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Abstract

It is important for a network to tolerate as many faults as possible. With the graph representation of an interconnection
network, a k-regular hamiltonian and hamiltonian connected network is super fault-tolerant hamiltonian if it remains
hamiltonian after removing up to k � 2 vertices and/or edges and remains hamiltonian connected after removing up to
k � 3 vertices and/or edges. Super fault-tolerant hamiltonian networks have an optimal flavor with regard to the fault-tol-
erant hamiltonicity and fault-tolerant hamiltonian connectivity. For this reason, a cycle composition framework was pro-
posed to construct a (k + 2)-regular super fault-tolerant hamiltonian network based on a collection of n k-regular super
fault-tolerant hamiltonian networks containing the same number of vertices for n P 3 and k P 5. This paper is aimed
to emphasize that the cycle composition framework can be still applied even when k = 4.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The architecture of an interconnection network is usually represented by a graph whose vertices and edges
represent processors and communication links, respectively. Thus, we use the terms graph and network inter-
changeably. Throughout this paper, we concentrate on loopless undirected graphs. For the graph definitions
and notations we follow the ones given by Bondy and Murty [1]. A graph G consists of a nonempty set V(G)
and a subset E(G) of {(u,v)j(u,v) is an unordered pair of V(G)}. The set V(G) is called the vertex set of G and
E(G) is called the edge set. Two vertices u and v of G are adjacent if (u,v) 2 E(G). A graph H is a subgraph of G
if V(H) � V(G) and E(H) � E(G). Let S be a nonempty subset of V(G). The subgraph induced by S is the
subgraph of G with its vertex set S and with its edge set which consists of those edges joining any two vertices
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in S. We use G � S to denote the subgraph of G induced by V(G) � S. Analogously, the subgraph generated
by a nonempty subset F � E(G) is the subgraph of G with its edge set F and its vertex set consisting of those
vertices of G incident with at least one edge of F. We use G � F to denote the subgraph of G with vertex set
V(G) and edge set E(G) � F. The degree of a vertex u in G, denoted by degG(u), is the number of edges incident
to u. A graph G is k-regular if all its vertices have the same degree k. A matching of size k in a graph G is a set
of k edges with no shared endpoints. The vertices belonging to the edges of a matching are saturated by the
matching; the others are unsaturated. A perfect matching is a matching that saturates every vertex of G.

A path P of length k from a vertex x to a vertex y in a graph G is a sequence of distinct vertices
hv0; v1; v2; . . . ; vki such that x = v0, y = vk, and ðvi�1; viÞ 2 EðGÞ for every 1 6 i 6 k. More precisely, we write
P ¼ hv0; e1; v1; e2; v2; . . . vk�1; ek; vki, in which ei ¼ ðvi�1; viÞ 2 EðGÞ for every i. For convenience, we write P

as hv0; . . . ; vi;Q; vj; . . . ; vki where Q ¼ hvi; . . . ; vji. Note that we allow Q to be a path of length zero. Moreover,
we use P�1 to denote the path hvk; vk�1; . . . ; v1; v0i. To emphasize the beginning and ending vertices of P, we
also write P as P[x,y]. A path of a graph G is a hamiltonian path if it spans G. A cycle is a path with at least
three vertices such that the first vertex is the same as the last one. A cycle of G is a hamiltonian cycle if it tra-
verses all vertices of G. A graph G is hamiltonian if it has a hamiltonian cycle, and G is hamiltonian connected
if there exists a hamiltonian path joining any two vertices of G.

A suitable network is generally designed to satisfy some specified requirements. For example, the hamilto-
nian property is one of the major concerns for designing the network topology and fault tolerance is desirable
in massive parallel systems. So these two properties can be concerned in the network topology as follows. A
graph G is called l-fault-tolerant hamiltonian (resp. l-fault-tolerant hamiltonian connected) if it remains ham-
iltonian (resp. hamiltonian connected) after removing at most l vertices and/or edges. The fault-tolerant
hamiltonicity of G, Hf ðGÞ, is defined to be the maximum integer l such that G � F remains hamiltonian
for every F � V(G) [ E(G) with jFj 6 l if G is hamiltonian, and undefined otherwise. Obviously, Hf ðGÞ 6
dðGÞ � 2, where d(G) = min{degG(v)jv 2 V(G)}. A regular graph G is optimal fault-tolerant hamiltonian if
Hf ðGÞ ¼ dðGÞ � 2. The fault-tolerant hamiltonian connectivity of G, Hj

f ðGÞ, is defined to be the maximum
integer l such that G � F remains hamiltonian connected for every F � V(G) [ E(G) with jFj 6 l if G is ham-
iltonian connected, and undefined otherwise. Obviously, Hj

f ðGÞ 6 dðGÞ � 3. A regular graph G is optimal

fault-tolerant hamiltonian connected if Hj
f ðGÞ ¼ dðGÞ � 3. A regular graph is super fault-tolerant hamiltonian

if Hf ðGÞ ¼ dðGÞ � 2 and Hj
f ðGÞ ¼ dðGÞ � 3. For instance, twisted-cubes, crossed-cubes, móbius cubes and

recursive circulant graphs are all super fault-tolerant hamiltonian [2,4–6,8].
A network will have higher fault tolerance if it is super fault-tolerant hamiltonian. For this reason, Chen

et al. [3] proposed a systematic framework to recursively construct super fault-tolerant hamiltonian graphs as
follows. Let G0,G1, . . .,Gn� 1 be n k-regular super fault-tolerant hamiltonian graphs with the same number of
vertices. The cycle composition network H ¼ GðG0;G1; . . . ;Gn�1; M0;1;M1;2; . . . ;Mn�2;n�1;Mn�1;0Þ is defined to
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Fig. 1. Illustration for Gh0;1;...;n�1;0i.
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be the graph with the vertex set V ðHÞ ¼
Sn�1

i¼0 V ðGiÞ and the edge set EðHÞ ¼
Sn�1

i¼0 ðEðGiÞ [Mi;iþ1Þ where Mi;j is
an arbitrary perfect matching between the vertices of Gi and those of Gj. See Fig. 1. Then Chen et al. [3] proved
that GðG0;G1; . . . ;Gn�1; M0;1;M1;2; . . . ;Mn�2;n�1;Mn�1;0Þ, abbreviated as Gh0;1;...;n�1;0i, is super fault-tolerant
hamiltonian for n P 3 and k P 5.

Theorem 1 [3]. Assume n P 3 and k P 5. Let G0;G1; . . . ;Gn�1 be n k-regular super fault-tolerant hamiltonian

graphs with the same number of vertices. For any 0 6 i 6 n� 1, let Mi;iþ1 be a perfect matching between the

vertices of Gi and those of Gi +1. Then Gh0;1;...;n�1;0i is (k + 2)-regular super fault-tolerant hamiltonian.

