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Abstract  

This review article presents various control strategies for application systems utilizing smart magneto-

rheological fluid (MRF) and magneto-rheological elastomers (MRE). It is well known that both MRF and 

MRE are actively studied and applied to many practical systems such as vehicle dampers. The mandatory 

requirements for successful applications of MRF and MRE include several factors; advanced material 

properties, optimal mechanism, suitable modeling, and appropriate control schemes. Among these 

requirements, the use of appropriate control scheme is a crucial factor since it is a final action stage of the 

application systems to achieve desired output responses.  There are numerous different control strategies 

which have been applied to many different application systems of MRF and MRE. This review article 

summarizes control strategies which have been successfully applied to MRF and MRE based application 

systems. In the literature review process, advantages and disadvantages of each control scheme are also 

discussed so that potential researchers can develop more effective control strategies to achieve higher control 

performance of many application systems utilizing magneto-rheological materials. 

 

Keywords: Magneto-rheological Fluid (MRF), Magneto-rheological Elastomer (MRE), MRF Damper, MRE 
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1. Introduction  

Smart materials of MRF and MRE belong to a family of rheological materials that undergo rheological 

changes under the application of magnetic fields. Typically, these materials are composed of soft 

ferromagnetic or paramagnetic particles such as pure iron, carbonyl iron and cobalt powder. In the absence of 

a magnetic field, the particles are randomly distributed, but under the influence of an applied magnetic field, 

the particles acquire a dipole moment aligned with the external field and form chains. This chain formation 

induces a reversible yield stress of MRF and MRE. The yield stress is continuously and rapidly adjustable 

since it responds to the intensity of the applied magnetic field. As a result, MRF and MRE application 

systems or devices can have inherent advantages such as continuous controllability of dynamic range and fast 

response. 

In general, the synthesis of high performance MRF and MRE application systems require several factors. First, 

advanced material properties must possess high yield stress at maximum magnetic fields and low viscosity in 

the absence of a field. Further, the MR effect should be stable within a wide temperature range. In addition to 

efforts to improve field-dependent yield stress, research on sedimentation, incompressibility, specific heat 

transfer property, wear aspect, fatigue property and lubrication characteristics need to be undertaken to aid 

commercial development of advanced MRF and MRE. Second, from the control perspective, the most 

important aspect to consider is the response time to the magnetic field. The time constant of MRF and MRE 

need to be quantitatively identified with respect to particle size, particle shape, viscosity of the base oil, 

conductivity of the particle and so on. The accurate determination of the time constant is key to establish a 

proper dynamic model which is used for controller design. Another crucial factor for successful MRF and 

MRE application systems is to properly choose an appropriate control scheme for a certain application 

mechanism. In other words, the output control performance of MRF and MRE application systems should be 

the best with the chosen controller under any environmental conditions. Despite the significance of the choice 

of an appropriate controller for MRF and MRE application systems, a full review article on the control 

strategies has not been reported so far, while several review articles on modeling of MR materials and 

dynamic modeling techniques of MR application systems have been introduced by several researchers [293-

302].  

Consequently, this article reviews various control schemes which have been successfully applied to MRF and 

MRE devices and systems so far. In general, the control schemes used for MRF and MRE application systems 

can be classified into three types; classical controllers such as skyhook controller, advanced modern 

controllers such as adaptive controller, and hybrid controller strategies combining more than two different 

control strategies such as adaptive fuzzy sliding mode controller. The classical control methods include a 

skyhook controller, a sky-ground-hook controller and a proportional-integral-derivative (PID) controller. The 

salient feature of the classical controller is the simplicity for practical implementation with low cost. The 

advanced model control strategies include a sliding mode controller (SMC) and adaptive controller. The 

common feature of these controllers is the robustness of the control system against external disturbances and 

parameter uncertainties.  The hybrid control strategies include a fuzzy sliding mode controller and an adaptive 



neural network controller. These controllers consist of more than two control schemes in order to improve 

control performance as well as maintaining robust stability against uncertainties. Specifically, in this review 

article the following controllers, which are frequently adopted for high performances of MRF and MRE 

systems, are introduced with application systems; skyhook controller, PID controller, optimal linear quadratic 

regulator/Gaussian (LQR/LQG), sliding mode controller, fuzzy controller, adaptive controller, neural network 

controller, H-infinity controller, and hybrid controller. In the review process, some inherent properties of each 

controller are addressed by presenting advantages and disadvantages for a certain application of MRF and 

MRE. This review article can provide very useful guidelines for the choice of appropriate control strategy 

corresponding to the dynamic characteristics of MRF and MRE application systems to achieve desired control 

responses. In addition, it is noted here that since many cars are currently running with MRF dampers on roads 

as given in Table 1, the publication of this review article one the control schemes is timely appropriate.  

 

2. Skyhook Controller   

The skyhook controller is the simplest control, but very effective in a semi-active control system associated 

with MRF and MRE. The configuration of the skyhook controller is shown in Figure 1 and its control input (u) 

is defined as follows: 

xGu s
              (1) 

where sG is the control gain and x is the velocity of the system. The value sG for this controller is normally 

determined on the basis of a trial-and-error method. This parameter is a main factor to achieve high 

performance of control system. In general, this controller can provide favorable output responses in the 

absence of external disturbances and parameter variations. However, the disadvantage of the skyhook 

controller is the lack of robust stability in the presence of external disturbances and parameter variations. 

Since the control gain is not adjustable in the real time process, it may cause high energy consumption 

resulting in bad control performance. Despite the disadvantage, the skyhook controller is frequently adopted 

for MRF and MRE application systems due to its simplicity and cost effectiveness. 

2.1 MRF Damper 

One of the first applications of the skyhook controller is MRF seat damper [1]. In this study, the skyhook 

controller given in equation (1) has been modified by considering upward and downward motion of the seat 

damper.  The test was undertaken in the frequency range from 0.4 Hz to 2.4 Hz under a bump excitation. It 

was shown through experiment that the vibration of the system can be significantly decreased using the 

skyhook controller. In addition, the acceleration after controlling has been satisfied to meet ISO 2631/85 

requirement in the wide range of frequencies. On the other hand, Han et al. [2] proposed a vehicle damper 

utilizing an electro-rheological fluid (ERF).  The ERF damper was used for primary suspension, and the MRF 

damper was used for seat. Two kinds of excitation were applied in this study such as bum and random roads. 



Because of the primary suspension, the skyhook controller of ERF damper was divided into two cases: for 

front suspension and for rear suspension following the velocity of the vertical direction of the vehicle. It has 

been demonstrated from experimental tests that the reduced vibration of displacement and acceleration were 

45 % and 30 %, respectively, comparing with the passive seat damper. It is noted that these reductions are 

enough to meet ISO 2631/85 requirement. Another study about MRF damper for suspension vehicle was 

presented in [3, 4]. The MRF damper proposed in this study was designed in flow mode and the skyhook 

controller was adopted to control unwanted vibration of a quarter car model. It has been shown through 

simulation that the acceleration in the frequency range up to 20 Hz between body resonance and wheel mode 

is effectively reduced showing improved ride comfort as well as steering stability due to the small tire 

deflection. Based on the original skyhook controller, some new modified skyhook controllers were also 

presented in [5]. In this work, a new controller based on the skyhook control concept called no-jerk skyhook 

controller was proposed. This controller is quite similar to the skyhook control, except that the damping 

coefficient is a function of both absolute and relative velocity. The no-jerk skyhook controller is defined as 

follows: 
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where 1V is the absolute velocity of the sprung mass, 12V is the relative velocity across the suspension, and

K is the constant gain. To evaluate the proposed controller, MRF seat damper system was used. 

Experimental results have shown that the new proposed no-jerk skyhook controller is better than the original 

sky-hook controller. However, the smooth dynamic of both controllers was identified to be similar by 

eliminating the discontinuity of damping force. 

2.2 Vehicle Suspension System  

A comparative work between the skyhook controller and the passive control action has been made by 

considering MRF vehicle suspension [6,7,8]. Control responses obtained from experiments have shown that 

the result of skyhook controller is much better than the passive one in terms of vibration control performances. 

In order to compare control performances among the skyhook controller, optimal LQG controller and sliding 

mode controller were adopted in a quarter car suspension model [9]. Through simulation with bump 

excitation, it was shown that the semi-active suspension controlled by the skyhook controller could effectively 

reduce the first peak-to-peak acceleration of the sprung mass and hence shorten the adjusting time. The 

displacement was also smaller than that with the passive control. In simulation with sinusoidal excitation, the 

performance of the skyhook controller was superior in the un-sprung mass resonance frequency range. 

Besides, the skyhook controller could improve the ride comfort under the random excitation. Compare with 

other controls, the skyhook control showed the best improvement in reduction of the sprung mass acceleration. 

