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Abstract- The capacitor is one of the weakest components in 

the module multilevel converter (MMC). The rise of equivalent 

series resistance (ESR) is a prominent character to monitor the 

lapsed capacitor, but current researches only focus on 

capacitance and neglect ESR of capacitors in the MMC. This 

paper proposed a sorting-based monitoring strategy for 

capacitors in the MMC, which monitors not only the capacitance 

but also the ESR of capacitor. This paper reveals the relationship 

among the capacitor’s ESR, capacitance, current and energy. 

Based on the relationship, the ESRs and capacitances of 

submodule (SM) capacitors in the arm are indirectly sorted, 

respectively, and only the capacitor with biggest ESR and the 

capacitor with smallest capacitance in the arm are monitored. 

The proposed strategy not only realizes both ESR and 

capacitance monitoring in the MMC, but also proposes a 

simplified monitoring algorithm for MMCs with large number of 

capacitors. The simulation and experimental results confirm the 

effectiveness of the proposed monitoring strategy for MMCs. 1 

Index Terms- Capacitance, monitoring, equivalent series 

resistance, modular multilevel converter. 

 

I.  INTRODUCTION 

 

The modular multilevel converter (MMC) has become an 

attractive topology for medium/high-voltage and high-power 

applications due to its modularity and scalability [1, 2]. The 

MMC not only produces a multilevel voltage with the flexible 

operation but also reduces average switching frequency 

without depressing the power quality [3]. Owing to the easy 

construction, assembling and flexibility, the MMC becomes 

promising for motor drives [4], energy storage [5], electric 

railway supplies [6] and microgrid [7], etc. 
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The capacitor is one of the weakest components in the 

MMC [8]. Due to the advantages of high energy density and 

low cost [9], the electrolytic capacitor is popular for MMCs in 

some applications, such as microgrid and motor drives [10-12]. 

Owing to chemical process, aging, etc., the capacitor would 

gradually deteriorate and the capacitor’s parameters would be 

changed [13]. Normally, the capacitor is needed to be replaced 

with the new one when its capacitance drops below 80% of 

rated value or its equivalent series resistance (ESR) is over 2 

times of rated value [14]. Therefore, the condition monitoring 

for capacitors in the MMC is essential. 

To date, several studies have paid attention to the capacitor 

monitoring in the MMC. Reference [15] presents a monitoring 

scheme for the submodule (SM) capacitors in the MMC, 

where each SM capacitance is estimated by a recursive least 

square algorithm based on the information of capacitor voltage, 

arm current and SM switching state. However, an ac current is 

injected into the circulating current, which increases the 

capacitor voltage ripple and affects the MMC performance. 

Reference [16] presents a Kalman filter algorithm to estimate 

the SM capacitance in the MMC, where each SM capacitance 

is estimated based on the capacitor voltage and current. 

Reference [14] presents a simplified condition monitoring 

algorithm to estimate the capacitance based on the relationship 

between the arm average capacitance and the capacitance of 

each SM. Reference [17] proposes the reference SMs for 

capacitor condition monitoring in the MMC, where the SM 

capacitance can be estimated based on the relationship 

between the monitoring SM capacitor voltage and the 

reference SM capacitor voltage. The above capacitor 

monitoring methods still have some limitations as 1) the 

capacitor is seen as an ideal one, which only considers the 

capacitance without considering another important parameter, 

ESR; 2) all SM capacitors in the MMC are monitored, which 

occupies a large amount of computing resources, especially 

for the MMC with a large amount of SMs. 

Capacitance 

monitoring range

ESR=f1(t)

C=f2(t)

C/ESR

C0

0.8C0

ESR0

2ESR0

Lapse t (years)
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Fig. 1 Capacitor deterioration curve. 
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The ESR is an important parameter in the capacitor. In 

comparison with the reduction of capacitance, the increase of 

ESR is normally more pronounced in the deteriorated 

capacitor [18-20], as shown in Fig. 1, because the ESR 

normally has already increased to over 2 times of its rated 

value when the capacitance declines to 80% of its rated value, 

which means that the existing methods cannot detect the 

lapsed capacitor in time. To make up this gap, the capacitor 

monitoring method considering not only the capacitance but 

also the ESR is needed urgently, which can improve the 

reliability of the MMC.  To date, several ESR monitoring 

methods have been reported such as recursive least square 

algorithm [21], discrete Fourier transform algorithm [22], 

Newton-Raphson algorithm [23], short time least square 

Prony’s algorithm [24] and the artificial neural network 

algorithm [25], etc. However, the above methods are suitable 

for the converters with few capacitors, which are not suitable 

for the MMC with large number of capacitors because of 

complicated computation. 