For instance, the recursive circulant graph, which was proposed by Park and Chwa [7], is essentially con-
structed as a special case in this way, and it is shown to be super fault-tolerant hamiltonian under a certain
condition [8]. Similarly, k-ary n-cubes are also recursively constructed using the same framwork [9]. In this
paper, we shall extend Theorem 1 by showing that Gh 0, 1, . . ., n�1, 0 i is still super fault-tolerant hamiltonian even
when k = 4. Such an extension is significant because only the remaining case of k = 3 needs to be concerned
carefully or to be checked by computer while the topological properties of cycle composition networks are
investigated.

2. Fault-tolerant hamiltonicity

For the ease of exposition, the notations we used in this paper are described as follows. We denote the
graph GðGi;Giþ1; . . . ;Gj; Mi;iþ1;Miþ1;iþ2; . . . ;Mj�1;jÞ by Ghi;iþ1;...;ji. Let u be a vertex of Gi with some i. We use
(u)� to denote the vertex of Gi�1 such that ((u)�,u) 2Mi�1, i, and use (u)+ to denote the vertex of Gi + 1 such
that ðu; ðuÞþÞ 2 Mi;iþ1. Hence, we have u ¼ ððuÞ�Þþ ¼ ððuÞþÞ�. Moreover, all additions and subtractions are
considered modulo n. In order to prove the main results, we need the following lemmas.

Lemma 1. Assume n P 1. Let G0;G1; . . . ;Gn�1 be n 4-regular super fault-tolerant hamiltonian graphs with the
same number of vertices. For any 0 6 i 6 n � 2, let Mi, i+1 be a perfect matching between the vertices of Gi and

those of Gi + 1. Moreover, let Fi � V(Gi) [ E(Gi) with jFij 6 1 for every 0 6 i 6 n � 1 and let X i;iþ1 � Mi;iþ1 with

jX i;iþ1j 6 1 such that jF ij þ jF iþ1j þ jX i;iþ1j 6 2 is satisfied for all 0 6 i 6 n � 2. Let u and v be two vertices of

G0 � F0. Then there is a hamiltonian path of Gh0;...;n�1i � ðð
Sn�1

i¼0 F iÞ [ ð
Sn�2

i¼0 X i;iþ1ÞÞ joining u to v.

Proof. For convenience, let F ¼ ð
Sn�1

i¼0 F iÞ [ ð
Sn�2

i¼0 X i;iþ1Þ. We prove this lemma by induction on n. Obviously,
the statement is trivial when n = 1. For any n P 2, we suppose that the statement holds for n � 1. Depending
on jV(G0)j, two cases are distinguished.

Case 1: Suppose that jV(G0)j = 5. Thus, G0 is isomorphic to the complete graph K5. First assume jF0j = 0.
Since jF 0j þ jF 1j þ jX 0;1j 6 2, we can choose two vertices x, y of G0 such that j{x,y} \ {u,v}j 6 1 and
jF \ fðxÞþ; ðyÞþ; ðx; ðxÞþÞ; ðy; ðyÞþÞgj ¼ 0. Accordingly, we can construct a hamiltonian path P ¼ hu; P 1;
x; y; P 2; vi of G0, in which P1 or P2 may be a path of length zero. On the other hand, assume that jF0j = 1. Since
G0 is 4-regular super fault-tolerant hamiltonian, there is a hamiltonian path P of G0 � F0 joining u to v. Since
jF 0j þ jF 1j þ jX 0;1j 6 2 and jF0j = 1, there exists an edge (x,y) on P such that jF \ fðxÞþ; ðyÞþ; ðx; ðxÞþÞ;
ðy; ðyÞþÞgj ¼ 0. Accordingly, we write P ¼ hu; P 1; x; y; P 2; vi, in which P1 or P2 may be a path of length zero. By
induction hypothesis, there is a hamiltonian path T of Gh1;...;n�1i � ðð

Sn�1
i¼1 F iÞ [ ð

Sn�2
i¼1 X i;iþ1ÞÞ joining (x)+ to

(y)+. Then hu; P 1; x; ðxÞþ; T ; ðyÞþ; y; P 2; vi is a hamiltonian path of Gh0;1;...;n�1i � F joining u to v. See Fig. 2 for
illustration.
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Fig. 2. Illustration for Lemma 1.
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Case 2: Suppose that jV(G0)jP 6. Since G0 is super fault-tolerant hamiltonian, there is a hamiltonian
path P of G0 � F0 joining u to v. Since jF 0j þ jF 1j þ jX 0;1j 6 2, there exists an edge (x,y) on P such
that jF \ fðxÞþ; ðyÞþ; ðx; ðxÞþÞ; ðy; ðyÞþÞgj ¼ 0. Accordingly, we write P ¼ hu; P 1; x; y; P 2; vi, in which P1 or P2

may be a path of length zero. By induction hypothesis, there is a hamiltonian path T of
Gh1;...;n�1i � ðð

Sn�1
i¼1 F iÞ [ ð

Sn�2
i¼1 X i;iþ1ÞÞ joining (x)+ to (y)+. Then hu; P 1; x; ðxÞþ; T ; ðyÞþ; y; P 2; vi is a hamiltonian

path of Gh0;1;...;n�1i � F joining u to v. h

Lemma 2. Assume n P 1. Let G0;G1; . . . ;Gn�1 be n 4-regular super fault-tolerant hamiltonian graphs with the

same number of vertices. For any 0 6 i 6 n� 2, let Mi;iþ1 be a perfect matching between the vertices of Gi and

those of Gi + 1. Moreover, let Fi � V(Gi) [ E(Gi) with jFij 6 1 for every 0 6 i 6 n � 1 and let X i;iþ1 � Mi;iþ1 with

jX i;iþ1j 6 1 for every 0 6 i 6 n � 2 such that jF ij þ jF iþ1j þ jX i;iþ1j 6 2 is satisfied for all 0 6 i 6 n � 2. Let u

be a vertex of G0 � F0 and v be a vertex of Gt � Ft with t P 0. Then there is a hamiltonian path of

Gh0;...;n�1i � ðð
Sn�1

i¼0 F iÞ [ ð
Sn�2

i¼0 X i;iþ1ÞÞ joining u to v.

Proof. For convenience, let F ¼ ð
Sn�1

i¼0 F iÞ [ ð
Sn�2

i¼0 X i;iþ1Þ. When t = 0, the statement follows from Lemma 1.
Hence, we suppose t > 0 in the following. Since Gt is 4-regular, we have jV(Gt)jP 5. Moreover, since
jFt�1j + jFtj + jXt�1, tj 6 2, we can choose a vertex w of Gt � (Ft [ {v}) such that jF \ fw; ðwÞ�;
ðw; ðwÞ�Þgj ¼ 0 and (w)�5 u.