However, because of the inherent nature of the skyhook controller, the control performance was not achieved 

for the un-sprung mass. Hence, it should be paid attention that the skyhook controller is not recommended for 

the road conditions such as speed bump. On the other hand, it could depress the vibration of sprung mass over 



8% of peak-to-peak acceleration with the optimal controller (LQG) and the acceleration of the un-sprung 

mass could be effectively controlled by using both the skyhook controller and the sliding mode controller. It 

is known that the control scheme may depend on the dynamic model of the application system. A dynamic 

model of MR seat suspensions was developed by Song et al. [10]. In this context, two controllers including 

ideal skyhook control and ideal adaptive semi-active control were chosen to control unwanted vibrations. The 

ideal skyhook controller was based on no-jerk skyhook control as shown in equation (2), and the ideal 

adaptive semi-active controller was developed by using gradient search method. It has been demonstrated that 

the adaptive controller significantly improves the suspension performance over the skyhook controller. In 

addition, the power control of the adaptive controller was less than the skyhook controller, especially in the 

high frequency excitation. The ride comfort after controlling by adaptive controller was improved showing a 

smooth motion. Yao et al. [11] compared the skyhook controller with one of robust controllers, H-infinity 

controller by adopting MR seat suspension system. It has been shown via computer simulation that that H-

infinity controller provides much better control performance than the skyhook controller. The skyhook 

controller was also used to compare the efficiency between passive damper and semi-active damper in [12, 

14]. In this study, the skyhook controller, the ground-hook controller and the sky-ground controller were 

adopted and applied to railway vehicle to investigate lateral vibrations control performance. The ground-hook 

controller is defined as follows: 
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where 2V is the absolute velocity of the un-sprung mass with respect to the ground, and gG is the gain factor 

of damping force. It has been shown from experiment results that the original skyhook controller can 

significantly reduce the transmissibility of the sprung mass, and the ground-hook controller can substantially 

reduce the un-sprung mass transmissibility. On the other hand, the combination of the skyhook controller and 

acceleration driven damping (ADD) control method was studied as a hybrid control strategy in [15]. It has 

been demonstrated that the hybrid controller yields very good performance in terms of both stiffness and 

damping ratios showing significant reduction of vertical acceleration and displacement at the same time. 

2.3 Other Applications 

The skyhook controller was also applied to evaluate vibration control performance of MR landing gear in [8]. 

The skyhook controller was designed based on the simplified model and its control results were compared 

with min-max control method (passive control). It has been shown that the skyhook controller provides better 

performance with less energy than the min-max control method. The original skyhook controller given in 

equation (1) was applied to MR damper-mount, which was proposed for vibration control of the ultra-

precision manufacturing system [16]. The skyhook controller was implemented and its control results were 

compared with the results obtained from the sliding mode controller. Evaluation results showed that both 

controllers provided very similar vibration control performance, but the control performance was not good 

with the sign function of the sliding mode controller due to the undesirable chattering behavior. The 



combination of two controllers such as fuzzy control and skyhook control was presented by Cho et al. [7]. In 

this study, the fuzzy control and the skyhook control were combined as a fuzzy-skyhook control, and applied 

to MR damper system subjected to impact loads. Results of simulation showed that the fuzzy-skyhook control 

scheme provided better control performance than the one obtained from each controller. In order to evaluate 

the vibration control performance of MR damper and MR elastomer, the skyhook controller was used in [13]. 

In this work, each device was evaluated firstly, and combined damper-elastomer was evaluated. It has been 

identified that the use of the combination of MR damper and MR elastomer shows much better performance 

in vibration control than the use of each damper or elastomer. There are lots of research work on the 

applications of MRF and MRE using the skyhook controller. These studies have been undertaken from both 

computer simulation [3,4,6,7,8,10,11,15,17] and experimental implementation [1,2,5,9,12,13,14,16].  

 

3. PID Controller  

Similar to the skyhook controller, the scheme of the proportional-integral-derivative (PID) controller is very 

simple and effective. This leads that PID controller is a standard control tool for industrial automation [18]. 

Because of its flexibility, the PID controller can be used for either cascade control scheme or other 

configuration control scheme. The definition of PID control is expressed as follows [18]: 

   
 

 
t

DIPPID
dt

Tde
KdeKteKu

0
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where PIDu is the control variable, e is the error defined as yue r  , where ru is the reference value, and 

y is the process output. PK , IK , DK are the control gains for the proportional, integral and derivative control 

action, respectively. A typical block-diagram of the PID controller is shown in Figure 2. Its control 

performance depends heavily on the values of control gains. Therefore, the right choice of the control gain of 

each actuation action is very significant to achieve favorable control performance of dynamic systems, 

especially semi-active dynamic systems featuring MRF and MRE.  

3.1 Vehicle Suspension System 

The damping force control performance using the skyhook controller and PID controller were evaluated by 

adopting the semi-active vehicle suspension system installed with a MRF damper in [19]. In this work, the 

combination of the skyhook and PID controllers was also considered to control damping force of MR 

dampers. Based on equation (4), the PID controller was modified as follows: 

ekekeku DIP
             (5) 

where ad FFe  , Pk is the proportional feedback gain, Ik is the integral feedback gain, Dk is the 

derivative feedback gain. aF is the actual damping force and dF is the desired damping force. It has been 



shown that both vertical displacement and acceleration are substantially decreased by activating the PID 

controller associated with MR dampers. In addition, the angular displacement and angular acceleration are 

also reduced using the proposed PID controller and the hybrid controller consisting of the skyhook controller 

and PID controller. These results directly indicate the increment of both ride quality and steering stability of 

the vehicle suspension system by activating PID controller associated with MRF damper actuators. Following 

this hybrid control trend, a combination of a H-infinity technique method and a PD controller was suggested 

in [20]. The proposed controller was applied to MR suspension system in which the H-infinity-PD control 

served as the system controller to provide the desired damping force. A fuzzy-PID control based on the 

combination of the fuzzy logic control and the PID controller was studied in [21]. The controller was applied 

to suspension of vehicle featuring MRF dampers. It has been demonstrated from experimental results that the 

fuzzy-PID control can decrease unwanted vibrations much more than using the PID controller only. The rate 

of decreasing of the combined controller has been improved over 50% comparing with the PID controller 

only. 

3.2 Other Applications  

It is known that PID controller is very suitable for circular motion control due to its inherent advantage in 

tracking the initial trajectories. One of the most general circular motion systems is the brake. The cylindrical 

type of MRF brake was proposed in [22]. In this study, a PID controller was integrated with the hysteresis 

compensator to improve control accuracy. It is remarked that when the PID controller is integrated with the 

feed-forward hysteresis compensator, the determination of control gains of the PID controller is very crucial 

to avoid hardware destroy due to very high control energy. Another study using a PID controller to evaluate a 

new design of MR actuator for circular motion was presented in [23]. In this work, a torque transfer device 

was introduced and its torque transmission was evaluated by implementing the PID controller. It has been 

shown from experimental investigation that the PID controller can provide favorable control response to the 

fixed torque values, but cannot follow the time-varying torque values. Besides of the above addressed 

applications, there are also other applications of PID controllers. The tracking control using a PID controller 

was also presented in [24]. In this work, a 4-DOF MR haptic master was proposed and its trajectory tracking 

ability was evaluated by realizing a PID controller. It has been shown from experimental implementation of 

the PID controller that the tracking performances for sinusoidal profile can be successfully achieved, but the 

relatively large tracking error can be occurred for complicated trajectory tracking motions. From the literature 

survey on PID control strategies for MRF and MRE application systems, it has been identified that using PID 

controller only exhibits some limitations to get superior and robust control performances. Hence, in most of 

application systems, the combination control strategies between a PID and other control schemes such as H-

infinity controller were used for MRF and MRE application systems to achieve high-efficiency in control 

operation. It is remarked here that in most of MRF and MRE applications the PID controller has been 

experimentally realized as presented in [19,21,22,23,24].  