In this paper, a sorting-based condition monitoring strategy 

is proposed for the MMC to estimate capacitor’s ESR and 

capacitance. The ESRs and capacitances of SM capacitors in 

the arm are indirectly sorted based on the relationship among 

capacitor’s ESR, capacitance, current and energy, and only the 

capacitor with biggest ESR and the capacitor with smallest 

capacitance in the arm are estimated. The advantages of the 

proposed strategy are 1) estimating not only the capacitance 

but also the ESR of capacitors, which has not been considered 

in [14-17]; 2) studying the characteristics of ESR, capacitance, 

voltage, current, and energy variety of capacitors in the MMC; 

3) simplifying monitoring algorithm. 

This paper is organized as follows. Section II introduces the 

characteristics of capacitors in the MMC. Section III 

introduces the operation principles of the MMC. Section IV 

analyzes the capacitor characteristics of the MMC. Section V 

proposes the sorting-based condition monitoring strategy for 

capacitors in the MMC. Sections VI and VII present the 

system simulation and experimental tests, respectively, to 

verify the effectiveness of the proposed monitoring strategy. 

Finally, the conclusions are presented in Section VIII. 

II. CAPACITORS IN MMCS 

The detailed equivalent circuit of the electrolytic capacitor 

is shown in Fig. 2(a) [24,26]. The CAK is the ideal anode-

cathode capacitance, which equals to εS/d and is independent 

of capacitor current frequency f. ε is the dielectric constant. S 

is the plate surface area. d is the thickness of the dielectric 

between the plates. Rp is the parallel resistance due to leakage 

current. R1 is the series resistance of connections, frames and 

separator, which decreases with the increase of frequency. L is 

the series equivalent inductance of connections and windings, 

which is independent of frequency. The L of the capacitor is 

normally on the order of nH [26] and the main frequencies of 

the capacitor current in the MMC are low, which results in 

that the inductive reactance of the capacitor in MMC can be 

negligible. As a result, the capacitor in the MMC can be 

simplified as the capacitance in series with the ESR, as shown 

in Fig. 2(b), which can be expressed as 

2 2 2 2

1 2 2 2 2

1
(1 )

4

ESR
1+4

AK

P AK

P

P AK

C C
R C f

R
R

R C f






=  +   


 = +
   

                  (1) 

In the MMC, the capacitance is normally on the order of mF 

[1, 3, 5], which makes the parallel resistance RP is on the order 

of MΩ [26]. Accordingly, the C can be considered to be the 

same as CAK and ESR can be considered to be the same as R1, 

which means that C is independent of frequency and ESR 

decreases with the rise of frequency. 

R1CAK++ -
L

RP

ESRC
++ -

 
                                 (a)                                                      (b) 

Fig. 2 (a) Capacitor equivalent circuit. (b) Simplified capacitor equivalent 

circuit in the MMC. 

III. OPERATION PRINCIPLES OF MMCS 

A three-phase MMC is shown in Fig. 3(a), which consists 

of six arms and each arm contains n identical SMs and an arm 

inductor Ls. Fig. 3(b) shows the i-th SM (i=1, 2, …, n) in the 

upper arm of phase A, which consists of two switches T1, T2, 

two diodes D1, D2 and a dc capacitor C [27]. Normally, the i-th 

SM is controlled with a switching function Saui, which 

determines the state of the SM, as shown in Table I. When Saui 

equals 1, the SM is at “ON” state. Here, the charge or 

discharge of the capacitor Caui relies on the direction of the 

arm current iau. If iau>0, the capacitor is charged and capacitor 

voltage ucaui increases; otherwise, the capacitor is discharged 

and the ucaui decreases. When Saui equals 0, the SM is at “OFF” 

state. Here, the capacitor is bypassed and the capacitor voltage 

remains unchanged [28]. As a result, the capacitor current icaui 

of the i-th SM is 

caui aui aui S i=  .                              (2) 
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                                 (a)                                                      (b) 
Fig. 3 (a) Structure of a three-phase MMCs. (b) Structure of a SM. 
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TABLE I 

TWO OPERATION STATES OF SMS 

SM state Saui iau Caui ucaui 

On 1 
≥0 Charge Increased 

<0 discharge Decreased 

Off 0 ≥0 or <0 Bypass Unchanged 

 

IV. MMC CAPACITOR CHARACTERISTICS  

BASED ON ESR AND C 

The chemical process, aging, etc. would cause capacitor 

deterioration, which results in not only the drop of capacitance 

but also the increase of ESR [13]. The ESR is one of the 

important capacitor parameters, while the current researches 

on the capacitor monitoring of MMCs [14-17] only consider 

the capacitance and neglect the ESR in the capacitor, which 

cannot distinguish the lapsed capacitor in time. 

A. Capacitor Current Characteristics 

Fig. 4 shows the upper arm of phase A in the MMC, where 

both ESRs Rau1~Raun and capacitances Cau1~Caun are 

considered. 

ucau1

+Cau1

icau1

icau2

icaun

iau

yer_au1

yau yer_au2

yer_aun

Rau1

+Cau2

Rau2

+Caun

Raun

ucau2

ucaun

 
Fig. 4 Upper arm of phase A based on ESR and C. 