Let y0 = u and xt�1 = (w)�. Since every Gi, 0 6 i 6 t � 1, is 4-regular and jF ij þ jF iþ1j þ jX i;iþ1j 6 2, we
sequentially choose a vertex xi of Gi � Fi and denote (xi)

+ by yi + 1 such that xi 5 yi and
jF \ fxi; yiþ1; ðxi; yiþ1Þgj ¼ 0 from i = 0 to i = t � 3 while t P 3. Next, we choose a vertex xt�2 of
Gt�2 � (Ft�2 [ {yt�2}) and denote (xt�2)+ by yt�1 such that jF \ {xt�2,yt�1, (xt�2,yt�1)}j = 0 and yt�1 5 xt�1

while t P 2. Since every Gi, 0 6 i 6 t � 1, is super fault-tolerant hamiltonian, there is a hamiltonian path Pi of
Gi � Fi joining yi to xi. By Lemma 1, there is a hamiltonian path T of Ght;...;n�1i � ðð

Sn�1
i¼t F iÞ [ ð

Sn�2
i¼t X i;iþ1ÞÞ

joining w to v. Then hu ¼ y0; P 0; x0; ðx0Þþ ¼ y1; . . . ; xt�2; ðxt�2Þþ ¼ yt�1; P t�1; xt�1 ¼ ðwÞ�;w; T ; vi is a hamilto-
nian path of Gh0;...;n�1i � F joining u to v. See Fig. 3 for illustration. h

Using Lemma 2, we prove the following result.

Theorem 2. Assume n P 3. Let G0;G1; . . . ;Gn�1 be n 4-regular super fault-tolerant hamiltonian graphs with the
same number of vertices. For any 0 6 i 6 n � 1, let Mi;iþ1 be a perfect matching between the vertices of Gi and

those of Gi+1. Then Gh0;1;...;n�1;0i is optimal fault-tolerant hamiltonian.

Proof. Obviously, Gh0;1;...;n�1;0i is 6-regular. Thus, we are going to show that it is 4-fault-tolerant hamiltonian.
Let F be a faulty set of Gh0;1;...;n�1;0i with jFj 6 4. For convenience, let Fi = F \ (V(Gi) [ E(Gi)) for 0 6 i 6 n � 1.
Without loss of generality, we assume that jF0jP jFij for all 1 6 i 6 n � 1. Depending on jF0j, five cases are
distinguished.

Case 1: Suppose that jF0j = 4. Let F 0 ¼ ff1; f2; f3; f4g. Since G0 is 2-fault-tolerant hamiltonian, there is a
hamiltonian cycle C in G0 � ff3; f4g.

Subcase 1.1: Suppose that both f1 and f2 are on C but they are not adjacent. Thus, we can write
C ¼ hx1; f1; y1;H1; x2; f2; y2;H 2; x1i, in which H1 or H2 may be a path of length zero. By Lemma 2, there is a
hamiltonian path S1½ðx1Þ�; ðy1Þ

�� in Gn� 1 and there is a hamiltonian path S2½ðx2Þþ; ðy2Þ
þ� in Gh1;...;n�2i. Then
u

G0 G1 Gt-1

x0

P0 P1 x1
+(x0) +(x1)

Pt-1

v

w

Gn-1Gt

T

xt-2 xt-2( )+ xt-1=yt-1=y1=y0 =y2

-(w)

G <t,...,n-1>

Fig. 3. Illustration for Lemma 2.
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hx1; ðx1Þ�; S1; ðy1Þ
�; y1;H 1; x2, ðx2Þþ; S2, ðy2Þ

þ; y2;H 2; x1i is a hamiltonian cycle of Gh0;1;...;n�1;0i � F . See Fig. 4a
for illustration.

Subcase 1.2: Suppose that both f1 and f2 are on C and they are adjacent. Thus, we write C ¼
hx;R; y; f1; f2; xi. By Lemma 2, there is a hamiltonian path H of Gh1;...;n�1i joining (y)+ to (x)+. Then
hx;R; y; ðyÞþ;H ; ðxÞþ; xi is a hamiltonian cycle of Gh0;1;...;n�1;0i � F . See Fig. 4b for illustration.

Subcase 1.3: Suppose that either f1 or f2 is on C. Without loss of generality, we assume that f1 is on C. Thus,
we write C as hx;R; y; f1; xi. Then a hamiltonian cycle of Gh0;1;...;n�1;0i � F can be formed in the same way as
that used in Subcase 1.2.

Subcase 1.4: Suppose that neither f1 nor f2 is on C. Thus, we write C as hx;R; y; xi with any edge
(x,y) 2 E(C). Then a hamiltonian cycle of Gh0;1;...;n�1;0i � F can be formed in the same way as that used in
Subcase 1.2.

Case 2: Suppose that jF0j = 3. Let F 0 ¼ ff1; f2; f3g. Since G0 is 2-fault-tolerant hamiltonian, there is a
hamiltonian cycle C in G0 � ff2; f3g. Thus, we have either f1 62 V(C) [ E(C) or f1 2 V(C) [ E(C). Accordingly,
we write C ¼ hx;R; y; xi by picking any edge (x,y) on C if f1 62 V(C) [ E(C); we write C = hx,R,y, f1,xi if f1 is
on C. Let F 0 = F � F0. Since jFj 6 4 and jF0j = 3, jF 0j 6 1. Moreover, one can see either
jfðxÞþ; ðyÞþ; ðx; ðxÞþÞ; ðy; ðyÞþÞg \ F j ¼ 0 or jfðxÞ�; ðyÞ�; ðx; ðxÞ�Þ; ðy; ðyÞ�Þg \ F j ¼ 0. With symmetry, we
assume that jfðxÞþ; ðyÞþ; ðx; ðxÞþÞ; ðy; ðyÞþÞg \ F j ¼ 0. By Lemma 2, there is a hamiltonian path H of
Gh1;...;n�1i � F 0 joining (y)+ to (x)+. Then hx;R; y; ðyÞþ;H ; ðxÞþ; xi is a hamiltonian cycle of Gh0;1;...;n�1;0i � F .

Case 3: Suppose that jF0j = 2 and jFij = 2 with any 1 6 i 6 n � 1. Since both G0 and Gi are 2-fault-tolerant
hamiltonian, there is a hamiltonian cycle C in G0 � F0 and there is a hamiltonian cycle T in Gi � Fi. Since
every Gj, 0 6 j 6 n � 1, is 4-regular, jV(Gj)jP 5.

