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Abstract

Machine condition monitoring is gaining importance in industry due to the

need to increase machine reliability and decrease the possible loss of produc-

tion due to machine breakdown. Often the data available to build a condition

monitoring system does not fully represent the system. It is also often common

that the data becomes available in small batches over a period of time. Hence,

it is important to build a system that is able to accommodate new data as

it becomes available without compromising the performance of the previously

learned data. In real-world applications, more than one condition monitoring

technology is used to monitor the condition of a machine. This leads to large

amounts of data, which require a highly skilled diagnostic specialist to ana-

lyze. In this thesis, artificial intelligence (AI) techniques are used to build a

condition monitoring system that has incremental learning capabilities. Two

incremental learning algorithms are implemented, the first method uses Fuzzy

ARTMAP (FAM) algorithm and the second uses Learn++ algorithm. In ad-

dition, intelligent agents and multi-agent systems are used to build a condition

monitoring system that is able to accommodate various analysis techniques.

Experimentation was performed on two sets of condition monitoring data; the

dissolved gas analysis (DGA) data obtained from high voltage bushings and the

vibration data obtained from motor bearing. Results show that both Learn++

and FAM are able to accommodate new data without compromising the per-

formance of classifiers on previously learned information. Results also show

that intelligent agent and multi-agent system are able to achieve modularity

and flexibility.
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Chapter 1

Introduction

1.1 Background and Motivation

Industrial machinery has a high capital cost and its efficient use depends on low

operating and maintenance costs. To comply with this requirements, condition

monitoring and diagnosis of machinery have become established industry tools

[3]. Condition monitoring approaches have produced considerable savings by

reducing unplanned outage of machinery, reducing downtime for repair and

improving reliability and safety. Condition monitoring is a technique of sens-

ing equipment health; operating information and analyzing this information to

quantify the condition of equipment. This is done so that potential problems

can be detected and diagnosed early in their development, and corrected by

suitable recovery measures before they become severe enough to cause plant

breakdown and other serious consequences. As a result, an increasing volume

of condition monitoring data is captured and presented to engineers. This

leads to two key problems: the data volume is too large for engineers to deal

with; and the relationship between the plant item, its health and the condi-

tion monitoring data generated is not always well understood [4]. Therefore,

the extraction of meaningful information from the condition monitoring data

is challenging. Although modern monitoring systems provide operators with
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1.2. HISTORICAL DEVELOPMENT OF CONDITION MONITORING
TECHNIQUES

immediate access to a range of raw plant data, only application domain spe-

cialists with clear diagnostic knowledge are capable of providing qualitative

interpretation of acquired data; an ability that will be lost when the special-

ists leave [5]. In addition, the number of plant specialists skilled in monitoring

processes is limited. Also, in many cases, the increasing volume of different

types of measurement data and the pressure on human experts to identify

faults quickly might lead to false conclusions. Hence, there is a need for de-

velopment of sophisticated intelligent condition monitoring systems to reduce

human dependency. A reliable, fast and automated diagnostic technique allow-

ing relatively unskilled operators to make important decisions without the need

for a condition monitoring specialist to examine data and diagnose problems

is required.

1.2 Historical Development of Condition Mon-

itoring Techniques

In the past decades, various effective monitoring techniques have been devel-

oped for machine monitoring and diagnosis; such as; vibration monitoring,

visual inspection, thermal monitoring and electrical monitoring [3]. These

techniques mainly focused on how to extract the pertinent signals or features

from the equipment health information. However, the related yet more impor-

tant problem are methods to analyze this information.

Various traditional methods have been used to process and analyze this infor-

mation. These techniques include conventional computation methods, such as

simple threshold methods, system identification and statistical methods. The

main shortcoming of these techniques is that they require a skilled specialist to

make the diagnosis. This shortcoming has lead to the usage of computational

intelligence technique to the problem of condition monitoring.