Suppose the second-order harmonic circulating current is 

suppressed, the upper arm current iau is  

1

1
sin

2 3

dc

au m

i
i I t= + .                            (3) 

where Im is the amplitude of the ac current ia. ω1 is the 

fundamental angular frequency and ω1=2πf1. f1 is the 

fundamental frequency. idc is the dc-link current of the MMC.  

The reference yau for the upper arm of phase A is 

( )1sinauy m t = + .                              (4) 

where m is modulation index. ϕ is the phase angle.  

Suppose that the capacitor voltages ucau1~ucaun shown in Fig. 

4 are kept the same with the voltage-balancing control [2], the 

equivalent reference yer_aui for the i-th SMs in the arm is 

mainly related to Cau1~Caun as shown in (5) [16], because the 

capacitor’s ESR is much smaller than its capacitive reactance 

at lower frequency [26] and the voltage of the ESR is much 

smaller than that of the capacitive reactance. 

_

1 1
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1 1
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According to (3) ~ (5), the capacitor current icaui of the i-th 

SM can be obtained as 

_
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where I1m_i and β1_i are the amplitude and angle of the 

fundamental component icaui_1f of the capacitor current in the i-

th SM. I2m_i and β2_i are the amplitude and angle of the 2nd-

order harmonic component icaui_2f of the capacitor current in 

the i-th SM. In the steady state, the dc component in the 

capacitor current is zero and icaui=icaui_1f+icaui_2f. 

Fig. 5 shows the amplitudes I1m_1, I2m_1, I3m_1, I4m_1 and I5m_1 

of the fundamental component, 2nd-, 3rd-, 4th- and 5th-order 

harmonic component, respectively, in the capacitor current 

under various power, which is derived from the simulation in 

Section VI. It can be observed that the I1m_1 and I2m_1 drop 

along with the decrease of active power and the I3m_1, I4m_1 and 

I5m_1 are quite small and can be neglectable. 
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Fig. 5 Amplitudes of fundamental component, 2nd-, 3rd-, 4th- and 5th-order 

harmonic component in capacitor current under various power. 
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B. Capacitor Impedance Characteristics 

Since the capacitor current mainly contains the icaui_1f and 

icaui_2f, the capacitor’s ESR mainly considers the fundamental 

component Raui_1f and the 2nd-order component Raui_2f.  Fig. 6 

shows the capacitor impedance characteristics in the MMC 

considering both ESR and C, which can be described as 

                   
_1 1

_ 2 2 _1

= tan /

tan / = /2

aui f aui

aui f aui aui f

R C

R C R

 

 




=
                      (8) 
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



+


+
.                  (9) 

where Zaui_1f and Zaui_2f are the capacitor impedance 

corresponding to icaui_1f and icaui_2f. δ is the capacitor loss angle. 

tanδ is capacitor dissipation factor, which is nearly a constant 

at low frequency [18, 26] such as fundamental frequency and 

double-line frequency. ω2=2ω1. 
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Fig. 6 Capacitor characteristics in the MMC. 

C. Capacitor Voltage Characteristics 

In Fig. 6, the capacitor voltage ripple ucaui_1f and ucaui_2f 

caused by icaui_1f and icaui_2f are 
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_ 2 _ 2 _ 2 _ 2 _ 2
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where ucaui_c1f and ucaui_r1f are voltage ripples caused by Caui, 

icaui_1f and Raui_1f, icaui_1f, respectively. ucaui_c2f and ucaui_r2f are 

voltage ripples caused by Caui, icaui_2f and Raui_2f, icaui_2f, 

respectively. 

According to (6) ~ (12), the capacitor voltage ripple Δucaui 

in the i-th SM can be obtained as 
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where U1m_i, α1_i are amplitude and angle of the fundamental 

component ucaui_1f in capacitor voltage. U2m_i and α2_i are 

amplitude and angle of the 2nd-order harmonic component 

ucaui_2f in capacitor voltage.  

The capacitor voltage ripple in the i-th SM is composed of 

ucaui_1f and ucaui_2f. Owing to that the arm capacitor voltages are 

kept the same by voltage-balancing control, the U1m_1~U1m_n in 

arm SM capacitors would be the same as U1m; the U2m_1~U2m_n 

in arm SM capacitors would be the same as U2m. 

Fig. 7 shows the amplitudes of the fundamental component, 

2nd-, 3rd-, 4th- and 5th-order harmonic component in the 

capacitor voltage under various power of the MMC, which is 

derived from the simulation in Section VI. It can be observed 

that U1m and U2m decline along with the decrease of power; 

U3m, U4m and U5m are quite small and can be neglectable. 

Fig. 8(a) shows the amplitudes U1m_c and U2m_c of ucau1_c1f 

and ucau1_c2f, respectively, under various power of the MMC. 