Subcase 3.1: Suppose that i 2 {1,n � 1}. With symmetry, we assume that i = 1. Apparently, there is a vertex
u in G0 � F0 such that (u)+ is in G1� F1. Without loss of generality, we write C = hu,R1,x,ui and
T = h(u)+,y,R2, (u)+i so that (y)+ is different from (x)�. By Lemma 2, there is a hamiltonian path H of
Gh2;...;n�1i � F joining (x)� to (y)+. Then hu,R1,x, (x)�,H, (y)+,y,R2, (u)+,ui is a hamiltonian cycle of
Gh0;1;...;n�1;0i � F . See Fig. 5a.

Subcase 3.2: Suppose that i 62 {1,n � 1}. Obviously, there is a vertex u in G0 � F0 and a vertex v in Gi � Fi

such that (u)+ 5 (v)�. Without loss of generality, we write C = hu,x,R1,ui and T = hv,R2,y,vi so that (y)+ is
different from (x)�. By Lemma 2, there is a hamiltonian path P1 of Gh1;...;i�1i joining (u)+ to (v)�. Similarly,
there is a hamiltonian path P2 of Ghiþ1;...;n�1i joining (y)+ to (x)�. Then hu, (u)+,P1, (v)�,v,R2,y, (y)+,
P2, (x)�,x,R1,ui is a hamiltonian cycle of Gh0;1;...;n�1;0i � F . See Fig. 5b for illustration.

Case 4: Suppose that jF0j = 2 and jFij 6 1 for every 1 6 i 6 n � 1. Since G0 is 2-fault-tolerant hamiltonian,
there is a hamiltonian cycle C in G0 � F0. Since G0 is 4-regular, we have jV(G0 � F0)jP 3. For convenience, let
m = jV(G0 � F0)j. Accordingly, we write C ¼ hu0; u1; u2; . . . ; um�1; u0i. Without loss of generality, we assume
that jF \ {(u0)+, (u1)�, (u0, (u0)+), (u1, (u1)�)}j = 0. Let F 0 = F � F0. By Lemma 2, there is a hamiltonian path T

of Gh1;...;n�1i � F 0 joining (u0)+ to (u1)�. Then hu0; ðu0Þþ; T ; ðu1Þ�; u1; . . . ; um�1; u0i is a hamiltonian cycle of
Gh0;1;...;n�1;0i � F . See Fig. 6a for illustration.

Case 5: Suppose that jF0j 6 1. That is, jFij 6 1 for all 0 6 i 6 n � 1. For convenience, let Xi, i+1 = F \Mi, i+1

for 0 6 i 6 n � 1. Suppose that there exists an integer t of f0; 1; . . . ; n� 1g such that jFtj + jFt+1j +
jXt, t+1jP 3. Without loss of generality, t can be assumed to be n � 1. Otherwise, t is fixed to be n � 1.
Accordingly, we have jFij + jFi+1j + jXi, i+1j 6 2 for 0 6 i 6 n � 2. Since jFn�1j + jF0j + jXn�1, 0j 6 4, we can
choose a vertex x of Gn�1 � Fn�1 such that jF \ {(x)+, (x, (x)+)}j = 0. Let F 0 = F � Xn�1, 0. By Lemma 2, there
x
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Fig. 4. Illustration for case 1 of Theorem 2.
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is a hamiltonian path T of Gh0;1;...;n�1i � F 0 joining x to (x)+. Then hx,T, (x)+,xi is a hamiltonian cycle of
Gh0;1;...;n�1;0i � F . See Fig. 6b for illustration. h
3. Fault-tolerant hamiltonian connectedness

In this section, we are going to show that the cycle composition network is optimal fault-tolerant hamilto-
nian connected. This result is divided into three propositions.

Proposition 1. Assume n P 1. Let G0;G1; . . . ;Gn�1 be n 4-regular super fault-tolerant hamiltonian graphs with

the same number of vertices. For any 0 6 i 6 n � 1, let Mi, i+1 be a perfect matching between the vertices of Gi and

those of Gi+1. Let F be a subset of V(G0) [ E(G0) with jFj = 3. Then Gh0;1;...;n�1;0i � F is hamiltonian connected.

Proof. Let F = {f1, f2, f3}. Since G0 is 2-fault-tolerant hamiltonian, there is a hamiltonian cycle C in
G0 � {f2, f3}. Since G0 is 4-regular, jV(C)jP 3. Let u and v be two vertices of Gh0;1;...;n�1;0i � F . Then we have
to construct a hamiltonian path of Gh0;1;...;n�1;0i � F joining u to v. The following cases are distinguished.

Case 1: Suppose that u and v are in G0 � F. Since G0 is 1-fault-tolerant hamiltonian connected, there is a
hamiltonian path H of G0 � {f3} joining u to v. Suppose that f1 and f2 are exclusive from H. Thus, we write
H = hu,P1,x,y,P2,vi with any edge (x,y) 2 E(H). Suppose that either f1 or f2 is exclusive from H. Without loss
of generality, we assume that f2 is exclusive from H. Thus, we may write H = hu,P1,x, f1,y,P2,vi. Suppose that
both f1 and f2 are on H and they are adjacent. Thus, we may write H = hu,P1,x, f1, f2,y,P2,vi. By Lemma 2,
there is a hamiltonian path T of Gh1;...;n�1i joining (x)+ to (y)+. Then hu,P1,x, (x)+,T, (y)+,y,P2,vi is a
hamiltonian path of Gh0;1;...;n�1;0i � F joining u to v. See Fig. 7a for illustration.

Suppose that both f1 and f2 are on H but they are not adjacent. Thus, we may write H = hu,A1,
x1, f1,y1,A2,x2, f2,y2,A3,vi. Using Lemma 2, we can find a hamiltonian path D1 of Gh1;...;n�2i joining (x1)+ to
(y1)+. Similarly, there is a hamiltonian path D2 of Gn�1 joining (x2)� to (y2)�. Hence, hu,A1,x1,
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(x1)+,D1, (y1)+,y1,A2,x2, (x2)�,D2, (y2)�,y2,A3,vi is a hamiltonian path of Gh0;1;...;n�1;0i � F joining u to v. See
Fig. 7b for illustration.

Case 2: Suppose that u and v are in Gi for some 1 6 i 6 n � 1. With symmetry, we assume that i 5 n � 1.
Suppose that f1 is on the hamiltonian cycle C of G0 � {f2, f3}. Since jV(C)jP 3, we write C = hx,P,y, f1,xi.
Otherwise, we write C = hx,P,y,xi with any edge (x,y) 2 E(C).

Subcase 2.1: Suppose that (x)+ 5 u and (x)+ 5 v. Thus, either (y)�5 (u)+ or (y)�5 (v)+. Without loss of
generality, we assume that (y)�5 (v)+. By Lemma 2, there is a hamiltonian path T1 of Gh1;...;ii � fvg joining u

to (x)+. Similarly, there is a hamiltonian path T2 of Ghiþ1;...;n�1i joining (y)� to (v)+. Then
hu,T1, (x)+,x,P,y, (y)�,T2, (v)+,vi is a hamiltonian path of Gh0;1;...;n�1;0i � F joining u to v. See Fig. 8a for
illustration.