 

4. Optimal Controller  



Optimal control strategy can be divided into two schemes: linear quadratic regulator (LQR) control method 

and liner quadratic Gaussian (LQG) control method as shown in figure 4(a) and 4(b), respectively. As a first 

step to formulate optimal controller, consider the following linear dynamic system: 

   utxtx GF  ,  0tx given          (6) 

In the above, x is the state,  tF  and  tG  are assumed continuous and suppose the matrices  tQ  and 

 tR  have continuous entries, be symmetric, and be nonnegative and positive definite, respectively. By 

supposing A be a nonnegative definite matrix, the following index is formulated [25]: 
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T
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0

00 ,.,      (7) 

where T is the finite time. Then, the minimal value of the performance index is given by 

        00000 ,,* txTttxttxV P          (8) 

where  Tt ,0P  is the solution of the following Riccati equation: 

QPGPGRPFPFP
1            (9) 

In the above,   AP TT , is the boundary condition to solve equation (9). Now, LQR optimal controller is 

formulated as follows: 

       txTtttu ,* 1
PGR  

          (10) 

The derivation method of the LQG optimal controller is very similar to the LQR controller. In fact, the LQG 

controller is the combination of the Kalman filter and the LQR controller. It is remarked that the Kalman filter 

is also called as linear quadratic estimator (LQE). In order to formulate a LQG controller, consider the 

following linear system: 

    wGF  utxtx ,  0tx given         (11) 

where w is additive white Gaussian noise. The measurement system is then modeled as follows: 

vH  xy              (12) 

In the above, v is output measurement noise. Now, the performance index for the LQG controller is defined as 

follows [26]: 
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In the above index, e is the expected value. The system of equations that defines the optimal Kalman filter is 

given by 

     xyutxtx ˆˆˆˆ HKGF            (14) 

where 
1

RHPK
 ˆˆˆ , and QPGRGPPFFPP
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. The LQG control problem is then solved by 

the following equations: 
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Then, the objective performance index can be written by 
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Now, the LQG optimal controller is formulated using the estimated states as follows: 

       txTtttu ˆ,1
PGR  

          (17) 

      

4.1 Vibration Control of Flexible Structures 

The optimal LQR controller associated with MRF damper was applied to flexible truss structures for vibration 

control [29]. The MR damper in this application was designed by using a permanent magnetic, and the 

damping force was varied following the exciting force of truss structure. It has been shown from experimental 

results that the excited vibration of the structure is effectively controlled by activation MRF damper integrated 

with LQR controller. This controller was then modified by considering the semi-active actuating condition 

and applied to the same truss structure [30]. It has been identified that the modified LQR can provide better 

vibration control performance than the original LQR controller which is not connected to the semi-active 

actuating condition. In order to control unwanted vibration of bridge cable, the original LQR/LQG controller 

associated with MRF damper was applied in [31, 36]. The LQR controller was designed as the state-

derivative feedback control for MRF damper [31] and inversely, the combination of LQR and LQG controls 

was employed in [36] in which LQR controller was used to determine the optimal force for the system while 

the LQG controller was used to calculate the optimal force in an ideal active actuator. It has been shown from 

experimental results that the optimal LQR/LQG controller can reduce unwanted vibrations of the cable 

system by activating MRF damper.  The LQG controller was also used in vibration control for building 

systems in [39]. The proposed controller was designed on the basis of the linear matrix inequality (LMI) 

control scheme. In addition, the H2 control was also used in this context and combined to the LQG controller. 

It has been demonstrated that the optimal LQG controller based on LMI can provide much better vibration 

control performance than the H2/LQG controller. Another vibration control of the benchmark building was 



carried out in [43] in which two MRF dampers were used and the LQR controller was used to find optimal 

force required for the vibration control. It has been shown that the use of the optimal LQR controller exhibits 

much larger vibration reduction than the conventional passive control method. In order to control the 

vibrations of beam structures, the optimal LQR controller was designed using a MRF damper in [40]. It has 

been shown that the full-state observer based the LQR controller was effective in vibration control. A clipped 

optimal controller was also suggested to control vibrations of civil engineering structures using a MRF 

damper in [42]. The proposed control was established by using LQG control strategy and effectively realized 

for reduction of both acceleration and displacement of the beam structure. 

4.2 Other Applications 

Since the optimal controller is relatively easy to empirically easy due to the linearity, there are many 

application systems using MRF and MRE. Modeling and control of MRF damper using LQG was presented 

in [27]. The clipped-optimal control based on LQG control method was applied to control seismic vibration 

by activating MRF damper. It was shown that the control force of the clipped-optimal control was lower than 

passive controller, but its vibration control performance was better. The combination of the LQR controller 

and neural networks control method was applied to MRF damper in [28]. In this application, the LQR control 

was used with two inverse neural network models of MRF damper. The neural networks included forward and 

inverse neural networks. It has been shown that the desired damping force is successfully achieved by the 

proposed hybrid controller. Another study of the combination between LQR controller and neural networks 

controller for MRF damper was presented in [34]. The role of LQR optimal controller was to achieve optimal 

force control which was the output of inverse dynamic model. It has been demonstrated that the inverse model 

is not suitable for damping force tracking control of MRF damper. The combination of LQG controller and 

neuro-fuzzy controller was also applied to MRF damper in which the adaptive fuzzy neuron inference system 

(AFNIS) was used [38]. The role of the LQG controller was to obtain the training data for the AFNIS 

algorithm. It has been shown that the combined controller associated with AFNIS can provide better control 

performance than the LQG controller only. The application of LQR/LQG control to MRF suspension was also 

carried out in many groups [33, 41, 44, 45, 46, 47]. Vibration of high-order degrees of freedom suspension 

system using MRF damper was presented in [41]. In this study, the model of neuro-fuzzy control technique 

was used and its outstanding performance was compared with LQR and LQG control performance. The LQG 

controller using the acceleration feedback was used in control of railway suspension system in [44,45,46]. 

The 17-degree-of-freedom model of railway vehicle was applied in this study, and MRF damper was used as 

the main suspension component. A human simulated intelligent control for vehicle suspension featuring MRF 

damper was presented in [47]. The proposed controller was developed to attenuate unwanted vibrations and 

its results obtained from both simulation and experiments were compared with conventional LQG control 

strategy. It has been concluded that the vertical vibration and pitch motion of vehicle can be significantly 

reduced after activating the proposed controller associated with MRF damper. The optimal LQG controller 

was also applied in the performance evaluation of MRF mount system in [32]. It was shown that the unwanted 

vibration level was decreased effectively by the semi-active MR mount. Another optimal control for the 

mixed MRF mount system was presented in [37] in which the optimal LQG controller was used for successful 



vibration control by activation MRF mount. In literature, a large number of simulation studies [27, 33, 34, 35, 

38, 39, 40, 41, 42, 43, 44, 45, 46] and experimental work [28,29,30,31,32,36,37,47] were conducted to 

investigate the optimal control performances. It is remarked here that the combination of LQR control and 

other control strategies such as neural network, fuzzy-neural network and H2 technique is very popular.  

 

5. Sliding Mode Controller 

Despite many advantages of PID controller and optimal controller, there exist some system perturbations 

(uncertainties) associated with MRF and MRE devices and systems. For instance, the field-dependent yield 

shear stress of MR fluid is subjected to change according to temperature variation. Moreover, the dynamic 

behavior of MRF device is a function of a magnetic field. There may also exist nonlinear hysteresis of the 

damping force in MRF damper. Therefore, in order to guarantee control robustness of the control system 

featuring MRF and MRE systems, a robust controller needs to be implemented to take account for system 

uncertainties. A sliding mode controller (SMC), also called variable structure controller, is well known as one 

of the most attractive candidates which assures control robustness against system uncertainties and external 

disturbances. The sliding mode control systems have invariance properties to the parameter variations and 

external disturbances under the sliding mode motion. A concept of a sliding mode control is depicted in 

Figure 4. In the figure, s is sliding surface function, swu  is switching function, sat is saturation function for 

preventing the chattering phenomenon. It is noted that the control u is synthesized from the main control 

function of the system and switching function. In order to derive a simple SMC, consider the second-order 

system subjected to the external disturbance: 
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where d is external disturbance and a is the parameter variation. They are bounded by 
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As a first step, we choose a stable sliding line as follows [48]: 

 0,021  cxcxsg                                                                         (20) 

Then, derivative of the sliding mode motion can be obtained as follows: 

 uxaxcxsg  212
                                                                                     (21) 

Thus, SMC, u, can be designed as follows to satisfy the sling mode condition given in equation (23). 
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The sliding mode condition to guarantee the stability of the control system can be satisfied as follows: 



 0)()( 110  gmggg sxaksxaass           (23) 

The design procedures of SMC can be easily extended to higher order control systems without any difficulty. 

 

5.1 Vehicle Suspension System 

Since the vehicle suspension has several uncertainties such as mass variation due to the number of passenger, 

the sliding mode controller is effectively utilized to achieve robust control performance. In order to improve 

ride comfort, SMC was used for the vehicle suspension system equipped with MRF dampers [49]. In this 

study, all of state variables were assumed to be available for designing SMC and directly applied to control 

the desired damping force. Another study applying SMC to suspension vehicle was presented in [50] in which 

the observer sliding mode was established from the original model and the saturation function was used 

instead of the sign function to prevent the chattering phenomenon. In addition, the skyhook control and 

passive control were also used to compare with the proposed SMC. It has been shown that the proposed SMC 

can provide better ride quality than the skyhook controller. The original sliding mode controller combined 

with fuzzy control logic was studied in [52] where the simple Takeki-Sugeno model was used as the fuzzy 

model. An adaptive sliding mode controller based on fault tolerant for MR suspension was studied in [54]. In 

this work, the fault tolerant model was established by modifying two stage adaptive Kalman filtering 

algorithm.  