Fig. 8(b) shows the amplitudes U1m_r and U2m_r of ucau1_r1f and 

ucau1_r2f, respectively, under various power of the MMC. U1m_c, 

U2m_c, U1m_r and U2m_r decline along with the decrease of the 

power of the MMC. Compared with U1m_c and U2m_c, U1m_r and 

U2m_r are quite small and can be neglectable. In addition, the 

U1m_c and U1m_r are much bigger than U2m_c and U2m_r, 

respectively. 
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Fig. 7 Amplitudes of fundamental component, 2nd-, 3rd-, 4th- and 5th-order 

harmonic component in capacitor voltage under various active power. 
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Fig. 8 (a) U1m_c and U2m_c. (b) U1m_r and U2m_r. 
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V. PROPOSED CAPACITOR ESR AND C MONITORING 

STRATEGY FOR MMCS 

The ESR is one of the important capacitor parameters. A 

sorting-based monitoring strategy is proposed in this Section 

to estimate capacitor’s ESR and Capacitance in the MMC. 

A. Capacitor Energy Characteristics 

According to (6) ~ (9), (13) and [16], the capacitor energy 

variety Waui of the i-th SM within a fundamental period T1 

(T1=2π/ω1) can be obtained as 

1

_ 1 _ 2
0

( ) =
T

dc

aui caui caui aui r f aui r f

V
W u i dt W W

n
= + + .               (15) 
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(16) 

where Waui represents the energy consumption of ESR in the 

capacitor. Waui_r1f and Waui_r2f are the energy consumption 

caused by Raui_1f and Raui_2f, respectively. 

Fig. 9 shows the capacitor energy variety Wau1_r1f and 

Wau1_r2f, respectively, under various power of the MMC, where 

Wau1_r1f and Wau1_r2f decline with the decrease of power. In 

addition, Wau1_r1f is much bigger than Wau1_r2f, which means 

that Raui_1f results in the main energy consumption in the 

capacitor and is the main cause of accelerating the aging 

process in comparison with Raui_2f. 
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Fig. 9 Waui_r1f and Waui_r2f under various active power. 

Substituting (8), (16) into (15), the Waui can be rewritten as 

( )2 2

1 2 2

1 _1 1 _1

2 1
2

1/ ( ) /
aui m m

aui f aui aui f

W U U
R C R



 
= +

+
.     (17) 

From (17), it can be observed that the Waui in the SM of the 

arm is determined by corresponding Raui_1f and Caui, as shown 

in Fig. 10, as follows. 

1) Waui & Caui: Waui increases along with the increase of 

Caui and vice versa, as shown in Table II. 

2) Waui & Raui_1f: the SM capacitance Caui in the MMC is 

normally on the order of mF [10-12], which results in 

that Raui_1f <1/(ɷ1Caui) [18]. Hence, Waui increases 

along with the increase of Raui_1f and vice versa, as 

shown in Table III. 

TABLE II 

RELATIONSHIP BETWEEN Waui AND Caui 

Caui Waui 

↑ ↑ 

↓ ↓ 

TABLE III 
RELATIONSHIP BETWEEN Waui AND Raui_1f 

Raui_1f Waui 

↑ ↑ 

↓ ↓ 

  
Fig. 10 Relationship between SM Waui and Raui_1f, Caui in the arm of the MMC. 

B. ESRs Relationship Among Arm SMs 

According to (14) and (17), the variation Kaui is defined as  
2

_1 2

_

2 2

11 1

2 2
= = (1 )
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m i m

RW U
K

I U


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+ .                   (18) 

The Kaui of the i-th SM is proportional to Raui_1f, where Kaui 

increases along with the increase of Raui_1f and Kaui reduces 

along with the decrease of Raui_1f, as shown in Table IV. 
TABLE IV 

ESR RELATIONSHIP OF SMS 

Kaui Raui_1f 

↑ ↑ 

↓ ↓ 

C. Capacitances Relationship Among Arm SMs 

Since Raui_1f is much smaller than 1/ω1Caui [24], (14) can be 

rewritten as 

1 _
1

1

= m i
m

aui

I
U

C
.                           (19) 

The I1m_i of the i-th SM is proportional to the Caui, where 

I1m_i increases along with the increase of Caui and I1m_i declines 

along with the decrease of Caui, as shown in Table V. 

TABLE V 
CAPACITANCE RELATIONSHIP OF SMS 

I1m_i Caui 

↑ ↑ 

↓ ↓ 

D. Proposed Sorting-Based Monitoring Strategy 

Based on above analysis, a sorting-based monitoring 

strategy for capacitor’s ESR and capacitance in the MMC is 

proposed, as shown in Fig. 11(a). Owing to ESR 

corresponding to fundamental frequency is nearly double ESR 

corresponding to double-line frequency and is the main energy 

consumption, only the ESR corresponding to fundamental 

frequency is estimated here so as to simplify the computation. 

In the proposed strategy, the Kaui and I1m_i are calculated 

with the characteristic variables calculation (CVC) block 

based on the capacitor voltage ucaui, switch function Saui and 

arm current iau, as shown in Fig. 11(b). In the CVC block, the 

capacitor current can be obtained based on (2). And then, the 
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fundamental component of capacitor current icaui_1f can be 

obtained by a band-pass filter (BPF) tuned at the fundamental 

frequency, which is used to calculate its amplitude I1m_i. The 

Kaui is obtained based on (15) and (18). 