Subcase 2.2: Suppose that (x)+ = u or (x)+ = v. Without loss of generality, we assume that (x)+ = u. By
Lemma 2, there is a hamiltonian path T of Gh1;...;n�1i � fug joining (y)� to v. Then hu = (x)+,x,P,y, (y)�,T,vi is
a hamiltonian path of Gh0;1;...;n�1;0i � F joining u to v. See Fig. 8b for illustration.

Case 3: Suppose that u is in G0 � F and v is in Gi with any i > 0. Since i 5 1 or i 5 n � 1, we may assume
that i 5 1. Since jV(C)jP 3, we write C = hu,T,z,ui with z 5 u. Moreover, T can be written as
hu,P1,x, f1,y,P2,zi if f1 is on T, or T can be written as hu,P1,x,y,P2,zi otherwise.

Subcase 3.1: Suppose that (z)�5 v. Since G1 is 1-fault-tolerant hamiltonian connected, there is a
hamiltonian path H of G1 joining (x)+ to (y)+. By Lemma 2, there is a hamiltonian path R of Gh2;...;n�1i joining
(z)� to v. Then hu,P1,x, (x)+,H, (y)+,y,P2,z, (z)�,R,vi is a hamiltonian path of Gh0;1;...;n�1;0i � F joining u to v.
See Fig. 9a.

Subcase 3.2: Suppose that (z)� = v. By Lemma 2, there is a hamiltonian path H of Gh1;...;n�1i � fvg joining
(x)+ to (y)+. Then h u,P1,x, (x)+,H, (y)+,y,P2,z, (z)� = vi is a hamiltonian path of Gh0;1;...;n�1;0i � F joining u to
v. See Fig. 9b for illustration.

Case 4: Suppose that u is in Gi and v is in Gj for any 1 6 i < j 6 n � 1. Suppose that f1 is on C. Then we write
C = hx,P,y, f1,xi. Otherwise, we write C = h x,P,y,xi with any (x,y) 2 E(C). Since (x)+ 5 u or (y)+ 5 u, we
may assume that (x)+ 5 u.
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Subcase 4.1: Suppose that (y)�5 v. By Lemma 2, there is a hamiltonian path T1 of Gh1;...;ii joining u to (x)+.
Similarly, there is a hamiltonian path T2 of Ghiþ1;...;n�1i joining (y)� to v. Then hu,T1, (x)+,x,P,y, (y)�,T2,vi is a
hamiltonian path of Gh0;1;...;n�1;0i � F joining u to v. See Fig. 10a for illustration.

Subcase 4.2: Suppose that (y)� = v. By Lemma 2, there is a hamiltonian path H of Gh1;...;n�1i � fvg joining u

to (x)+. Then hu,H, (x)+,x,P,y, (y)� = vi is a hamiltonian path of Gh0;1;...;n�1;0i � F joining u to v. See Fig. 10(b)
for illustration. h

Proposition 2. Assume n P 1. Let G0;G1; . . . ;Gn�1 be n 4-regular super fault-tolerant hamiltonian graphs with

the same number of vertices. For any 0 6 i 6 n � 1, let Mi,i+1 be a perfect matching between the vertices of Gi

and those of Gi+1. Let F be a faulty set of Gh0;1;...;n�1;0i such that jFj = 3 and jF \ (V(G0) [ E(G0))j = 2. Then

Gh0;1;...;n�1;0i � F is hamiltonian connected.

Proof. For convenience, let Fi = F \ (V(Gi) [ E(Gi)) and Xi,i+1 = F \Mi,i+1 for every 0 6 i 6 n � 1. More-
over, let F 0 = F � F0. Obviously, we have jF0j = 2, jF 0j = 1, and jFij 6 1 for all 1 6 i 6 n � 1. Since G0 is 4-reg-
ular, jV(G0)jP 5 and jV(G0 � F0)jP 3. Moreover, since G0 is 2-fault-tolerant hamiltonian, there is a
hamiltonian cycle C in G0 � F0. Let u and v be any two vertices of Gh0;1;...;n�1;0i � F . Then we have to construct
a hamiltonian path of Gh0;1;...;n�1;0i � F joining u to v.

Case 1: Suppose that u and v are in G0 � F0. Since jV(G0 � F0)jP 3, we may write C = hu,P,y,ui in which
y 5 u. Moreover, we may write P = hu,H1,x,v,H2,yi. Note that the length of H1 becomes zero if u = x. Since
jF 0j = 1, we have jX0,1j + jF1j = 0 or jXn�1,0j + jFn�1j = 0. With symmetry, we assume that jX0,1j + jF1j = 0.
By Lemma 2, there is a hamiltonian path T of Gh1;...;n�1i � F 0 joining (x)+ to (y)+. Then
hu;H 1; x; ðxÞþ; T ; ðyÞþ; y;H�1

2 ; vi is a hamiltonian path of Gh0;1;...;n�1;0i � F joining u to v. See Fig. 11 for
illustration.

Case 2: Suppose that u and v are in either G1 � F1 or Gn�1 � Fn�1. With symmetry, we assume that u and v

are in G1 � F1.
P

y
x

v

u

P

H

u

+(x)

-(y)

T1

T2

G1G0 Gi

Gj Gi+1Gn-1

G<i+1,...,n-1>

G<1,...,i>

y x

+(x)GjGn-1 G1

G0

v (y)= -

G<1,...,n-1>

Fig. 10. Illustration for case 4 of Proposition 1.
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Subcase 2.1: Suppose that jX0,1j + jF1j = 1. Since jV(G0 � F0)jP 3, we choose a vertex x of the hamiltonian
cycle C such that jF 0 \ {(x)+, (x, (x)+)}j = 0. Hence, C can be written as C = hy,x,z,P,yi. Since (x)+ 5 u or
(x)+

5 v, we assume that (x)+
5 v. Since G1 is 1-fault-tolerant hamiltonian connected, there is a hamiltonian

path Q[u,v] of G1 � F1. Since (x)+ 5 v, we write Q = hu,T1, (x)+,w,T2,vi. Note that T1 or T2 may be a path of
length zero. Moreover, we select a vertex from {y,z}, say y, such that (y)�5 (w)+. By Lemma 2, there is a
hamiltonian path H of Gh2;...;n�1i joining (y)� to (w)+. Then hu,T1, (x)+,x,z,P,y, (y)�,H, (w)+,w,T2,vi is a
hamiltonian path of Gh0;1;...;n�1;0i � F joining u to v. See Fig. 12a for illustration.