5.2 Other Applications  

Besides of application in vehicle suspension systems, SMC was also applied to brake and mount systems 

associated with MRF and MRE. The original sliding mode control was applied MRF brake for optimal wheel 

slip control in [51]. It has been shown that the potential of the proposed SMC is guaranteed showing the 

robust stability of the brake system subjected to several road uncertainties. A combination of the fuzzy logic 

control and sliding mode control was presented in [56, 59] for improvement of robust control performances of 

MRF rotary damper and MRF mount. Recently, SMC was also used in [60] for control torque trajectory of the 

haptic master-slave robot system. It has been demonstrated that an accurate tracking control performance can 

be achieved from the proposed control scheme. The conventional sliding mode controller was also applied to 

MRF damper for vibration control of the bed stage [61]. A modified sliding mode controller in switching 

surface for MRF damper was presented in [53] where the switching surface was modified to follow the 

damping force of the system SMC was compared with original PID controller using MR squeeze film damper 

in [58]. It has been identified that SMC can provide stronger robustness of the system under disturbances of 

PID controller. Besides the above application systems of SMC, there are a great number of experimental 

studies [53,54,55,56,57,59,60,61] and computer simulations [49,50,51,52,58,62]. It is noted that the 

combination of SMC with other control schemes such as neural network algorithm can improve control 

performance of MRF and MRE systems better than using SMC only under uncertain environmental 

conditions. 

 



6. Fuzzy Controller  

It is well known that the fuzzy logic has the characteristic of inherent robustness, the ability of handling 

nonlinearities and uncertainties, and do not require a precision mathematical model, and hence it has attracted 

the attention of researchers and engineers during the last few years [80-83]. Fuzzy-set theory was proposed in 

[84,85], and then has been successfully applied to a diverse range of applications, mostly in the fields of 

control and intelligence system [86,87]. Fuzzy control provides a formal methodology for representing, 

manipulating, and implementing a human’s heuristic knowledge about how to control a system. There are 

four main components in fuzzy controller as shown in Figure 5: (1) fuzzification, (2) inference mechanism, (3) 

rule-base, (4) defuzzification. The critical parameters of designing the fuzzy controller are membership 

functions, the inference mechanism and algorithm, and the defuzzification algorithm. In a general fuzzy logic 

control (FLC), the scaling factor is constant. But in a real system, the maximum of input is uncertainty, and 

hence how to choose an appropriate scaling factor is significant. The objective of “membership function” is 

quantifying the meaning of the linguistic. The labels of membership functions are often as follows: NL refers 

to negative large, NM to negative medium, NS to negative small, Z to zero, PS to positive small, PM to 

positive medium, and PL to positive large. For example, the membership function quantifies, in a continuous 

manner, whether values of input belong to the set of values are NL. The membership functions including a 

trapezoid-shaped function, a Gaussian, a triangle, a bell and so on. The triangle and trapezoid function are 

consist of straight line, and they have simply algorithm and often been chosen in real system. It is called 

 x  is the degree of membership which corresponds to the input x .The Gaussian function is also often 

chosen in simulation system because of its smooth. The formula of Gaussian is expressed as follows: 
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where  x  is the degree of membership which corresponds to the input ,  and  are the parameters 

which decided the center and width of the Gaussian function, respectively. To get an excellent result, it is 

benefit to combine the different membership function or iteratively adjust the membership functions 

according to a given set of input and output data [89]. In the fuzzy logic controller, the inputs and outputs are 

often related by a set of well-established rules such as “If …then”. The system model is described by “If…then” 

fuzzy rules [89] which the number is  

If 1x  is  and 2x  is  Then y  is  (k =1,2, …, q)                                                     (24a) 

where 1x  and 2x  are the inputs of system, y  is the output of system.  and 
k

jB denote the  and  

antecedents of 1x  and 2x  , respectively, of the  rules, denotes the  consequent of y . The 

algorithm of fuzzy model is depicted as follows: 
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where  yxxU R ,, 21  is the output degree of membership,  aix1  and  bjx2 are the degree of 

membership of  and , respectively.  cij denotes the degree of membership of the conclusion based the 

fuzzy rules.  and  is the Zadeh operators; denotes the minimum and maximum, respectively.  

Defuzzification is converting the fuzzy set information produced by the inference process into numeric fuzzy 

controller outputs. The methods of defuzzification include center of gravity, center-average, max criterion, 

mean of maximum and center of area. The center of gravity (COG in short) is more common, a crisp output 

 is chosen using the center of area and area of each implied fuzzy set, and is given by [88]: 
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where R is the number of rules, ic  is the center of area of the  membership function of 
p
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the implied fuzzy set ˆ i
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6.1 Vehicle Suspension System  

MR dampers are semi-active control devices that employ MR fluids to produce controllable damping force 

[90]. Because of the MRF damper’s intrinsic nonlinear behavior, the fuzzy logic control was widely used in 

varies semi-active control systems [91]. A design of semi-active suspension with fuzzy controller through the 

use of a quarter car model was undertaken [92]. Both the simulation and experimental results demonstrated 

that the controller is very effective. Yu et al. [93] presented the implementation of a quarter-car fuzzy 

intelligent controller to control the two MRF independent suspension systems. Compared with the passive 

system, the root mean square (RMS) acceleration of the sprung mass is reduced by 6%. Dong et al. [94] used 

four MR dampers to replace the passive ones of vehicle. With the fuzzy control, the RMS of the acceleration 

of sprung mass and unsprung mass at 40 km/h is reduced by 4.60 % and 9.01 %, respectively. Similar 

effectiveness was report by a number of groups [95-98] in simulation the system responses while being 

implemented a fuzzy-PID controller for semi-active vibration with MRF dampers. The membership functions 

and rules of general fuzzy control are constant in the control process but the excitation of the vehicle is 

random and complexity, the performance of control can be reduced. Atray and Roschke [97] used the neuro-

x y
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fuzzy control in semi-active suspension with MR damper and the neuro algorithm was used to learn and 

optimize the membership functions. According to the simulation, the absolute peak of acceleration at Three-

quarter loaded has been reduced from 0.95 to 0.68. Hashiyama et al. [98] used the genetic algorithm (GA in 

short) operations to optimize the number of fuzzy rules and parameters for membership functions, and it has 

been shown that the performance is improved a lot.  

6.2 Building Structural Control System  

Because of the low power consumption and high efficiency, MRF damper is widely used in the building 

structural control system. Zhou [99] reported a fuzzy semi-active control strategy for seismic response 

reduction using a MRF damper in the ship lift. Compared to the passive structure, the results of the simulation 

analysis shows the story drift reduced by 66.8 %, and the maximum lateral interlayer velocity and 

acceleration at the top of works shop reduced 39.0 % and 17.5 % respectively. In order to enhancing the 

Robustness of system under different excitations, Wilson and Abdullah [100] proposed a self-tuning fuzzy 

controller to reduce the structural responses of single degree-of freedom seismically excited structures. They 

adjusted the values of one or more of the scaling factors according to the change of the input variables to the 

fuzzy controller by using a fuzzy decision making system. Xu and Guo [101] proposed a neural-fuzzy control 

strategy applied in a three-story reinforced concrete structure. The neuro-network was used to solve the time-

delay problem to acquire the accuracy value, while the fuzzy control to determine the control current of MR 

dampers. Gu and Oyadiji [102] also proposed an adaptive neural-fuzzy inference system in the multiple-

degree-of-the freedom building structures. The membership functions of the fuzzy logic was iteratively 

adjusted according to a given set of input and output data by neuro-network training. The displacement of 1th 

floor has been reduced by 78 % with simulation, in the Excitation of EI Centro earthquake.  Yan and Zhou 

[103] presented a control strategy based on GA for semi-active fuzzy control of structures, and the GA was 

used as an adaptive method to change the fuzzy control rules and the other parameters and membership 

functions were chosen by constant. By changing, adding and deleting rules, the GA automatically can adapt 

and optimize the fuzzy control system. Bitaraf, et al. [104] and Shook et al. [105] presented a GA-fuzzy 

control for seismic protecting buildings with MR dampers, the non-dominated sorting genetic algorithm 

version II (NSGA-II) was employed to determine the rule set of the fuzzy logic controller. It has been shown 

that the peak absolute of acceleration, displacement and inter-story drift is reduced by 36 %, 42 % and 38 %, 

respectively. The base isolation is one of the most widely used and accepted in seismic protection system. 

Because of the wide range of seismic, the semi-active base isolation system with MRF damper was proposed 

in [106]. Jung et al [107] used the fuzzy logic control in smart base-isolated building with MRF damper. The 

displacement and velocity in base-isolated level were chosen as the input variables of fuzzy control while the 

damper force was chosen as the output variable. The fuzzy control showed the reliable performance for the all 

seven different earthquakes. Lin et al [108] also used the fuzzy control in the hybrid base-isolation system 

which consists of high damping rubber bearings and MRF damper. Simulation results showed that both the 

displacement and acceleration of base were effectively reduced, simultaneously. Because the selection of 

membership function of the general FLC was subjective and time-consuming, Kim and Roschke [109-111] 

used the neuro-network or GA algorithm with the MRF damper in the hybrid isolation system which consists 



of the friction pendulum system (FPS) and MRF damper. Simulation results demonstrated that the fuzzy 

control with GA can not only reduce the structural acceleration but also reduce the base drift. . 