According to the obtained Kau1~Kaun, the corresponding 

SM1~SMn are sorted in ascending order, so as to find the SM 

with biggest Kau among the n SMs in the arm, because the SM 

with biggest Kau has the biggest ESR. Afterwards, the ESR 

corresponding to the fundamental frequency in the SM with 

biggest Kau will be calculated based on the ESR estimation 

method in [22], which utilizes the average capacitor power 

divided by the square of capacitor current at the fundamental 

frequency to obtain the ESR. To date, the accuracy of the ESR 

estimation methods is about 4%~10% [9, 21-24]. 

System initialization

Capture ucau1~ucaun, 

Sau1~Saun, iau

CVC

(Fig.11 (b))

Sorting 

Yes

No No

Sorting 

Kau1~Kaun I1m_1~I1m_n

ESR Estimation of SM 

with the biggest Kau

 C Estimation of SM 

with the smallest I1m

ESRmax    ESRlimit ? Cmin  Climit ?

Yes

ESR 

monitoring

Capacitance 

monitoring

Replace the capacitor in the  

corresponding SM

Wait for an interval

Average calculation of 

estimated ESRs

Average calculation of 

estimated capacitances

 
(a) 

iau

ucaui

icaui_1f
I1m_iBPF

Saui

Amplitude 

calculation

(18) Kaui

icaui

Waui 

(2)

(15)

 
(b) 

Fig. 11 Proposed capacitor monitoring strategy. (a) Flowchart of the 

monitoring algorithm. (b) Characteristic variables calculation for Kau1~Kaun 

and I1m_1~I1m_n. 

On the other hand, based on the obtained I1m_1~I1m_n, the 

corresponding SM1~SMn are sorted in descending order to 

find the SM with smallest I1m among the n SMs within the arm, 

because the SM with smallest I1m has the smallest capacitance. 

Afterwards, the capacitance of the SM with the smallest I1m 

will be calculated based on the capacitance estimation method 

in [15], which derives the capacitance based on the 

relationship between the capacitor voltage variation and 

capacitor current integration. Normally, the accuracy of the 

capacitance estimation method is below 1% [15]. 

In order to reduce the effect of measurement noises in the 

real MMC system and improve the capacitor monitoring 

accuracy, several sets of ESRs and capacitances are estimated 

such as ten sets. Removing the maximum and the minimum 

among the estimated ESRs and the estimated capacitances, 

respectively, the average values of the rest ESRs and the rest 

capacitances are calculated as the ESR and capacitance 

monitoring results, respectively. 

Once the ESR monitoring result, which is the biggest ESR 

in the SMs of the arm, is over the threshold value ESRlimit or 

the capacitance monitoring result, which is the smallest 

capacitance in the SMs of the arm, is below the threshold 

value Climit, the corresponding capacitor would be considered 

to be replaced with the new one. For electrolytic capacitors, 

the threshold value ESRlimit is normally 2 times of the ESR 

rated value and Climit is normally 80% of the capacitance rated 

value [13, 19]. The proposed capacitor monitoring strategy is 

implemented periodically with some interval, which can 

effectively monitor capacitor’s ESR and capacitance in MMC. 

E. Analysis of Proposed Monitoring Strategy 

Based on above analysis, the proposed capacitor monitoring 

strategy indirectly sorts the SMs’ ESRs and capacitances in 

the arm, respectively, and only estimates the biggest ESR and 

the smallest capacitance in the arm. For the MMC with n SMs 

per arm, the proposed capacitor monitoring method may 

require about (143n+155)/150 μs to implement the estimation 

algorithm once based on the digital signal processing (DSP) 

TMS320F28335, which mainly contains the operation about 

(2n+4) plus, 8(n+1) multiple, (n+2) divide, (n+1) integral and 

2(n-1) comparison. If the capacitor’s ESR and capacitance are 

estimated with the conventional capacitor monitoring method 

[22], [15], all SMs’ ESRs and capacitances in the arm are 

required to be estimated, which may require 270n/150 μs 

including operation about 7n plus, 17n multiple, 2n divide and 

n integral to implement the estimation algorithm once. Fig. 12 

shows that the operation time of the proposed and 

conventional estimation algorithm increases along with the 

increase of SM number in the arm. The operation time of the 

proposed estimation algorithm is almost half of that of the 

conventional algorithm. 
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Fig. 12 Operation time of proposed and conventional estimation algorithm. 
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VI. SIMULATION STUDIES 

To verify the proposed ESR and capacitance monitoring 

strategy for the MMC, a three-phase MMC is built with the 

professional tool PSCAD/EMTDC, as shown in Fig. 13. The 

system parameters are shown in the Table VI. 

Vdc

Lf

Lf

Lf

Rf

Rf

Rf

P

Ej （j=a,b,c）

3-phase 

MMC

 
Fig. 13 Schematic diagram of the simulation system. 