Subcase 2.2: Suppose that jX0,1j + jF1j = 0. Thus, we can choose a vertex x of C such that jF 0 \
{(x)+, (x, (x)+)}j = 0 and (x)+ 62 {u,v}. Hence, the hamiltonian cycle C of G0 � F0 can be written as
C = hy,x,z,P,yi.

Subcase 2.2.1: Suppose that j{(y)+, (z)+} \ {u,v}jP 1. Without loss of generality, we assume that (z)+ = u.
By Lemma 2, there is a hamiltonian path T of Gh1;...;n�1i � ðF 0 [ fugÞ joining (x)+ to v. Then hu =
(z)+,z,P,y,x, (x)+,T,vi is a hamiltonian path of Gh0;1;...;n�1;0i � F joining u to v. See Fig. 12b for illustration.

Subcase 2.2.2: Suppose that j{(y)+, (z)+} \ {u,v}j = 0. Since jF 0 \ {(y)�, (y, (y)�)}j = 0 or jF0 \ {(z)�,
(z, (z)�)}j = 0, we assume that jF 0 \ {(y)�, (y, (y)�)}j = 0. Since G1 is 1-fault-tolerant hamiltonian connected,
there is a hamiltonian path Q of G1 � {((x)+, ((y)�)�)}. Since (x)+ 62 {u,v}, Q can be represented by
h u,T1,w1, (x)+,w2,T2,vi. Note that T1 or T2 may be a path of length zero. Accordingly, we have that
jF 0 \ {(w1)+, (w1, (w1)+)}j = 0 or jF 0 \ {(w2)+, (w2, (w2)+)}j = 0. Without loss of generality, we assume that
jF 0 \ {(w2)+, (w2, (w2)+)}j = 0. By Lemma 2, there is a hamiltonian path H of Gh2;...;n�1i � F 0 joining (y)� to
(w2)+. Then h u,T1,w1, (x)+,x,z,P,y, (y)�,H, (w2)+,w2,T2,vi is a hamiltonian path of Gh0;1;...;n�1;0i � F joining u

to v. See Fig. 12c.
Case 3: Suppose that u and v are in Gi � Fi with any 1 < i < n � 1. Without loss of generality, we assume

that
Pi�1

j¼1jF jj þ
Pi�1

j¼0jX j;jþ1j ¼ 0. Since jV(G0 � F0)jP 3, we first choose a vertex x of C such that
jF 0 \ {(x)�, (x, (x)�)}j = 0. Thus, we can write C = hz,x,y,P,zi. Next, we choose a vertex t of Gi � (Fi [ {u})
such that jF 0 \ {(t)+,(t, (t)+)}j = 0 and (t)+ 5 (x)�. Since Gi is 1-fault-tolerant hamiltonian connected, there is
a hamiltonian path H in Gi � Fi joining u to t. Then H can be represented by hu,R1,w,v,R2, ti, in which R1 or
R2 may be a path of length zero. Since (y)+

5 (w)� or (z)+
5 (w)�, we assume that (y)+

5 (w)�. By Lemma 2,
there is a hamiltonian path T1 of Gh0;...;i�1i � F 0 joining (w)� to (y)+. Similarly, there is a hamiltonian path T2

of Ghiþ1;...;n�1i � F 0 joining (x)� to (t)+. As a result, hu;R1;w; ðwÞ�; T 1; ðyÞþ; y; P ; z; x; ðxÞ�; T 2; ðtÞþ; t;R�1
2 ; vi is a

hamiltonian path of Gh0;1;...;n�1;0i � F joining u to v. See Fig. 13a for illustration.
u

vy x

v

z

u

v
w

P

H

a b C

+(x)

+u (z)=

G0

G1Gn-1

G<1,...,n-1>

P

T

G0 G1

G2Gn-1

G<2,...,n-1>

y x
z

+(x)

+(w)

T1

T2

-(y)

H

G2Gn-1

G<2,...,n-1>

-(y)

y x
z

P
T1

T2

+(w2)

w1

w2

+(x)

G0 G1

Fig. 12. Illustration for case 2 of Proposition 2.



P

x
y

t

w

z
v

u

x
u
y

vP

H

G1

G0 Gi

Gi+1Gn-1

+(y)

R1

R2

+(t)

Gi-1

T1

T2

G<i+1,...,n-1>

-(x)

-(w)

G<1,...,i-1>

G1G0
+(x)

Gi Gn-1

G<1,...,n-1>

P

y x

v

u
G1G0

+(x)

Gn-1

-(y)

Gj

Gi

T1

T2

Gi+1

G<1,...,i>

G<i+1,...,n-1>

Fig. 13. Illustration for case 3, case 4 and case 5 of Proposition 2.

254 T.-L. Kueng et al. / Applied Mathematics and Computation 196 (2008) 245–256
Case 4: Suppose that u is in G0 � F0 and v is in Gi � Fi with any i > 0. Since jV(G0 � F0)jP 3, we can write
C = hx,u,y,P,xi. Since jF 0j = 1, we have jX0,1j + jF1j = 0 or jXn�1,0j + jFn�1j = 0. Without loss of generality,
we assume jX0,1j + jF1j = 0. Hence, we have (x)+ 5 v or (y)+ 5 v. Without loss of generality, we assume
(x)+ 5 v. By Lemma 2, there is a hamiltonian path H of Gh1;...;n�1i � F 0 joining (x)+ to v. Then
hu,y,P,x, (x)+,H,vi is a hamiltonian path of Gh0;1;...;n�1;0i � F joining u to v. See Fig. 13b for illustration.

Case 5: Suppose that u is in Gi � Fi and v is in Gj � Fj for any 1 6 i < j 6 n � 1. Since jF 0j = 1, we have
jX0,1j + jF1j = 0 or jXn�1,0j + jFn�1j = 0. Without loss of generality, we assume jXn�1,0j + jFn�1j = 0. Since
jV(G0 � F0)jP 3, we can choose a vertex x of C such that (x)+ 5 u and jF 0 \ {(x)+, (x, (x)+)}j = 0. Moreover,
at least one neighbor of x on C, namely y, satisfies (y)�5 v. Accordingly, we can write C = h x,P,y,xi. By
Lemma 2, there is a hamiltonian path T1 of Gh1;...;ii � F 0 joining u to (x)+. Similarly, there is a hamiltonian path
T2 of Ghiþ1;...;n�1i � F 0 joining (y)� to v. Then hu,T1, (x)+,x,P,y, (y)�,T2,vi is a hamiltonian path of
Gh0;1;...;n�1;0i � F joining u to v. See Fig. 13c for illustration. h

Lemma 3. Assume n P 3. Let G0;G1; . . . ;Gn�1 be n 4-regular super fault-tolerant hamiltonian graphs with the

same number of vertices. For any 0 6 i 6 n � 2, let Mi, i+1 be a perfect matching between the vertices of Gi

and those of Gi+1. Moreover, let Fi � V(Gi) [ E(Gi) with jFij 6 1 for every 0 6 i 6 n � 1 and let Xi,i+1 �Mi,i+1

with jXi,i+1j 6 1 for every 0 6 i 6 n � 2 such that jFij + jFi+1j + jFi+2j + jXi,i+1j + jXi+1,i+2j 6 2 is satisfied for all

0 6 i 6 n � 3. Let u and v be two vertices of Gt � Ft with 0 < t < n � 1. Then there is a hamiltonian path of

Gh0;...;n�1i � ðð
Sn�1

i¼0 F iÞ [ ð
Sn�2

i¼0 X i;iþ1ÞÞ joining u to v.

