200 research outputs found

    State of the art of control schemes for smart systems featuring magneto-rheological materials

    Get PDF
    This review presents various control strategies for application systems utilizing smart magneto-rheological fluid (MRF) and magneto-rheological elastomers (MRE). It is well known that both MRF and MRE are actively studied and applied to many practical systems such as vehicle dampers. The mandatory requirements for successful applications of MRF and MRE include several factors: advanced material properties, optimal mechanisms, suitable modeling, and appropriate control schemes. Among these requirements, the use of an appropriate control scheme is a crucial factor since it is the final action stage of the application systems to achieve the desired output responses. There are numerous different control strategies which have been applied to many different application systems of MRF and MRE, summarized in this review. In the literature review, advantages and disadvantages of each control scheme are discussed so that potential researchers can develop more effective strategies to achieve higher control performance of many application systems utilizing magneto-rheological materials

    A Novel Double-Piston Magnetorheological Damper for Space Truss Structures Vibration Suppression

    Get PDF

    Adaptive, Intelligent Methods for Real Time Structural Control and Health Monitoring

    Get PDF
    By framing the structural health monitoring and control problem as being one of enhancing structural system intelligence, novel solutions can be achieved through applications of computational strategies that mimic human learning and attempt to replicate human response to sensory feedback. This thesis proposes several new methods which promote adaptive, intelligent decision making by structural systems relying on sensory feedback and actuator compensation. Four significant contributions can be found in this thesis study. The first method employs an adaptable subclass of Artificial Neural Networks (ANNs), called Radial Basis Function Networks (RBFNs) for robust control in the presence of sensory failure. The second method exploits this computationally efficient network to detect and isolate system faults in real time. The third algorithm utilizes an RBFN to effectively linearize the nonlinear actuator dynamics of a Magnetorheological (MR) damper, thereby improving control of the semiactive device. Lastly, an open loop observer is implemented experimentally to both detect damage and act as a trigger for control of the newly developed Adaptive Length Pendulum-Smart Tuned Mass Damper (ALP-STMD). Some limitation of existing algorithms in the field of real time structural health monitoring and control are that they rely heavily on fixed parameter methods, assume standard linear time invariant assumptions, or mandate accurate modeling of system dynamics. By embedding the proposed reasoning and decision making algorithms into the feedback methodology and design, greater generalization and system adaptivity is possible. Specifically, the proposed methods develop novel solutions for adaptive neural control, fault (sensor failure) tolerant control, real time damage detection, adaptive dynamic inversion, and control applications for STMDs. The neural network adaptive control formulation is successful in rejecting first mode disturbances despite online sensor failure. It is also capable of improving the performance of a baseline Hoc controller in the presence of sensor failure and earthquake ground motion. The proposed fault tolerant controller is validated on a two degree of freedom shear frame subjected to six earthquake records. Furthermore, this application involves the use of piezoelectric patches as sensors and actuators. The RBFN algorithm in combination with an open loop observer is capable of both detecting and isolating stiffness degradation and recovery in multi-degree of freedom systems in real time. The method is validated on experimental data taken from online damage tests using the Semi-Active Independent Variable Stiffness (SAIVS) device. Other validations involve simulations on a two degree of freedom system and a ten degree of freedom system with both independent and coupled damage case scenarios. In all scenarios, the RBFN is capable of identifying the length of time and degree of freedom in which stiffness variation occurred. A neural network formulation is developed to perform dynamic inversion for semiactive control of an MR damper. The MR damper acts as a base isolator in a scaled two story building. Both the building and damper models were based on tests performed at Rice University. The control performance of the adaptive RBFN dynamic inversion method is compared to both passive-off and passive-on methods of semiactive control for MR dampers. The last contribution serves to combine both real time structural health monitoring and control in a proof of concept experimental study. An open loop observer is used to trigger an ALP -STMD device in the presence of base excitation and stiffness damage. The stiffness damage is generated from strategically regulating the current applied to Shape Memory Alloy (SMA) braces in a two degree of freedom shear frame. Once damage exceeds a predefined threshold, the ALP-STMD uses a another SMA to adjust its pendulum length to tune in real time to the dominant pulse present in the base excitation