 

7. Adaptive Controller  

Several control algorithms have been adopted in application systems featuring MRF and MRE such as bang-

bang control [112-114], clipped optimal control [115,116], skyhook control [117-119], fuzzy control [120-

122], and neural network control [123-125]. However, the system uncertainties resulted by modelling errors, 

variation of materials properties, component non-linearity, and changing load environments can cause 

instability or performance degradation of above controllers [126-128]. To achieve satisfactory control effect, 

the adaptive controller has been designed, the parameters of which can be adjusted or tailored to the unknown 

or varying characteristics of the MRF and MRE systems [129]. An adaptive controller is a controller with 

adjustable parameters and a mechanism for adjusting the parameters. An adaptive control system has two 

loops: One is a normal feedback with the plant and the controller, and the other one is the parameter 

adjustment loop as shown in Figure 6. According to the different parameter adjustment mechanisms, there are 

mainly two types of adaptive controller: model reference adaptive system and self-tuning regulator. The 

model reference adaptive system consists of four parts: a plant which contains unknown parameters, a model 

which characterizes the desired command-response behavior of the system, a controller which contains 

adjustable parameters, and an adjustment mechanism which updates the adjustable parameters. The key issue 

in model reference adaptive system design is to obtain an adjustment mechanism which guarantees that the 

control system remains stable and the tracking error converges to zero as the parameters are varied [131]. The 

gradient update and Lyapunov theory are two representatives of the formalisms. Figure 7 shows a block 

diagram of a gradient update system. ( )pk G s  is the plant, ( )mk G s  the model, ck  the controller, ( )G s  the 

known transfer function, pk  the unknown gain, mk  the desired gain, and the output error ( ) m pe t y y  . 

Let the performance index function is 
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where 
p

m

k

k
   is adaptive gain. A block diagram of the self-tuning regulator is shown in Figure 8. It 

consists of four parts: a plant which contains unknown parameters, a parameters identifier which identifies the 

plant parameters, a controller which contains adjustable parameters, and a controller design block which 

updates the controller parameters based on the identification result and relationship between plant parameters 

and controller parameters. The self-tuning regulator is very flexible with respect to its choices of controller 

design methodology and identification scheme. Many different controllers such as LQR controller could be 

employed in self-tuning regulators, and three different parameter estimators (gradient estimator, least squares 

estimator and Lyapunov-based estimator) are normally used. Consider a linear system model given by 

      py t t t   (31) 

where the n-dimensional vector  py t  contains the outputs of the system, the m-dimensional vector  t  

contains unknown parameters to be estimated, and the n×m matrix  t  is the signal matrix. The estimator 

follows 

     ˆˆ
py t t t            (32) 

In the above,  ˆ
py t  is the output of the estimator and  ˆ t  is the estimation value of the unknown 

parameters. And the estimation error is then given by 

     ˆ
p pe t y t y t    (33) 

Therefore, using the Lyapunov-based model parameters estimator [140] the adaptive controller can be 

designed as follows: 

         f b pu t k t r t k t y t                                                  (34) 

In the above, the gains  fk t  and  bk t  are adjustable parameters which satisfy the Lyapunov stability. 

7.1 MRF Damper 



Practical applications of MRF and MRE systems are frequently subjected to several uncertainties such as 

sudden temperature change. For example the increment of temperature will lead to the reduction of the field-

dependent characteristics of MRF damper. However, the real-time temperature in the inner space of MR 

damper is hard to acquire. Dong et al. [175] proposed an adaptive sliding mode fault-tolerant controller to 

eliminate temperature induced practical fault of MRF damper. The controller was verified through computer 

simulation, and the scenario was the reduction of the control effectiveness in the front-right MRF damper at 

0.55 s. It has been demonstrated that the output damping force of the MR damper with reconfiguration is 

much bigger than the one without reconfiguration, and the peak-peak displacement control performance is 

improved by 43.41%. A novel model of the controller was built based on adaptive hybrid control of interval 

type 2 fuzzy controller incorporating with a new modified sliding mode control [176]. The interval type 2 

fuzzy was optimized for computational cost by using enhanced iterative algorithm with stop condition, a new 

modified switching surface of sliding mode control was designed for preventing the chattering of the system, 

and the adaptation law was derived by the Lyapunov theory. Two existing controllers from [186] and [187] 

were modified to undertake a comparative work. Both computer simulation and experiment results showed 

that the proposed controller had the best robustness and vibration control performance. Guo and Hu [177, 

178] designed direct and indirect adaptive neural network controller for the semi-active vehicle suspension 

system with MR damper. In their work, the error between identifier output and plant output was used to train 

the identifier in both controllers. The results of computer simulation and experiments in time-domain and 

frequency-domain demonstrated the advantages of the proposed controller over the passive suspension and 

the indirect adaptive neural network controller outperformed the direct one. The adaptive neural network 

controller proposed by Yang et al. [179, 180] was similar to the direct adaptive neural network. Computer 

simulation verified that the controller had a certain adaptability to the external disturbance, and the 

improvement in vibration control effect of adaptive controller with respect to the passive one was 45.64% at 

most. Laflamme et al. [181-183] proposed an adaptive neural network controller for mapping the behavior of 

civil structures controlled with MRF dampers. The structural response and the actual forces from the dampers 

were used to adapt the network by tuning the weights, centers and bandwidths. The weights, centers and 

bandwidths of the network were adaptive, and their adaptation laws were derived based on the Lyapunov 

stability theory. Zheng et al. [134] adopted the sky hook damper as the reference model and designed a model 

reference adaptive controller for semi-active suspension system. It has been shown that the proposed model 

reference controller can achieve good robustness against model uncertainties and is effective in ride and 

handling characteristics improvement. Song et al. [129, 146] developed an adaptive control algorithm to avoid 

the negative impact of the super-harmonics introduced by the skyhook controller. The adaptive control 

outperforms the passive-on control and passive-off control, and there are no super-harmonics in the seat 

acceleration measured from the MRF suspension system. Yu et al. [165-167] designed adaptive fuzzy 

controller through adding three elements: performance estimator, emendation and rules update to the 

conventional fuzzy controller. It has been demonstrated form road test that the value of the acceleration of the 

driver seat under the adaptive fuzzy controller declines 20.2% at most with respect to the one under passive 

suspension. The adaptive fuzzy controller has been also compared with the skyhook controller, and both 

simulation and road testing results showed that the adaptive fuzzy controller could achieve better vertical 



vibration control effects than the skyhook controller, especially in the human sensitive frequency band (4 to 8 

Hertz). Yu et al. [168] also designed an adaptive fuzzy neural network controller to improve ride comfort and 

stability of vehicles. The fuzzy rules and membership functions of the fuzzy neural network controller have 

been selected by the fuzzy associated memory neural network from training data [188], which is generated by 

genetic algorithm [189]. With the road input and damping force for the four MRF dampers being supplied, the 

full-car model calculates the motion of the suspension and vehicle. Then, the genetic algorithm searches out 

the best damping force of the MRF damper that minimizes the fitness function in every sampling period. It 

has been shown from both computer simulation and road test that the pitch motion, roll motion, and vertical 

motion are significantly reduced by activating the proposed control strategy and hence the ride comfort and 

stability of vehicles is achieved. 

7.2 Other Applications 

Liao’s group [141-144] designed a direct adaptive controller for a MR brake to achieve desired torque, which 

could assist elderly people with mobility problems. The stability of gradient update law was proved by 

Lyapunov theory. Experimental results showed that the MR brake had good torque tracking ability under 

adaptive control. Zhou and Qu [145] proposed a model-free learning adaptive semi-active control algorithm 

for structural vibration control. Numerical simulation was taken and the displacement of the base could be 

reduced by about 40% when subjected to E1 Centro earthquake. Jimenez and Alvarez-Icaza [152,153] used a 

linear matrix inequality approach to design an adaptive observer, which identified the LuGre model 

parameters and structure stories positions and velocities based on acceleration and force measurements. The 

vibration controller was developed with Lyapunov theory and verified in a numerical simulation that the E1 

Centro earthquake was applied to a three-story building. When compared with the uncontrolled one, the 

displacement, velocity and acceleration of the building declined 86.95%, 86.95% and 51.13% at most, 

respectively. Shirazi et al. [154] used the estimator in [147,148] to identify Bouc-Wen model parameters and 

a H  controller to compute the required damping force to attenuate the system vibration. The controller 

design methodology in self-tuning regulator is flexible, and different kinds of composite controllers such as 

adaptive fuzzy controller [155-172], adaptive sliding mode controller [173-176] and adaptive neural network 

controller [177-183] have been adopted in semi-active MRF damper systems. Yang et al. [155] simulated 

adaptive fuzzy algorithm to the semi-active suspension system with MRF damper. The results showed that the 

improvement of suspension performance under adaptive fuzzy controller with respect to the one under 

conventional fuzzy controller is 30.28% at most and the controller had good self-adaptability to different 

working conditions. Zhou et al. [156-159] proposed adaptive fuzzy controller to protect buildings with MRF 

dampers against dynamic hazards, and the controller achieved satisfactory control effect in simulations. Wang 

et al. [160,161] designed MRF gun recoil damper, and three control strategies, including ON-OFF control 

method, PID control method and adaptive fuzzy control method, were applied to the damper to control high 

impact load. Experimental results showed that the adaptive fuzzy controller could achieve better effect than 

ON-OFF and PID control algorithm. Designing adjustment mechanism for scale factor and quantization factor 

of fuzzy controller is an effective way to implement adaptive fuzzy controller. Li et al. [162] designed an 

adaptive fuzzy controller for engine vertical vibration isolation, which could online adjust scale factor and 



quantization factor by human-simulation intelligent parameter modifying algorithm. Yang et al. [163,164] 

found that in the lateral semi-active suspension system of high-speed locomotive installed with MRF damper, 

when the lateral velocity and acceleration were great, the scale factor of input velocity and acceleration and 

quantization factor of output current should be decreased and increased, respectively. When the velocity and 

acceleration were small, the scale factor and quantization factor should be increased and decreased. 