Proof. For convenience, let F ¼ ð
Sn�1

i¼0 F iÞ [ ð
Sn�2

i¼0 X i;iþ1Þ. Since Gt is 4-regular super fault-tolerant hamilto-
nian, there is a hamiltonian path P of Gt � Ft joining u to v. Depending on jFtj, we distinguish the following
two cases.

Case 1: Suppose that jFtj = 1. Thus, one can see that jV(Gt � Ft)jP 4. Let w1 = u. Thus, we write P as
hu = w1, w2, w3, w4, R, vi. Since jFtj = 1, one can see that jFt�1j + jFt+1j + jXt�1,tj + jXt,t+1j 6 1. Hence, we
select a vertex wi from {w2,w3} such that jF \ {(wi)

�, (wi)
+, (wi, (wi)

�), (wi, (wi)
+)}j = 0. Accordingly, one can

see that either jF \ {(wi�1)+, (wi+1)�,(wi�1, (wi�1)+), (wi+1, (wi+1)�)}j = 0 or jF \ {(wi�1)�, (wi+1)+, (wi�1,
(wi�1)�), (wi+1, (wi+1)+)}j = 0. Without loss of generality, we assume jF \ {(wi�1)+, (wi+1)�, (wi�1, (wi�1)+),
(wi+1, (wi+1)�)}j = 0. Hence, we can further write P as h u = w1,P1,wi�1,wi,wi+1,P2,vi. By Lemma 2, there is a
hamiltonian path T of Gh0;...;t�1i � ðð

St�1
i¼0F iÞ [ ð

St�2
i¼0X i;iþ1ÞÞ joining (wi)

� to (wi+1)�. Similarly, there is a
hamiltonian path Q of Ghtþ1;...;n�1i � ðð

Sn�1
i¼tþ1F iÞ [ ð

Sn�2
i¼tþ1X i;iþ1ÞÞ joining (wi�1)+ to (wi)

+. Then hu = w1,
P1,wi�1,(wi�1)+,Q, (wi)

+,wi, (wi)
�,T, (wi+1)�,wi+1,P2,vi is a hamiltonian path of Gh0;...;n�1i � F joining u to v.
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Case 2: Suppose that jFtj = 0. First, assume that jV(Gt)jP 6. Hence, we can select two adjacent edges (x,y),
(y,z) 2 E(P) such that jF \ {(x)+, (y)+, (y)�, (z)�, (x, (x)+), (y, (y)+), (y, (y)�), (z, (z)�)}j = 0 or jF \ {(x)�,
(x, (x)�), (y)�, (y, (y)�), (y, (y)+), (z, (z)+), (y)+, (z)+}j = 0. Without loss of generality, we assume that jF \ {(x)+,
(y)+, (y)�, (z)�, (x, (x)+), (y, (y)+), (y, (y)�), (z, (z)�)}j = 0. Accordingly, P can be written as hu,P1,x,y,z,P2,vi,
in which P1 or P2 may be a path of length zero. By Lemma 2, there is a hamiltonian path T of
Gh0;...;t�1i � ðð

St�1
i¼0F iÞ [ ð

St�2
i¼0X i;iþ1ÞÞ joining (y)� to (z)�. Similarly, there is a hamiltonian path Q of

Ghtþ1;...;n�1i � ðð
Sn�1

i¼tþ1F iÞ [ ð
Sn�2

i¼tþ1X i;iþ1ÞÞ joining (x)+ to (y)+. Then hu,P1,x, (x)+,Q, (y)+,y, (y)�,T, (z)�,
z,P2,vi is a hamiltonian path of Gh0;...;n�1i � F joining u to v.

Next, assume that jV(Gt)j = 5. Thus, Gt is isomorphic to the complete graph K5. Let V(Gt) = {u = w1, w2,
w3, w4, w5 = v}. First of all, we choose a vertex from {w2,w3,w4}, say w2, such that jF \ {(w2)�,
(w2)+, (w2, (w2)�), (w2, (w2)+)}j = 0. Secondly, we choose two vertices x, y from {w3, w4, w5} such that
jF \ {(x)+, (x, (x)+), (y)�, (y, (y)�)}j = 0. Accordingly, a hamiltonian path of Gt can be written as h u = w1, P1,
x, w2, y, P2, w5 = vi. Then a hamiltonian path of Gh0;...;n�1i � F joining u to v can be formed in a way similar to
that mentioned above. h

Lemma 4. Assume n P 3. Let G0;G1; . . . ;Gn�1 be n 4-regular super fault-tolerant hamiltonian graphs with the

same number of vertices. For any 0 6 i 6 n � 2, let Mi,i+1 be a perfect matching between the vertices of Gi and

those of Gi+1. Moreover, let Fi � V(Gi) [ E(Gi) with jFij 6 1 for every 0 6 i 6 n � 1 and let Xi,i+1 �Mi,i+1 with

jXi,i+1j 6 1 for every 0 6 i 6 n � 2 such that jFij + jFi+1j + jFi+2j + jXi,i+1j + jXi+1,i+2j 6 2 is satisfied for all

0 6 i 6 n � 3. Let u be a vertex of Gs � Fs and v be a vertex of Gt � Ft with 0 6 s 6 t 6 n � 1. Then there is

a hamiltonian path of Gh0;...;n�1i � ðð
Sn�1

i¼0 F iÞ [ ð
Sn�2

i¼0 X i;iþ1ÞÞ joining u to v.