TABLE VI 
SIMULATION SYSTEM PARAMETERS 

Parameters Value 

Active power (MW) 6 

Reactive power (MVar) 0 

DC-link voltage Vdc (kV) 6 
Grid line-to-line voltage (kV) 33 

Grid frequency (Hz) 50 

Transformer rating voltage  3 kV/33 kV 
Transformer leakage reactance 10% 

Number of SMs per arm n 6 

Nominal SM capacitance C (mF) 13.2 
Nominal SM ESR (mΩ) 25.2 

Inductance Ls (mH) 1.5 

Inductance Lf (mH) 1 

+

_

18 in parallel 

3 in series 

Capacitor Bank 

 
Fig. 14 Capacitor bank in the simulation system. 

TABLE VII 

CAPACITOR PARAMETERS IN THE UPPER ARM OF PHASE A 

SM 1 2 3 4 5 6 

Caui (p.u.) 1 0.96 0.92 0.88 0.84 0.8 
Raui_1f (p.u.) 1 1.2 1.4 1.6 1.8 2 

The aluminum electrolytic capacitor (JiangHaiCD293), 

whose rated capacitance and rated voltage is 2.2 mF and 400 

V, respectively, is considered to construct the capacitor bank 

in each SM. Referring to its datasheet, the nominal ESR of the 

capacitor under 120 Hz is typically 63 mΩ. Hence, the 

nominal ESR of the capacitor under 50 Hz can be calculated 

as 63×120÷50=151.2 mΩ according to (8). In each SM, the 

capacitance of the capacitor bank is 13.2 mF and the nominal 

voltage of the capacitor bank is 1 kV. Hence, the capacitor 

bank in each SM is constructed with 3 capacitors connected in 

series and 18 capacitors connected in parallel, as shown in Fig. 

14. Hence, the Raui_1f of the capacitor bank is 25.2 mΩ. The 

Raui_2f of the capacitor bank is half Raui_1f according to (8). 

To verify the proposed strategy, various ESRs and 

capacitances are considered in the upper arm SMs of phase A, 

as shown in Table VII, where the capacitance drops along with 

the rise of ESR. 

Fig. 15 shows the performance of the MMC. Fig. 15(a) and 

(b) show the output voltages uab, ubc, uca and currents ia, ib, ic 

of the MMC. Fig. 15(c) shows the upper arm current iau and 

the lower arm current ial in phase A. Fig. 15(d) shows the 

upper arm capacitor voltages ucau1~ucau6 in phase A. 

Fig. 16 shows the performance of the proposed capacitor 

monitoring strategy for the MMC. Fig. 16(a) shows that 

Kau1<Kau2<Kau3<Kau4<Kau5<Kau6, which is consistent with the 

relationship among Rau1_1f ~Rau6_1f, as shown in Table VII. 

Owing to Kau6 is the biggest one among them, the ESR in the 

SM6 is decided to be monitored. At 1.04 s, Rau6_1f in the SM6 

is estimated as 52.15 mΩ and the error is approximately 

3.47%, as shown in Fig. 16(b). Fig. 16(c) shows that 

I1m_1>I1m_2>I1m_3>I1m_4>I1m_5>I1m_6, which is also consistent 

with the relationship among Cau1~Cau6, as shown in Table VII. 

Owing to I1m_6 is the smallest one among them, the Cau6 in the 

SM6 is decided to be monitored. At 1.04 s, the Cau6 is 

estimated as 10.49 mF and the error is approximately 0.66%, 

as shown in Fig. 16(d). 
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Fig. 15 (a) uab, ubc and uca. (b) ia, ib and ic. (c) iau and ial. (d) ucau1~ucau6. 
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Fig. 16 (a) Kau1~Kau6. (b) Estimation of Rau6_1f. (c) I1m_1~I1m_6. (d) Estimation of 
Cau6. 

VII. EXPERIMENTAL STUDIES  

To confirm the proposed strategy, a three-phase MMC 

prototype with 4 SMs per arm is built in the laboratory, as 

shown in Fig. 17. A dc power supply (LAB/SMS6600) 

constitutes the dc bus voltage. The IXFK48N60P is used as 

the switch/diode and the JiangHai CD293 is used to construct 

the capacitor bank in each SM. The system control algorithm 

is implemented in the DSP controller and the pulse signals 

from the controller are transmitted to the driving panel of each 

SM by optical fibers. The specifications of the prototype are 

shown in Table VIII. 

Arm 

inductor

DC power 

supply

Inductor

Resistor

DSP 

controller

MMC

Phase A

Phase B

Phase C

 
Fig. 17 Photo of the three-phase MMC prototype. 

TABLE VIII 
EXPERIMENTAL SYSTEM PARAMETERS 

Parameters Value 

DC-link voltage Vdc (V) 200 

Rated frequency (Hz) 50 

Inductor Ls (mH) 3 
Load inductor L (mH) 5 

Load resistor R (Ω) 10 

Carrier frequency (kHz) 4 

A. Case I 

In this case, the reference values of Cau1~Cau4 and 

Rau1_1f~Rau4_1f in the capacitors of the upper arm of phase A 

are listed in Table IX, which are measured by the LCR meter 

HIOKI 3522-50. Fig. 18 shows the performance of the MMC. 