Numerical simulation results suggested that the lateral acceleration under adaptive fuzzy controller decreased 

47.03% and 34.40% with respect to the ones under passive suspension and under fuzzy controller, 

respectively. Yu et al. [165-167] added three elements (performance estimator, emendation and rules update) 

to the conventional fuzzy algorithm to obtain adaptive fuzzy controller. To improve ride comfort and stability 

of vehicles, Yu et al. [168] also designed an adaptive fuzzy neural network controller, fuzzy rules and 

membership functions of which were selected by fuzzy associated memory neural network from training data. 

Other research works on adaptive controller applied to MRF and MRE systems can be founded in [129, 146, 

147, 148, 149, 150, 151, 152, 153, 154, 156, 157, 158, 159, 169, 184, 185, 170, 171, 172, 173, 174, 190].  

 

8. Neural Network Controller  

In the 1940s, McCulloch and Pitts proposed a model for biological neurons and biological neural networks 

(NN). However, neural networks are far too simple to serve as realistic brain models on the cell level, but they 

might serve as very good models for the essential information processing tasks that organisms perform. This 

remains an open question because we have so little understanding of how the brain actually works [232]. In a 

neural network, neurons are joined by directed arcs-connections. The neuron and arcs constitute the network 

topology. Each arc has a numerical weight that specifies the influence between two neurons. Positive weights 

indicate reinforcement; negative weights represent inhibition. NN plays a fundamental role in neural 

computation, as they have been widely applied in many different areas including pattern recognition, image 

processing, intelligent control, time series prediction, etc. When an input is later applied, the neural network 

provides an output response to indicate the class to which the input pattern belongs. In short, NN learn to 

approximate sampled functions even when their form cannot be specified precisely and hence NN models 

represent a new approach to systems engineering that is potentially robust [243]. A control scheme of a neural 

networks system is expressed in Figure 9. The inputs of plant are used as the inputs of neural networks model. 

Components of neural networks include p neurons, the weight w , and the bias value . Output ky of the 

neural networks model will be used to calculate error )(te with output of the plant y . The error )(te is found 

by the desired output )(td and the output plant )(ty . This error is used as the input of learning algorithm 

which adjusts the neural networks model. Neural networks can only come into play if the problem is 

expressed by a sufficient amount of observed examples. These observations are used to train the black box. 

On the one hand no prior knowledge about the problem needs to be given. On the other hand, however, it is 

not straightforward to extract comprehensible rules from the neural network's structure. On the contrary, a 

fuzzy system demands linguistic rules instead of learning examples as prior knowledge. Furthermore the input 



and output variables have to be described linguistically. If the knowledge is incomplete, wrong or 

contradictory, then the fuzzy system must be tuned. Since there is not any formal approach for it, the tuning is 

performed in a heuristic way. This is usually very time consuming and error-prone. It is desirable for fuzzy 

systems to have an automatic adaption procedure which is comparable to neural networks. Combining both 

approaches should unite advantages and exclude disadvantages, so it has been more attractive attention in 

control fields [226].  

8.1 Vehicle Suspension System 

It is known that control performance of model based control scheme heavily depends on the accuracy of the 

dynamic model. In real field, the dynamic model of the MR suspension system is very complex and includes 

nonlinearities. Therefore, an intelligent controller which is less sensitive to the model accuracy may bring 

good control performance for the vehicle suspension system. The fuzzy neural network controller (FNNC) 

incorporated with the self-learn knowledge can improve stability of semi-active system. The dynamic model 

of the full car equipped with MRF dampers was used in [226]. With the road input and damping force for the 

four MRF dampers being supplied, the full-car model calculates the motion of the suspension and vehicle. 

Then, the genetic algorithm searches out the best damping force of the MRF damper that minimizes the 

fitness function in every sampling period.  A series of such damping force and system state are stored as 

teaching signals for fuzzy associative memory neural network (FAMNN). The error of the teaching signals 

and FAMNN’s outputs is used to adjust the knowledge base. As a feedback, the knowledge base affects the 

FAMNN’s output until the error is small enough. Before evaluating control performance via the road test, 

computer simulation is undertaken. The road roughness is chosen based on ISO 8606. It has been shown from 

results of computer simulation that MRF damper suspension employing FNNC reduces the pitch, roll and 

vertical acceleration of car body compared to the passive suspension up to the second resonance frequency of 

10.3 Hz. However, it was also observed that control performance was degraded at high frequency region 

above the second resonance frequency. This is because the semi-active MRF dampers cannot supply enough 

energy to such high resonance modes. Because human body is not sensitive to the vibration beyond 12.5 Hz, 

the FNNC can achieve good roll ability in weighted root mean square (WRMS) value with weighted average 

in frequency domain. For the comparative study on control performances of the FNNC, a traditional sky-hook 

control strategy of the MRF damper suspension has been also evaluated. It has been demonstrated that the 

proposed FNNC is better than the sky-hook controller in terms of ride comfort and vehicle stability. As a 

second step for control performance evaluation, the road test is undertaken. The semi-active suspension 

control system of a passenger car equipped with the MRF dampers was set up and road tests were conducted. 

In order to discuss the performance of the proposed FNNC, a conventional sky-hook controller was also 

utilized in the test. It has been clearly observed that pitch motion, roll motion and vertical motion are 

effectively reduced by activating the proposed FNNC. In addition, it has been shown that the proposed FNNC 

produces better control performance than the conventional sky-hook controller.  

8.2 Other Applications 



It is generally known that NN is used to identify the forward and inverse mode of MRF damper in semi-active 

control system [214-224]. There is an example inverse mode identification of MRF Damper with NN in seat 

suspension system, which is illustrated in [218]. When the inverse model of MRF damper for damping 

controller was applied to the semi-active control system, the requirements for model accuracy and fast real-

time control became more rigid. It has been shown that unwanted vibrations of the driver’s seat can be 

substantially reduced using the proposed controller. On the other hand, in order to characterize the 

performance of MRF dampers associated with the neural networks, mathematical models need to be 

established in an accurate manner for capturing the nonlinear behavior of MRF dampers. Generally, they can 

be grouped as parametric and non-parametric models. Parametric models include the Bingham model [196], 

the viscoelastic-plastic model [197], the phenomenological model [198], the semi-phenomenological model 

based on the Bouc-Wen model [199], the improved Bouc-Wen model [200,201], the hyperbolic tangent 

function model [202-203], the inverse tangent function model [204], and many others. The Bingham and 

viscoelastic-plastic models cannot reproduce the nonlinear behavior of an MR damper with high accuracy, 

while the other models can; however, they have many parameters, the corresponding models for the inverse 

dynamics of the MR dampers are often difficult to obtain due to their nonlinear characteristics. In the non-

parametric models, such as polynomial model [205-207], statistical models [208], nonlinear black box model 

[209-210], NARX model [211], fuzzy logic (FL) [212-213] and artificial neural networks (ANNs) [214-226]. 

Models based on lookup tables, FL and artificial neural networks (ANNs) are the most representative 

frameworks for MRF dampers. While fuzzy models need an a priori knowledge of the MR damper, the ANN, 

which can approximate any nonlinear function, has high robustness and self-learning ability and good fault 

tolerant performance [227], is one of the most representative non-parametric models for the MRF damper. 

Since an open-loop control is easy to implement and cost-effective comparing with a closed-loop control, it is 

valuable to develop the accurate inverse dynamic models of MRF dampers that are required in the realization 

of semi-active control. Due to the property of neural networks to implement input-output mappings, they are 

very suitable for applications on identification, control and optimization of semi-active control system. NN 

can be also a controller or hybrid controller combined with other control algorithms for a semi-active control 

system [191,226,237]. 

 

9 H-infinity Controller  

Since Zames [243] introduced the basic motivations for H∞ optimization, this problem has attracted 

considerable research interest. H∞ methods were initially developed in the frequency domain to synthesize 

controllers achieving stabilization with guaranteed performance. They offer solutions to solve mathematical 

optimization problems which are expressed as a transfer function of the expected output to the disturbance. 

