HVAC Systems using Transient Cloud-based Thermostat Data

    Get PDF
    Fault detection and diagnosis (FDD) using aggregated smart thermostat data is a relatively new research field, but one with immediate practical application to residential indoor climate control. This paper analyzes a cloud-based dataset which contains thermostat history records of nearly 370,000 distinct residential HVAC systems in the U.S. The large, diverse, and growing dataset enables novel methods for detecting and diagnosing faults on systems with limited sensor data. This paper proposes a statistics-based FDD method for non-variable speed heat pump and air conditioning units, and demonstrates the effectiveness with several case studies. The proposed method identifies systems within a similar climate region, and then segments and classifies the time series data based on operational mode and behavior. Various data features are then extracted from the time series segments to identify systems that exhibit poor transient behavior. Additional features are used to refine and classify the problem severity. Statistical methods are then used to compare system performance to the entire population and identify outlier behavior due to operational faults that affect system efficiency and occupancy comfort. The resulting algorithm demonstrates the potential of big data fault detection for air conditioning systems using limited cloud-based sensor information

    Statistical process monitoring of a multiphase flow facility

    Get PDF
    Industrial needs are evolving fast towards more flexible manufacture schemes. As a consequence, it is often required to adapt the plant production to the demand, which can be volatile depending on the application. This is why it is important to develop tools that can monitor the condition of the process working under varying operational conditions. Canonical Variate Analysis (CVA) is a multivariate data driven methodology which has been demonstrated to be superior to other methods, particularly under dynamically changing operational conditions. These comparative studies normally use computer simulated data in benchmark case studies such as the Tennessee Eastman Process Plant (Ricker, N.L. Tennessee Eastman Challenge Archive, Available at 〈http://depts.washington.edu/control/LARRY/TE/download.html〉 Accessed 21.03.2014). The aim of this work is to provide a benchmark case to demonstrate the ability of different monitoring techniques to detect and diagnose artificially seeded faults in an industrial scale multiphase flow experimental rig. The changing operational conditions, the size and complexity of the test rig make this case study an ideal candidate for a benchmark case that provides a test bed for the evaluation of novel multivariate process monitoring techniques performance using real experimental data. In this paper, the capabilities of CVA to detect and diagnose faults in a real system working under changing operating conditions are assessed and compared with other methodologies. The results obtained demonstrate that CVA can be effectively applied for the detection and diagnosis of faults in real complex systems, and reinforce the idea that the performance of CVA is superior to other algorithms

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Comparison of different classification algorithms for fault detection and fault isolation in complex systems

    Get PDF
    Due to the lack of sufficient results seen in literature, feature extraction and classification methods of hydraulic systems appears to be somewhat challenging. This paper compares the performance of three classifiers (namely linear support vector machine (SVM), distance-weighted k-nearest neighbor (WKNN), and decision tree (DT) using data from optimized and non-optimized sensor set solutions. The algorithms are trained with known data and then tested with unknown data for different scenarios characterizing faults with different degrees of severity. This investigation is based solely on a data-driven approach and relies on data sets that are taken from experiments on the fuel system. The system that is used throughout this study is a typical fuel delivery system consisting of standard components such as a filter, pump, valve, nozzle, pipes, and two tanks. Running representative tests on a fuel system are problematic because of the time, cost, and reproduction constraints involved in capturing any significant degradation. Simulating significant degradation requires running over a considerable period; this cannot be reproduced quickly and is costly

    An Approach to the Health Monitoring of the Fuel System of a Turbofan

    Get PDF
    This paper focuses on the monitoring of the fuel system of a turbofan which is the core organ of an aircraft engine control system. The paper provides a method for real time on-board monitoring and on-ground diagnosis of one of its subsystems: the hydromechanical actuation loop. First, a system analysis is performed to highlight the main degradation modes and potential failures. Then, an approach for a real-time extraction of salient features named indicators is addressed. On-ground diagnosis is performed through a learning algorithm and a classification method. Parameterization of the on-ground part needs a reference healthy state of the indicators and the signatures of the degradations. The healthy distribution of the indicators is measured on field data whereas a physical model of the system is utilized to simulate degradations, quantify indicators sensibility and construct the signatures. Eventually, algorithms are deployed and statistical validation is performed by the computation of key performance indicators (KPI)

    Detection and Diagnosis of Motor Stator Faults using Electric Signals from Variable Speed Drives

    Get PDF
    Motor current signature analysis has been investigated widely for diagnosing faults of induction motors. However, most of these studies are based on open loop drives. This paper examines the performance of diagnosing motor stator faults under both open and closed loop operation modes. It examines the effectiveness of conventional diagnosis features in both motor current and voltage signals using spectrum analysis. Evaluation results show that the stator fault causes an increase in the sideband amplitude of motor current signature only when the motor is under the open loop control. However, the increase in sidebands can be observed in both the current and voltage signals under the sensorless control mode, showing that it is more promising in diagnosing the stator faults under the sensorless control operation
    • …
    corecore