39 research outputs found

    Fault-tolerant hamiltonian connectedness of cycle composition networks

    Get PDF
    Abstract It is important for a network to tolerate as many faults as possible. With the graph representation of an interconnection network, a k-regular hamiltonian and hamiltonian connected network is super fault-tolerant hamiltonian if it remains hamiltonian after removing up to k À 2 vertices and/or edges and remains hamiltonian connected after removing up to k À 3 vertices and/or edges. Super fault-tolerant hamiltonian networks have an optimal flavor with regard to the fault-tolerant hamiltonicity and fault-tolerant hamiltonian connectivity. For this reason, a cycle composition framework was proposed to construct a (k + 2)-regular super fault-tolerant hamiltonian network based on a collection of n k-regular super fault-tolerant hamiltonian networks containing the same number of vertices for n P 3 and k P 5. This paper is aimed to emphasize that the cycle composition framework can be still applied even when k = 4

    The super-connectivity of Johnson graphs

    Get PDF
    For positive integers n,kn,k and tt, the uniform subset graph G(n,k,t)G(n, k, t) has all kk-subsets of {1,2,,n}\{1,2,\ldots, n\} as vertices and two kk-subsets are joined by an edge if they intersect at exactly tt elements. The Johnson graph J(n,k)J(n,k) corresponds to G(n,k,k1)G(n,k,k-1), that is, two vertices of J(n,k)J(n,k) are adjacent if the intersection of the corresponding kk-subsets has size k1k-1. A super vertex-cut of a connected graph is a set of vertices whose removal disconnects the graph without isolating a vertex and the super-connectivity is the size of a minimum super vertex-cut. In this work, we fully determine the super-connectivity of the family of Johnson graphs J(n,k)J(n,k) for nk1n\geq k\geq 1

    A multipath analysis of biswapped networks.

    Get PDF
    Biswapped networks of the form Bsw(G)Bsw(G) have recently been proposed as interconnection networks to be implemented as optical transpose interconnection systems. We provide a systematic construction of κ+1\kappa+1 vertex-disjoint paths joining any two distinct vertices in Bsw(G)Bsw(G), where κ1\kappa\geq 1 is the connectivity of GG. In doing so, we obtain an upper bound of max{2Δ(G)+5,Δκ(G)+Δ(G)+2}\max\{2\Delta(G)+5,\Delta_\kappa(G)+\Delta(G)+2\} on the (κ+1)(\kappa+1)-diameter of Bsw(G)Bsw(G), where Δ(G)\Delta(G) is the diameter of GG and Δκ(G)\Delta_\kappa(G) the κ\kappa-diameter. Suppose that we have a deterministic multipath source routing algorithm in an interconnection network GG that finds κ\kappa mutually vertex-disjoint paths in GG joining any 22 distinct vertices and does this in time polynomial in Δκ(G)\Delta_\kappa(G), Δ(G)\Delta(G) and κ\kappa (and independently of the number of vertices of GG). Our constructions yield an analogous deterministic multipath source routing algorithm in the interconnection network Bsw(G)Bsw(G) that finds κ+1\kappa+1 mutually vertex-disjoint paths joining any 22 distinct vertices in Bsw(G)Bsw(G) so that these paths all have length bounded as above. Moreover, our algorithm has time complexity polynomial in Δκ(G)\Delta_\kappa(G), Δ(G)\Delta(G) and κ\kappa. We also show that if GG is Hamiltonian then Bsw(G)Bsw(G) is Hamiltonian, and that if GG is a Cayley graph then Bsw(G)Bsw(G) is a Cayley graph

    Higher-Order Triangular-Distance Delaunay Graphs: Graph-Theoretical Properties

    Full text link
    We consider an extension of the triangular-distance Delaunay graphs (TD-Delaunay) on a set PP of points in the plane. In TD-Delaunay, the convex distance is defined by a fixed-oriented equilateral triangle \triangledown, and there is an edge between two points in PP if and only if there is an empty homothet of \triangledown having the two points on its boundary. We consider higher-order triangular-distance Delaunay graphs, namely kk-TD, which contains an edge between two points if the interior of the homothet of \triangledown having the two points on its boundary contains at most kk points of PP. We consider the connectivity, Hamiltonicity and perfect-matching admissibility of kk-TD. Finally we consider the problem of blocking the edges of kk-TD.Comment: 20 page
    corecore