The derivation of state-space solutions to H∞ -optimal control problems was then truly a breakthrough in 

linear control theory [244]. Their control objectives are to minimize the H∞ norm of the transfer matrixes. 

Moreover, significant interest emerged in extending this derivation to nonlinear systems. This extension has 

placed the H∞ methods in a much wider application environment.   H∞ techniques have the advantage over 



classical control techniques in that they can take consideration of both closed-loop system stability and system 

performance; especially they are readily applicable to problems involving multivariate system. They have 

evolved into a mature robust control theory through years’ development and improvement in control theory, 

design practice, and application. Figure 10 states the standard configuration of an H∞ controller, where 𝑃 is 

the plant, 𝐾 is the controller feedback, 𝑤 is the external disturbance, 𝑧 is the variable to be minimized, 𝑦 is the 

plant output, and 𝑢 is the control input. It should be noted that 𝑤, 𝑧, 𝑦, and 𝑢 are vectors but 𝑃 and 𝐾 are 

matrices. Algebraic representation of the above closed loop model is expressed as follows: 
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Then, from Figure 10 it can be interpreted that 𝑢=y(s). In system showed above, the goal is minimizing the 

error variable 𝑧. Therefore, the transfer function 𝑃 from exogenous input 𝑤 to minimized output 𝑧 can be 

written as: 

     wTwKPFwPKPIKPPz zwl 


,21

1

221211       (36) 

where  KPFl ,  is called the lower linear fractional transformation. The objective of H∞ algorithm is to find 

a feedback controller 𝐾 that minimizes the H∞ norm of  KPFl ,  or wTzw , i.e.: 

zwTmin                                                       -H∞ optimal control 

or 
zwT                                  - sub-optimal H∞ control 

In the above, 𝛾  is the given positive real number. The infinity norm of the transfer function 

matrix   KPFl ,  is defined as: 

     jwKPFKPF ll ,sup, 


         (37) 

where   is the maximum singular value of the matrix   jwKPFl ,  

9.1 MRE Isolator 

This section gives an example studying the sup-optimal H∞ control of a vehicle seat suspension featuring a 

MRE isolator [260]. The proposed MRE seat isolator is composed of core and base, coil, nonmagnetic rings, 

and MRE samples. After formulating governing equations in a state space model, the following damping 

force of the MRE isolator was determined. In order to evaluate control performances, two kinds of road 

excitations, i.e., bump road disturbance and random road disturbances, were chosen to run the integrated seat 

suspension system. The detailed definitions for these two excitations can be referenced to [260]. It has been 

demonstrated that the proposed MRE isolator achieves the best performance among all the compared 

isolators. It was also shown that the isolator with maximum stiffness generates the worst performance on ride 

http://en.wikipedia.org/wiki/Singular_value


comfort in terms of the peak value of acceleration. The proposed MRE isolator under H∞ controller performs 

better for a wide range of stiffness. 

9.2 Other Applications 

The combination of the MR devices and the H∞ methods offers solutions to the above problem and is 

extensively applied to vehicle suspension including full car suspension, half car suspension, and quarter car 

suspension [251-255], train suspension [257, 258], seat suspension [260], bridges [248], buildings [246, 247, 

249, 261], engine mount [262], and landing gear [263]. A H∞ controller which achieves inherent robustness 

against system uncertainties through treating the sprung mass of a full-vehicle suspension system featuring 

MR dampers as uncertain parameter was formulated in [264]. In order to approximate the desired active force 

from the H∞ controller for the actual MRF damper, inverse model is a favorable choice as it can output a 

desired current signal to the MR damper [252, 253]. H∞ controller can provide a desired damping force 

depending on the real time response of the vehicle suspension for the inverse model of MRF damper to 

achieve; then the reverse model outputs an input current to the actual MRF damper so that it can offer an 

actual damper force to the vehicle suspension. A study on the direct voltage control of a MRF damper for 

application in a quarter car suspension through the design of an H∞ controller that considers the suspension 

performance requirements and the constraint on the input voltage for the MR damper was undertaken [251]. 

The most advancement of this study is designing a controller directly targeting system performance without 

judging the semi-active condition and getting rid of the dependence on the inverse model of the MRF damper. 

Apart from ordinary vehicle suspensions, railway vehicles are also important targeting systems that require 

vibration reduction. Two MRF dampers on a full-scale railway vehicle of 17-degree-of-freedom for the lateral 

ride quality improvement with H∞ control was applied in [257]. In this study, the MRF dampers are inversely 

modelled by the neuro-fuzzy inference system (ANFIS) and the H∞ controller is composed of a yaw motion 

controller and a rolling pendulum controller. It has been shown that the proposed control system attenuates 

the lateral, yaw, and roll accelerations of the vehicle body significantly (about 30%). MRF dampers are also 

used to protect the bridges and structures from the vibration damage. An H∞ control algorithm to drive 

damping forces of MRF dampers was derived in [248] to reduce the resonant response of high-speed railway 

bridges, and semi-active control of H∞ was adopted for the floor system with a new input shaping filter 

developed to account for the input motion characteristics and enhance the effectiveness of the controller 

[249]. The application of MRF damper and H∞ control algorithm was also extended into reducing the 

excessive vibrations of an landing aircraft [264]. Combined with other methods, H∞ control algorithm also 

shows satisfactory effectiveness. A H∞ controller based on a Takagi-Sugeno (TS) fuzzy model for a two-

degrees-of-freedom one-quarter-vehicle semi-active suspension with MRF damper was presented in [265]. 

The advantage of having the TS system as a reference is that it enables the linear control theory to be directly 

applied to design the MRF damper controller. An adaptive back-stepping control with H∞ performance 

scheme has been proposed to solve the vibration problem in a base-isolated building [247]. The resulting 

controller reduced the structure displacements and velocities while keeping the accelerations below the level 

of the uncontrolled cases. The application of MRF damper on a full vehicle suspension system under 

H∞ controller was done in [254]. A cylindrical MR damper has been firstly designed and manufactured by 



incorporating a Bingham model of a MR fluid which is commercially available. In order to obtain a favorable 

control performance for the vibration reduction of the MR suspension system, a robust H∞ controller was 

designed, and the whole MR suspension system were evaluated under various road conditions through the 

hardware in the loop simulation (HILS) methodology for the demonstration of a practical feasibility. It has 

been demonstrated that the vertical acceleration is reduced about 20% near the body resonance frequency (1-2 

Hz) and about 30% at the wheel resonance (10 Hz). The PSD for the tire deflection is reduced 40% in the 

neighborhood of body resonance by activating MRF dampers associated with H∞ controller. 

 

10. Hybrid Controller  

Hybrid control systems are control systems that involve two or more than two conventional control strategies, 

such as adaptive fuzzy logic control, skyhook control, ground-hook control and etc. [267-270]. By 

collaboration of different strategies, the system performance can be greatly improved. The overall motivation 

for hybrid methods is significant interaction between the multiple targets to optimize. Furthermore, hybrid 

technique is the need for hierarchical organization of controls in many of today's complex technical systems. 

Three major criteria are usually applied to assessment of overall performances of semi-active suspensions 

control, including road handling, ride comfort, and stability. It is widely known that most of strategies or 

control algorithms can only achieve better performance in one or two criteria. This character limits the 

improvement of the vehicle overall performances. Thus, it is crucial to develop advanced control strategies to 

well improve overall performances of semi-active suspensions. This is the major motivation of hybrid control. 

An example of hybrid control of fuzzy control and neural network control is expressed in Figure 11.  As an 

example of the hybrid controller, consider a controller integrating the skyhook controller and ground-hook 

controller given by 

𝐹𝑠𝑘𝑦 = {
𝐺𝑠𝑘𝑦𝑥̇2         𝑥̇2(𝑥̇2 − 𝑥̇1) > 0 

0                  𝑥̇2(𝑥̇2 − 𝑥̇1) ≤ 0
 ,                                 (38) 

                      𝐹𝑔𝑟𝑜𝑢𝑛𝑑 = {
−𝐺𝑔𝑟𝑜𝑢𝑛𝑑𝑥̇1    𝑥̇1(𝑥̇2 − 𝑥̇1) < 0

0                        𝑥̇1(𝑥̇2 − 𝑥̇1) ≥ 0
     (39) 

where 𝑥̇2 is absolute velocity of the sprung mass/car body, 𝑥̇1is absolute velocity of the unsprung mass, 𝑥̇2 −

𝑥̇1is the velocity of the sprung mass relative to the unsprung mass, Fsky is the skyhook damping force, Gsky is 

the skyhook gain, 𝐹𝑔𝑟𝑜𝑢𝑛𝑑is the groundhook damping force, and Gground is the ground-hook gain. The control 

law of the hybrid strategy can be defined as: 

𝐹ℎ𝑦𝑏𝑟𝑖𝑑 = 𝜂𝐹𝑠𝑘𝑦 + (1 − 𝜂)𝐹𝑔𝑟𝑜𝑢𝑛𝑑            (40) 

where η 𝜖 (0,1)  is the tunable hybrid weighting factor that balances the effect of the skyhook controller and 

the ground-hook controller to improve both ride comfort and handling stability. 