    Index of aerospace mechanisms symposia proceedings 1-19

    Get PDF
    This index, organized in five sections (by symposium, by title, by author, by subject, and by project), brings together information on the first 19 Aerospace Mechanisms symposia. Key words are included, cross-referencing all the symposia, and the eighteenth and nineteenth symposia are cross-indexed by project. The Aerospace Mechanisms symposia are devoted to discussions of design, fabrication, test, and operational use of aerospace mechanisms; this is the first index that compiles information on symposia held from 1966 through 1985

    Space Station redesign option A: Modular buildup concept

    Get PDF
    In early 1993, President Clinton mandated that NASA look at lower cost alternatives to Space Station Freedom. He also established an independent advisory committee - the Blue Ribbon Panel - to review the redesign work and evaluate alternatives. Daniel Goldin, NASA Administrator, established a Station Redesign Team that began operating in late March from Crystal City, Virginia. NASA intercenter teams - one each at Marshall Space Flight Center, Johnson Space Center, and Langley Research Center provided engineering and other support. The results of the Option A study done at Marshall Space Flight Center are summarized. Two configurations (A-1 and A-2) are covered. Additional data is provided in the briefing package MSFC SRT-001, Final System Review to SRT-002, Space Station Option A Modular Buildup Concept, Volumes 1-5, Revision B, June 10, 1993. In June 1993, President Clinton decided to proceed with a modular concept consistent with Option A, and asked NASA to provide an Implementation Plan by September. All data from the Option A redesign activity was provided to NASA's Transition Team for use in developing the Implementation Plan

    Space Station Redesign Team: Final report to the Advisory Committee on the Redesign of the Space Station

    Get PDF
    This report is the result of the Space Station Redesign Team's activity. Its purpose is to present without bias, and in appropriate detail, the characteristics and cost of three design and management approaches for the Space Station Freedom. It was presented to the Advisory Committee on the Redesign of the Space Station on 7 Jun. 1993, in Washington, D.C

    NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1992

    Get PDF
    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA center

    Ph.D. Research Proposal: Biomimetic Characteristics of an Active Deployable Structure

    Get PDF
    Biomimetic structures are structures that demonstrate increased functionality through mimicking qualities of biological organisms. Self-repair and adaptation mechanisms are examples of biological qualities that can be adapted in structural engineering. Over the last decades, great strides have been made in advancing theory and practice of active structural control. However, little scientific progress has been made on biomimetic structures. Advances in sensor, actuator, and microprocessor technologies provide increasing possibilities for implementing active control systems in the built environment. Intelligent control methodologies such as self-diagnosis, self-repair and learning could be integrated into structural systems to provide innovative solutions. The general goal of this thesis is to study biomimetic characteristics of an active and deployable tensegrity bridge. Building on previous research carried out at EPFL, this thesis proposal includes the following objectives: 1) design an active control system in order to ensure damage tolerance of a deployable tensegrity pedestrian bridge; 2) extend existing strategies for self-diagnosis of the deployable tensegrity bridge to avoid ambiguous results; 3) extend existing strategies in order to achieve a more robust self-repair scheme; 4) develop algorithms that allow the active control system to learn efficiently using case-based reasoning; 5) validate the methodologies developed with experiments on a near full-scale (1/3) model. A literature survey of biomimetics, structural control, tensegrity structures, deployable structures, deployable tensegrity structures, active tensegrity structures, case-based reasoning, system identification, and multi-objective search has identified that these objectives are original. Results obtained from the preliminary studies demonstrate the potential of this research strategy. A research plan containing 19 subtasks that will be completed by the end of April 2012 leaves sufficient buffer time before the official end of this Ph.D. research on September 30, 2012
    corecore