Fig. 18(a) shows the output voltage uab, ubc, uca of the MMC. 

Fig. 18(b) shows the output current ia, ib, ic of the MMC. Fig. 

18(c) shows the upper arm current iau and the lower arm 

current ial of phase A. 
TABLE IX 

CAPACITOR PARAMETERS IN THE UPPER ARM OF PHASE A 

SM 1 2 3 4 

Caui (mF) 2.25 2.27 2.23 2.23 
Raui_1f (Ω) 0.049 0.049 0.047 0.049 

 
  (a)   

 
(b) 

 
  (c) 

Fig. 18 Performance of the MMC. (a) uab, ubc, uca. (b) ia, ib, ic. (c) iau and ial. 

ucau1~ucau4

Sau1

Sau2

Sau3

Sau4

iau

 
(a) 



0885-8993 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2019.2939185, IEEE
Transactions on Power Electronics

IEEE POWER ELECTRONICS REGULAR PAPER 

0 0.01 0.02 0.03 0.04
0

1

2

3
10-3

t (s)

K
au

i 
(Ω

 s
)

Kau1 Kau4Kau2 Kau3

 
(b) 

0 0.01 0.02 0.03 0.04
0

1

2

I 1
m

_
i 
(A

)

t (s)

I1m_1 I1m_4I1m_2 I1m_3

 
      (c) 

Fig. 19 (a) ucau1, ucau2, ucau3, ucau4 (10V/div), Sau1, Sau2, Sau3, Sau4 (30V/div), iau 
and ial (4A/div). Time base is 5 ms. (b) Kau1~Kau4. (c) I1m_1~I1m_4. 
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Fig. 20 (a) Distributions of ESRs estimation values in the three cases. (b) 

Distributions of capacitances estimation values in the three cases. 

0
20
40
60
80

100

Case I Case II Case IIIB
ig

g
es

t 
E

S
R

 (
m

Ω
)

Average 

values

Reference 

values

      Case I Case II Case III

 E
S
R

 e
rr

or
 (

%
)

0.0
1.0
2.0
3.0
4.0
5.0

 
(a)                                                           (b) 

Fig. 21 (a) Estimated value and measured value of biggest ESR in Case I, II 

and III. (b) Estimation error of ESR. 
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Fig. 22 (a) Estimated value and measured value of smallest capacitance in 

Case I, II and III. (b) Estimation error of capacitance. 

Fig. 19(a) shows the upper arm capacitor voltages 

ucau1~ucau4, switching functions Sau1~Sau4 and arm current iau in 

phase A. Fig. 19(b) shows the calculated Kau1~Kau4, which are 

close to each other and consistent with the relationship among 

Rau1_1f ~Rau4_1f in Table IX. Fig. 19(c) shows the calculated 

I1m_1~I1m_4, which are also close to each other and consistent 

with the relationship among Cau1~Cau4 in Table IX. 

From Fig. 19(b), the Kau2 corresponding to SM2 is the 

biggest one among Kau1~Kau4, and therefore the Rau2_1f of SM2 

is selected to be estimated. Fig. 20(a) shows ten sets of 

estimated ESRs in SM2. Removing the maximum and the 

minimum, the average value of rest ESRs is 51.0 mΩ shown 

in Fig. 20(a). The error between the ESR average value and 

the ESR reference value is about 4.06%, as shown in Fig. 21. 

 From Fig. 19(c), the I1m_3 corresponding to SM3 is the 

smallest one among I1m_1~I1m_4, and therefore the Cau3 of SM3 

is selected to be estimated. Fig. 20(b) shows ten sets of 

estimated capacitances in SM3. Removing the maximum and 

the minimum, the average value of the rest capacitances is 

2.22 mF, as shown in Fig. 20(b). The error between the 

capacitance average value and the capacitance reference value 

is about 0.45%, as shown in Fig. 22. 

B. Case II 

In this case, the reference values of Cau1~Cau4 and 

Rau1_1f~Rau4_1f in the capacitors of the upper arm of phase A 

are listed in Table X, which are measured by the LCR meter 

HIOKI 3522-50. Fig. 23 shows the MMC voltage uab, ubc, uca, 

ac current ia, ib, ic, and arm current iau, ial of phase A. 
TABLE X 

CAPACITOR PARAMETERS IN THE UPPER ARM OF PHASE A 

SM 1 2 3 4 
Caui (mF) 2.25 2.27 2.19 1.73 

Raui_1f (Ω) 0.049 0.047 0.052 0.061 

Fig. 24(a) shows capacitor voltages ucau1~ucau4, switching 

functions Sau1~Sau4 and arm current iau. Fig. 24(b) shows that 

Kau4 corresponding to SM4 is the biggest one among Kau1~Kau4, 

which is consistent with the relationship among Rau1_1f 

~Rau4_1f in Table X. Fig. 24(c) shows that I1m_4 corresponding 

to SM4 is the smallest one among I1m_1~I1m_4, which is 

consistent with the relationship among Cau1~Cau4 shown in 

Table X. As a result, the capacitor in SM4 is monitored. Ten 

sets of ESRs and capacitances in SM4 are estimated, as shown 

in Figs. 20(a) and (b). Removing the maximum and the 

minimum, the ESR average value is 62.3 mΩ and the 

capacitance average value is 1.74 mF, as shown in Fig. 20. 