For the MRF suspension system, a variety of intelligent control strategies such as fuzzy logical control, 

adaptive control and neural network control were worked together to complete control task more efficiently. 

For example, a neural network based fuzzy control approach was proposed in [271,272,273] to improve ride 

comfort and road handling of heavy vehicles using semi-active dampers via numerical simulation without 

involving in modeling and inverse modeling of MRF damper. With considering the coupling of four wheels 

and vehicle stability, Yu et al. [269] introduced fuzzy neural network control utilizing a dynamic model of a 

full car equipped with MRF dampers. To develop a fuzzy logic control system, a hybrid control system 

combining the powerful searching capability of genetic algorithms (GA) in the design of a fuzzy controller 

has been also proposed in [274]. GA is a powerful multi-objective optimization method to pursue the goal of 

simultaneously reducing both the displacement response and the acceleration response, which determine the 

safety and comfort level criteria respectively. A few controllers [269, 270, 275] integrated fuzzy and neural 

network incorporated with the self-learn knowledge are great hybrid control system to enhance vehicle 

stability. Neural-network (NN)-based control techniques is also a concerned hybrid control [275-281]. Rashid 

[282] developed a hybrid fuzzy logic plus proportional–integral–derivative (PID) controller for analysis of a 

similar quarter-car model. SMC is one of best candidates to formulate a certain hybrid controller due to its 

inherent robustness against disturbances and uncertainties [283, 284]. In [285], a hybrid control system 

integrating a skyhook surface sliding model control (skyhook SMC) was designed and simulated. It has been 

shown that the proposed hybrid controller provides much better ride comfort of a semi-active vehicle 

suspension than each controller only. Furthermore, A hybrid control including skyhook and ground-hook 

control was also developed to improve both ride quality and road holding ability by the LQR control using a 

minimum norm criterion [270]. The fuzzy controller was designed upon on the skyhook and ground-hook 

theory in [288]. To build the fuzzy-skyhook controller, the velocity of car body sprung mass and the relative 

velocity between sprung mass and un-sprung mass act as the inputs of the controller. The output was designed 

to be the desired fuzzy-skyhook force.  Similarly, the inputs of the fuzzy-ground-hook controller were the 

velocity of un-sprung mass (wheel) and the relative velocity between the sprung mass and un-sprung mass, 

while the output was the desired fuzzy-ground force. The universe of discourse of the input and output 

variables was selected based on the results of the simulation under different conditions. It was determined 

based on the amplitude of the open-loop responses within the minimum and maximum ranges of the signal. 

An adaptive fuzzy-hybrid (AF-H) controller was introduced in [289] and applied to the vehicle suspension. It 

has been shown that the proposed hybrid controller can reduce the imposed displacement more than 65 % 

compared with the passive system. An intelligent hybrid controller which is less sensitive to the model 

accuracy may bring good control performance for the vehicle suspension system [269]. In this example, a 

model-free neural network control algorithm was employed to design a controller for achieving roll control 

[290, 291]. With the road input and damping force of MRF dampers being supplied, the full-car model 

calculates the motion of the suspension and vehicle. Then, the GA searches out the best damping force of the 

MR damper that minimizes the fitness function in every sampling period. In order to demonstrate some 

advantages of the hybrid controller, a random road test based on ISO 8606 was imposed. It has been shown 

that the employed hybrid controller can remarkably reduce pitch, roll and vertical acceleration of car body the 

frequency up to 10.3 Hz.  



 

10. Concluding Remarks  

As review in this article, numerous control strategies for many different application systems using MRF and 

MRE have been developed and some of control schemes have been successfully realized for commercial 

products featuring MRF and MRE. It has been identified from this review article that in addition to efforts to 

develop more advanced MRF and MRE materials which exhibit higher yield stress, lower sedimentation and 

wider operating temperature, an appropriate design of controller is also a crucial factor to aid commercial 

development of advanced MRF and MRE application devices and systems. Several specifications in the 

process of controller design such as output response time, robust stability and control accuracy need to be 

specially considered. It has been described in this article that each controller has its own inherent advantages 

and disadvantages. Therefore, in order to achieve control performance targets of MRF and MRE application 

systems, the use of single controller and the use of hybrid controller consisting of more than two different 

controllers should be carefully treated. Moreover, the cost effectiveness of controller implementation to real 

products is also a significant factor to be considered. Table 2 summarizes many different controllers applied 

to many different MRF and MRE application systems. It is finally remarked that this review article on control 

schemes can accelerate the realization of commercial products of MRF and MRE application systems and 

provide a great help to create more advanced control schemes which can be optimally fitted to practical 

application systems.  
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Table 1. Commercially available vehicles equipped with MRF damper 

No Year Vehicle Type 

1 2002 Cadillac Seville 

2 2002 Chevrolet Corvette 

3 2003 Cadillac SRX 

4 2003 Cadillac XLR 

5 2004 Cadillac STS 

6 2005 Cadillac DTS 

7 2005 Buick Lucerne 

8 2006 Ferrari 599 GTB 

9 2006 Acura MDX 

10 2007 Audi TT 

11 2007 Audi R8 

12 2008 Cadillac Escalade 

13 2008 Holden HSV W427 

14 2009 Ferrari California 

15 2009 Cadillac CTS-V 

16 2010 Audi A3/S3 

17 2010 Acura ZDX 

18 2011 Audi R8 Spyder 

19 2011 Ferrari 458 Italia 

20 2013-

2014 

Cadillac CTS 

21 2013-

2014 

Chevrolet Corvette 

22 2013-

2014 

Ferrari LaFerrari 

23 2013-

2014 

Ferrari FF 

24 2013-

2014 

Ferrari F12 Berlinetta 

25 2013-

2014 

Audi A3/S3 

 

 

 

 

 

 

 

 

 

 



Table 2. Controllers for MRF and MRE Application Systems 

Controller 

Types 

Application 

Devices/Systems 
Related References 

Skyhook 

MR seat damper [1],[2],[3],[11] 

MR suspensions [5],[6],[9],[10],[12],[14],[15],[17],[186],[239],[255] 

MR landing gear [8] 

MR mount [16] 

PID  

Passenger 

vehicles 

[19] 

MR suspensions [20] 

MR brake [22],[23] 

Haptic master 

system 

[24] 

LQR/LQG 

Truss structures [29] 

Space flexible 

structure 

[30] 

Cable system [31],[36] 

MR mount [32],[37] 

MR suspension [33],[41],[44],[45],[46],[47] 

Building [39],[43] 

Sliding 

Mode 

Control 

MR suspension [49],[50],[52],[54],[55],[62] 

MR brake [51],[56] 

MR mount [59] 

Haptic master 

system 

[60] 

Bed stage [61] 

Fuzzy 

Control 

MR suspension [63],[64],[65],[68],[69],[70],[71],[72],[73],[89],[90],[91],[93] 

Biomedical 

system 

[66] 

Bridge structures [78],[80] 

Railcar [92] 

Ship lift [94] 

Building [98],[99],[101] 

Adaptive  

Control 

MR Suspensions [107],[110],[111],[117],[131],[135],[136],[140],[150],[151],[152],[15

3],[158],[159],[161],[162],[163],[164] 

Building [122],[123],[137],[138],[141],[142],[165] 

MR brake [124],[156] 

Assistive knee 

braces 

[126],[127],[129] 

Leg exoskeleton [128] 

Gun recoil 

damper 

[145] 

Engine [147] 

Locomotive [148] 

MR mount [160] 

Masonry 

structures 

[166] 

Space flexible 

structure 

[173] 

Neural 

Network 

Control 

MR suspensions [174],[175],[176],[186],[189],[197],[198],[199],[202],[212],[215],[21

6] 

Railcar [191] 

Cable system [211] 

H-infinity  

Control 

Civil structures [220],[224],[237] 

Railway bridge [223] 



MR suspensions [225],[227],[228],[229],[235],[236] [231] 

MR mount [233] 

Aircraft landing 

gear 

[234] 

Hybrid 

Control 

MR suspensions [239],[241],[242],[243],[244],[255],[256],[257],[260] 

Braking system [248] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 1. A concept of a skyhook controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 2. A block diagram of PID controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

(a) 

  

(b) 

Figure 3. A block diagram of optimal control system (a) LQG (b) LQR 
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Figure 4. A concept block diagram of a sliding mode controller 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

Figure 5. A block diagram of a fuzzy control system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 6. A block diagram of a model reference adaptive control system 
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Figure 7. Block diagram of the gradient update system 
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Figure 8. Block diagram of the self-tuning regulators 
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Figure 9. A block diagram of a neural network control system 
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Figure 10. A block diagram of H-infinity control system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Figure 11. A block diagram of a hybrid fuzzy neural network control system  
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