150 research outputs found

    A survey on artificial intelligence-based acoustic source identification

    Get PDF
    The concept of Acoustic Source Identification (ASI), which refers to the process of identifying noise sources has attracted increasing attention in recent years. The ASI technology can be used for surveillance, monitoring, and maintenance applications in a wide range of sectors, such as defence, manufacturing, healthcare, and agriculture. Acoustic signature analysis and pattern recognition remain the core technologies for noise source identification. Manual identification of acoustic signatures, however, has become increasingly challenging as dataset sizes grow. As a result, the use of Artificial Intelligence (AI) techniques for identifying noise sources has become increasingly relevant and useful. In this paper, we provide a comprehensive review of AI-based acoustic source identification techniques. We analyze the strengths and weaknesses of AI-based ASI processes and associated methods proposed by researchers in the literature. Additionally, we did a detailed survey of ASI applications in machinery, underwater applications, environment/event source recognition, healthcare, and other fields. We also highlight relevant research directions

    Diagnosing Localized and Distributed Bearing Faults by Bearing Noise Signal Using Machine Learning and Kurstogram

    Get PDF
    Bearings are a common component and crucial to most rotating machinery. Their failures are the causes for more than half of the total machine failures, each with the potential to cause extreme damage, injury, and downtime. Therefore, fault detection through condition monitoring has a significant importance. Since the initial cost of standard condition monitoring techniques such as vibration signature analysis is high and has a long payback period, the condition monitoring via audio signal processing is proposed for both localized faults and distributed/ generalized roughness faults in the rolling bearing. It is not appropriate to analyze bearing faults using Fast Fourier Transform (FFT) of the noise signal of bearing since localized faults are Amplitude Modulated (AM) and mixed up with background noises. Localized faults are processed using Kurstogram technique for finding the appropriate filtering band because localized faulty bearings produce impulsive signal

    A Novel Approach to Railway Track Faults Detection Using Acoustic Analysis.

    Get PDF
    Regular inspection of railway track health is crucial for maintaining safe and reliable train operations. Factors, such as cracks, ballast issues, rail discontinuity, loose nuts and bolts, burnt wheels, superelevation, and misalignment developed on the rails due to non-maintenance, pre-emptive investigations and delayed detection, pose a grave danger and threats to the safe operation of rail transport. The traditional procedure of manually inspecting the rail track using a railway cart is both inefficient and prone to human error and biases. In a country like Pakistan where train accidents have taken many lives, it is not unusual to automate such approaches to avoid such accidents and save countless lives. This study aims at enhancing the traditional railway cart system to address these issues by introducing an automatic railway track fault detection system using acoustic analysis. In this regard, this study makes two important contributions: data collection on Pakistan railway tracks using acoustic signals and the application of various classification techniques to the collected data. Initially, three types of tracks are considered, including normal track, wheel burnt and superelevation, due to their common occurrence. Several well-known machine learning algorithms are applied such as support vector machines, logistic regression, random forest and decision tree classifier, in addition to deep learning models like multilayer perceptron and convolutional neural networks. Results suggest that acoustic data can help determine the track faults successfully. Results indicate that the best results are obtained by RF and DT with an accuracy of 97%

    Emotional Expression Detection in Spoken Language Employing Machine Learning Algorithms

    Full text link
    There are a variety of features of the human voice that can be classified as pitch, timbre, loudness, and vocal tone. It is observed in numerous incidents that human expresses their feelings using different vocal qualities when they are speaking. The primary objective of this research is to recognize different emotions of human beings such as anger, sadness, fear, neutrality, disgust, pleasant surprise, and happiness by using several MATLAB functions namely, spectral descriptors, periodicity, and harmonicity. To accomplish the work, we analyze the CREMA-D (Crowd-sourced Emotional Multimodal Actors Data) & TESS (Toronto Emotional Speech Set) datasets of human speech. The audio file contains data that have various characteristics (e.g., noisy, speedy, slow) thereby the efficiency of the ML (Machine Learning) models increases significantly. The EMD (Empirical Mode Decomposition) is utilized for the process of signal decomposition. Then, the features are extracted through the use of several techniques such as the MFCC, GTCC, spectral centroid, roll-off point, entropy, spread, flux, harmonic ratio, energy, skewness, flatness, and audio delta. The data is trained using some renowned ML models namely, Support Vector Machine, Neural Network, Ensemble, and KNN. The algorithms show an accuracy of 67.7%, 63.3%, 61.6%, and 59.0% respectively for the test data and 77.7%, 76.1%, 99.1%, and 61.2% for the training data. We have conducted experiments using Matlab and the result shows that our model is very prominent and flexible than existing similar works.Comment: Journal Pre-print (15 Pages, 9 Figures, 3 Tables

    Machine condition monitoring using artificial intelligence: The incremental learning and multi-agent system approach

    Get PDF
    Machine condition monitoring is gaining importance in industry due to the need to increase machine reliability and decrease the possible loss of production due to machine breakdown. Often the data available to build a condition monitoring system does not fully represent the system. It is also often common that the data becomes available in small batches over a period of time. Hence, it is important to build a system that is able to accommodate new data as it becomes available without compromising the performance of the previously learned data. In real-world applications, more than one condition monitoring technology is used to monitor the condition of a machine. This leads to large amounts of data, which require a highly skilled diagnostic specialist to analyze. In this thesis, artificial intelligence (AI) techniques are used to build a condition monitoring system that has incremental learning capabilities. Two incremental learning algorithms are implemented, the first method uses Fuzzy ARTMAP (FAM) algorithm and the second uses Learn++ algorithm. In addition, intelligent agents and multi-agent systems are used to build a condition monitoring system that is able to accommodate various analysis techniques. Experimentation was performed on two sets of condition monitoring data; the dissolved gas analysis (DGA) data obtained from high voltage bushings and the vibration data obtained from motor bearing. Results show that both Learn++ and FAM are able to accommodate new data without compromising the performance of classifiers on previously learned information. Results also show that intelligent agent and multi-agent system are able to achieve modularity and flexibility

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    A Comprehensive Survey on Rare Event Prediction

    Full text link
    Rare event prediction involves identifying and forecasting events with a low probability using machine learning and data analysis. Due to the imbalanced data distributions, where the frequency of common events vastly outweighs that of rare events, it requires using specialized methods within each step of the machine learning pipeline, i.e., from data processing to algorithms to evaluation protocols. Predicting the occurrences of rare events is important for real-world applications, such as Industry 4.0, and is an active research area in statistical and machine learning. This paper comprehensively reviews the current approaches for rare event prediction along four dimensions: rare event data, data processing, algorithmic approaches, and evaluation approaches. Specifically, we consider 73 datasets from different modalities (i.e., numerical, image, text, and audio), four major categories of data processing, five major algorithmic groupings, and two broader evaluation approaches. This paper aims to identify gaps in the current literature and highlight the challenges of predicting rare events. It also suggests potential research directions, which can help guide practitioners and researchers.Comment: 44 page

    Signal Processing Using Non-invasive Physiological Sensors

    Get PDF
    Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions

    An Integrated DC Series Arc Fault Detection Method for Different Operating Conditions

    Get PDF
    • …
    corecore