The error between the ESR average value and the ESR 

reference value is about 2.06%, as shown in Fig. 21. The error 

between the capacitance average value and the capacitance 

reference value is about 0.57%, as shown in Fig. 22. 
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Fig. 23 Performance of the MMC. (a) uab, ubc, uca. (b) ia, ib, ic. (c) iau and ial. 
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Fig. 24 (a) ucau1, ucau2, ucau3, ucau4 (10V/div), Sau1, Sau2, Sau3, Sau4 (30V/div), iau 

and ial (4A/div). Time base is 5 ms. (b) Kau1~Kau4. (c) I1m_1~ I1m_4. 

C. Case III 

In this case, the reference values of the Cau1~Cau4 and 

Rau1_1f~Rau4_1f in the capacitors of the upper arm of phase A 

are measured by the LCR meter HIOKI 3522-50 and listed in 

Table XI. Fig. 25 shows the MMC voltages uab, ubc, uca, ac 

current ia, ib, ic, and the arm current iau, ial of phase A. 

TABLE XI 
CAPACITOR PARAMETERS IN THE UPPER ARM OF PHASE A     

SM 1 2 3 4 

Caui (mF) 2.25 2.27 1.73 1.3 

Raui_1f (Ω) 0.049 0.047 0.061 0.078 

 
(a) 

 
 (b) 

 
(c) 

Fig. 25 Performance of the MMC. (a) uab, ubc, uca. (b) ia, ib, ic. (c) iau and ial. 
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Fig. 26 (a) ucau1, ucau2, ucau3, ucau4 (10V/div), Sau1, Sau2, Sau3, Sau4 (30V/div), iau 

and ial (4A/div). Time base is 5 ms. (b) Kau1~Kau4. (c) I1m_1~I1m_4. 

Fig. 26(a) shows the ucau1~ucau4, Sau1~Sau4 and iau in phase A. 

Fig. 26(b) shows that Kau4 corresponding to SM4 is the biggest 

one, which is consistent with the relationship among Rau1_1f 

~Rau4_1f in Table XIII. Fig. 26(c) shows that I1m_4 is the 

smallest one, which is consistent with the relationship among 

Cau1~Cau4 shown in Table XI. As a result, the capacitor in SM4 

is monitored. Figs. 20(a) and (b) shows ten sets of estimated 

ESRs and capacitances in SM4, respectively. Removing the 

maximum and the minimum, the ESR average value is 73.9 

mΩ and the capacitance average value is 1.29 mF, as shown in 

Figs. 20(a) and (b). Consequently, the ESR error is about 

2.40%, as shown in Fig. 21; the capacitance error is about 

0.77%, as shown in Fig. 22. 

The three cases show that the proposed capacitor 

monitoring method can effectively estimate both ESR and 

capacitance in the capacitors of the MMC to impose system 

reliability, which has not been considered in the other 

capacitor monitoring methods [14-17]. To estimate the ESR 

and capacitance for the MMC with 4 SMs per arm, the 

proposed monitoring method requires about 4.7 μs to 

implement the estimation algorithm once while the 

conventional monitoring method [15], [22] requires about 7.3 

μs to implement the estimation algorithm once. 

VIII. CONCLUSION  

The existing studies about the MMC capacitor monitoring 

consider the capacitor as an ideal one, which only consider the 

capacitance without considering ESR. However, the increase 

of ESR is normally more pronounced in the deteriorated 

capacitor in comparison with the reduction of capacitance, 

which makes the ESR a better characteristic to detect the 

deteriorated capacitor. In this paper, both capacitor’s ESR and 

capacitance in the MMC are monitored. The ESR of the 

capacitor in the MMC is mainly composed of the fundamental 

component and the second-order component. The energy 

variety of the capacitor in the MMC is analyzed, which 

increases along with the rise of the ESR and decreases along 

with the drop of the capacitance. Based on the relationship 

among the capacitor’s ESR, capacitance, energy and current, a 

sorting-based capacitor monitoring strategy is proposed, where 

the capacitors’ ESRs and capacitances in the arm are indirectly 

sorted, respectively, and only the capacitor with biggest ESR 

and the capacitor with smallest capacitance in the arm are 

monitored. The proposed sorting-based monitoring strategy 

does not have to monitor the ESRs and capacitances of all 

capacitors in the arm, which simplifies the monitoring 

algorithm. The simulation and experiment studies are 

conducted and the results show the effectiveness of the 

proposed capacitor ESR and C monitoring in the MMC. 
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