Proof. For convenience, let F ¼ ð
Sn�1

i¼0 F iÞ [ ð
Sn�2

i¼0 X i;iþ1Þ. When s = 0, the statement follows from Lemma 2.
When 0 < s = t < n � 1, the statement follows from Lemma 3. So, we consider the case when 0 < s < t in
the following. Since Gs is 4-regular, we have jV(Gs)jP 5. Moreover, since jFsj + jFs+1j + jXs,s+1j 6 2, we
can choose a vertex x of Gs � (Fs [ {u}) such that jF \ {x, (x)+, (x, (x)+)}j = 0 and (x)+ 5 v. By Lemma 2,
there is a hamiltonian path P of Gh0;...;si � ðð

Ss
i¼0F iÞ [ ð

Ss�1
i¼0 X i;iþ1ÞÞ joining u to x. Similarly, there is a hamil-

tonian path T of Ghsþ1;...;n�1i � ðð
Sn�1

i¼sþ1F iÞ [ ð
Sn�2

i¼sþ1X i;iþ1ÞÞ joining (x)+ to v. Then hu,P,x, (x)+,T,vi is a ham-
iltonian path of Gh0;...;n�1i � F joining u to v. h

Proposition 3. Assume n P 1. Let G0;G1; . . . ;Gn�1 be n 4-regular super fault-tolerant hamiltonian graphs with

the same number of vertices. For any 0 6 i 6 n � 1, let Mi,i+1 be a perfect matching between the vertices of Gi

and those of Gi+1. Let F be a faulty set of Gh0;1;...;n�1;0i such that jFj = 3 and jF \ (V(Gi) [ E(Gi))j 6 1 for

0 6 i 6 n � 1. Then Gh0;1;...;n�1;0i � F is hamiltonian connected.

Proof. Let u be a vertex of Ga � Fa and let v be a vertex of Gb � Fb for any 0 6 a 6 b 6 n � 1. For conve-
nience, let Fi = F \ (V(Gi) [ E(Gi)) and Xi,i+1 = F \Mi,i+1 for every 0 6 i 6 n � 1. Obviously, we have
jFij 6 1. Moreover, let t be the integer such that jXt,t+1j = max{jXi,i+1j j0 6 i 6 n � 1}. Depending on jXt,t+1j,
two cases are distinguished.

Case 1: Suppose that jXt,t+1jP 1. Without loss of generality, t can be assumed to be n � 1. Accordingly, we
have jXi,i+1j 6 1 for every 0 6 i 6 n � 2. Let F 0 = F � Xn�1,0. Hence, we have jF 0j 6 2 and jFij + jFi+1j +
jFi+2j + jXi,i+1j + jXi+1,i+2j 6 2 for all 0 6 i 6 n � 3. By Lemma 4, Gh0;1;...;n�1i � F 0 is hamiltonian connected.

Case 2: Suppose that jXt,t+1j = 0. Then we set t to be a � 1. Obviously, we have jFij + jFi+1j + jXi,i+1j 6 2
for all 0 6 i 6 n � 2. By Lemma 2, Gha;aþ1;...;n�1;0;...;a�1i � F is hamiltonian connected.

Finally, Gh0;1;...;n�1;0i � F is concluded to be hamiltonian connected. h

Theorem 3. Assume n P 3. Let G0;G1; . . . ;Gn�1 be n 4-regular super fault-tolerant hamiltonian graphs with the

same number of vertices. For any 0 6 i 6 n � 1, let Mi,i+1 be a perfect matching between the vertices of Gi and

those of Gi+1. Then Gh0;1;...;n�1;0i is optimal fault-tolerant hamiltonian connected.

Proof. Obviously, Gh0;1;...;n�1;0i is 6-regular. Thus, we are going to show that Gh0;1;...;n�1;0i is 3-fault-tolerant
hamiltonian connected. Let F be a faulty set of Gh0;1;...;n�1;0i with jFj 6 3. For convenience, let Fi =
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F \ (V(Gi) [ E(Gi)) for 0 6 i 6 n � 1. Without loss of generality, we assume that jF0jP jFij for all 1 6
i 6 n � 1. Depending on jF0j, three cases are distinguished. The first case that jF0j = 3 is proved by Proposition
1. The second case when jF0j = 2 is proved by Proposition 2. Finally, the case for jF0j 6 1 follows from Prop-
osition 3. h

According to Theorem 1–3, we have the following corollary.

Corollary 1. Assume n P 3 and k P 4. Let G0;G1; . . . ;Gn�1 be n k-regular super fault-tolerant hamiltonian

graphs with the same number of vertices. For any 0 6 i 6 n � 1, let Mi,i+1 be a perfect matching between the

vertices of Gi and those of Gi+1. Then Gh0;1;...;n�1;0i is (k + 2)-regular super fault-tolerant hamiltonian.
4. Conclusion

In this paper, we improve the result of Chen et al. [3] by showing that on the basis of n 4-regular super fault-
tolerant hamiltonian networks G0; . . . ;Gn�1, n P 3, the cycle composition network Gh0;1;...;n�1;0i is super fault-
tolerant hamiltonian. However, we conjecture that this result may not be true based on n cubic networks.
Therefore, such an extension is significant because only the remaining case for 3-regular graphs needs to be
checked with brute force while the topological properties of the cycle composition network is investigated.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North Holland, New York, 1980.
[2] Y.-C. Chen, C.-H. Tsai, L.-H. Hsu, J.J.M. Tan, On some super fault-tolerant hamiltonian graphs, Applied Mathematics and

Computation 140 (2003) 245–254.
[3] Y.-C. Chen, L.-H. Hsu, J.J.M. Tan, A recursively construction scheme for super fault-tolerant hamiltonian graphs, Applied

Mathematics and Computation 177 (2006) 465–481.
[4] W.-T. Huang, Y.-C. Chuang, J.J.M. Tan, L.-H. Hsu, Fault-free hamiltonian cycle in faulty móbius cubes, Journal of Computing and

Systems 4 (2000) 106–114.
[5] W.-T. Huang, Y.-C. Chuang, L.-H. Hsu, J.J.M. Tan, On the fault-tolerant hamiltonicity of crossed cubes, IEICE Transaction on

Fundamentals E85-A (6) (2002) 1359–1371.
[6] W.-T. Huang, J.J.M. Tan, C.-N. Hung, L.-H. Hsu, Fault-tolerant hamiltonicity of twisted cubes, Journal of Parallel and Distributed

Computing 62 (2002) 591–604.
[7] J.-H. Park, K.-Y. Chwa, Recursive circulant: a new topology for multicomputer networks, in: Proceedings of the International

Symposium on Parallel Architectures, Algorithms and Networks (I-SPAN’94), IEEE Computer Society Press, New York , 1994, pp.
73–80.

[8] C.-H. Tsai, J.J.M. Tan, Y.-C. Chuang, L.-H. Hsu, Hamiltonian properties of faulty recursive circulant graphs, Journal of
Interconnection Networks 3 (2002) 273–289.

[9] M.-C. Yang, J.J.M. Tan, L.-H. Hsu, Hamiltonian circuit and linear array embedding in faulty k-ary n-cubes, Journal of Parallel and
Distributed Computing 4 (2007) 362–368.


	Fault-tolerant hamiltonian connectedness of cycle composition networks
	Introduction
	Fault-tolerant hamiltonicity
	Fault-tolerant hamiltonian connectedness
	Conclusion
	References


