8 research outputs found

    ESR and capacitance monitoring of a dc-link capacitor used in a three-phase PWM inverter with a front-end diode rectifier

    Get PDF
    Condition monitoring plays an important role in estimating health condition of capacitors because the ageing of the capacitors is usually accompanied by an increase in equivalent series resistance (ESR) and a decrease in capacitance. Either capacitance or ESR cannot be a unique indicator of the lifetime of capacitors in some cases. This paper presents a condition monitoring method of a dc-link capacitor used in a three-phase PWM inverter with a front-end diode rectifier intended for motor drives. The monitoring method extracts both the ESR and capacitance of a capacitor under test from the actual ripple current and voltage without disconnecting the capacitor nor injecting an additional current. The monitoring method, therefore, can be implemented online. Experimental results verify that the monitoring method independently obtains the ESR and capacitance changes of the capacitor under test. This contributes to accurate lifetime estimation of dc-link capacitors

    Capacitor ESR and C Monitoring in Modular Multilevel Converters

    Get PDF

    Advances in Electrical Machine, Power Electronic, and Drive Condition Monitoring and Fault Detection: State of the Art

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. PermissĂ­on from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisĂ­ng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Recently, research concerning electrical machines and drives condition monitoring and fault diagnosis has experienced extraordinarily dynamic activity. The increasing importance of these energy conversion devices and their widespread use in uncountable applications have motivated significant research efforts. This paper presents an analysis of the state of the art in this field. The analyzed contributions were published in most relevant journals and magazines or presented in either specific conferences in the area or more broadly scoped events.Riera-Guasp, M.; Antonino-Daviu, J.; Capolino, G. (2015). Advances in Electrical Machine, Power Electronic, and Drive Condition Monitoring and Fault Detection: State of the Art. IEEE Transactions on Industrial Electronics. 62(3):1746-1759. doi:10.1109/TIE.2014.2375853S1746175962

    Condition Monitoring of Capacitors for DC-link Application in Power Electronic Converters

    Get PDF

    Analysis and Design of Methods for Condition Monitoring of Capacitors in Multilevel Converters

    Get PDF
    Multi-level converters are an important class of power electronics based systems that enable seamless conversion of electrical power from one form to another. Due to its distinct merits, it finds a vast scope of application in the fields such as renewable energy, electrical power transmission, adjustable speed drives, uninterrupted power supplies and custom power devices. These merits often come at a cost of increased complexity, higher number of power semiconductor devices and higher number of energy storage elements. Multi-level converters generates staircase waveform by use of high density capacitor banks. These capacitor banks are often subject to failure due to vaporization of electrolyte forming weakest link in reliability context. This thesis addresses reliability issue by proposing an online condition monitoring method for a three-level neutral point clamped multi-level converter which can be easily integrated with existing control methods. The proposed method provides an online estimate of existing capacitance in DC-link and helps increase in reliability in terms of preventive maintenance. The validity of proposed technique is obtained by verification of the method on a 3KVA laboratory developed experimental prototype. It also addresses reliability by developing tool in terms of analytical expressions which can be used as a ready reckoner for proper design of capacitor bank employed in five-level active neutral point clamped multi-level converter. Results from this developed tool are quantitatively verified with the results obtained from converter models developed over MATLAB Simulink environment confirming their accuracy

    An Overview of Condition Monitoring Techniques for Capacitors in DC-Link Applications

    Get PDF

    System identification and adaptive current balancing ON/OFF control of DC-DC switch mode power converter

    Get PDF
    PhD ThesisReliability becomes more and more important in industrial application of Switch Mode Power Converters (SMPCs). A poorly performing power supply in a power system can influence its operation and potentially compromise the entire system performance in terms of efficiency. To maintain a high reliability, high performance SMPC effective control is necessary for regulating the output of the SMPC system. However, an uncertainty is a key factor in SMPC operation. For example, parameter variations can be caused by environmental effects such as temperature, pressure and humidity. Usually, fixed controllers cannot respond optimally and generate an effective signal to compensate the output error caused by time varying parameter changes. Therefore, the stability is potentially compromised in this case. To resolve this problem, increasing interest has been shown in employing online system identification techniques to estimate the parameter values in real time. Moreover, the control scheme applied after system identification is often called “adaptive control” due to the control signal selfadapting to the parameter variation by receiving the information from the system identification process. In system identification, the Recursive Least Square (RLS) algorithm has been widely used because it is well understood and easy to implement. However, despite the popularity of RLS, the high computational cost and slow convergence speed are the main restrictions for use in SMPC applications. For this reason, this research presents an alternative algorithm to RLS; Fast Affline Projection (FAP). Detailed mathematical analysis proves the superior computational efficiency of this algorithm. Moreover, simulation and experiment result verify this unique adaptive algorithm has improved performance in terms of computational cost and convergence speed compared with the conventional RLS methods. Finally, a novel adaptive control scheme is designed for optimal control of a DC-DC buck converter during transient periods. By applying the proposed adaptive algorithm, the control signal can be successfully employed to change the ON/OFF state of the power transistor in the DC-DC buck converter to improve the dynamic behaviour. Simulation and experiment result show the proposed adaptive control scheme significantly improves the transient response of the buck converter, particularly during an abrupt load change conditio

    Advanced Converter-level Condition Monitoring for Power Electronics Components

    Get PDF
    corecore