2



1.2. HISTORICAL DEVELOPMENT OF CONDITION MONITORING
TECHNIQUES

The value of artificial intelligence (AI) can be understood by comparing it with

natural human intelligence as follows [6];

• AI is more permanent, natural intelligence is perishable from a commer-

cial standpoint since specialist leave their place of employment or forget

information. AI, however, is permanent as long as the computer systems

and programs remain unchanged.

• AI offers ease of duplication and dissemination. Transferring knowledge

from one person to another usually requires a long process of apprentice-

ship; even so, expertise can never be duplicated completely.

• AI being a computer technology is consistent and thorough. Natural

intelligence is erratic because people are unpredictable, they do not per-

form consistently.

• AI can be documented. Decisions or conclusions made by a computer

system can be more easily documented by tracing the activities of the

system. Natural intelligence is difficult to reproduce, for example, a

person may reach a conclusion but at some later date may be unable

to re-create the reasoning process that led to that conclusion or to even

recall the assumption that were a part of the decision.

Various computational intelligence techniques such as neural networks, support

vector machines, have been used extensively to the problem of condition mon-

itoring. However, many computational intelligence based methods for fault

diagnosis rely heavily on adequate and representative set of training data. In

real-life applications it is often common that the available data set is incom-

plete, inaccurate and changing. It is also often common that the training data

set becomes available only in small batches and that some new classes only ap-

pear in subsequent data collection stages. Hence, there is a need to update the

classifier in an incremental fashion without compromising on the classification

performance of previous data. Due to the complex nature of online condition

3



1.3. OBJECTIVE OF THIS THESIS

monitoring, it has been accepted that the software module such as intelligent

agents can be used to promote extensibility and modularity of the system [7].

1.3 Objective of this Thesis

Many machine learning tools have been applied to the problem of condition

monitoring using static machine learning structures such as artificial neural

network, support vector machine that are unable to accommodate new infor-

mation as it becomes available [8]. However, in many real world applications

the environment changes over time and requires the learning system to track

these changes and incorporate them in its knowledge base. The first objective

of this work is to develop an incremental learning system that will ensure that

the condition monitoring system knowledge base is updated in an incremental

fashion without compromising the performance of the classifier on previously

learned information. The vast amount of data and complex processes associ-

ated with on-line monitoring resulted in the development of complex software

systems, which are often viewed as isolated, non-flexible, static software com-

ponents [9, 10]. Hence, the second objective is to use intelligent agents and

multi-agent system to build a fully automated condition monitoring system.

1.4 Artificial Intelligence Techniques

AI is concerned with designing intelligent computer systems, that is, systems

that exhibit characteristics associated with intelligence in human behavior such

as understanding language, learning, reasoning, solving problems, and so on.

There are various subfields of artificial intelligence such as distributed artificial

intelligence, computational intelligence and robotics. In this study, we will

focus on two subfields of artificial intelligence which are; the computational

intelligence and distributed artificial intelligence (DAI).

4



1.5. OUTLINE OF THE THESIS

Computational intelligence is the study of adaptive mechanisms to enable or

facilitate intelligent behavior in complex and changing environment. Computa-

tional intelligence techniques include artificial neural networks, fuzzy systems,

evolutionary computing and swarm intelligence.

DAI is a subfield of artificial intelligence which has for more than a decade now,

been investigating knowledge models, as well as communication and reasoning

techniques that computational agents might need to participate in societies

composed of computers. More, generally, DAI is concerned with situations in

which several systems interact in order to solve a common problem. There

are two main areas of research in DAI, distributed problem solving (DPS)

and multi-agent system (MAS). DPS considers how solving a task of a par-

ticular problem can be divided among a number of modules that cooperate

in dividing and sharing knowledge about the problem and about its evolving

solution. A multi-agent system is concerned with the behavior of a collection

of autonomous agents aiming at solving a given problem.

1.5 Outline of the Thesis

As mentioned previously, a successful condition monitoring system is one which

is able to update its knowledge base as new information becomes available and

it allows addition of new monitoring technologies. The condition monitoring

system must also be extensible and allows addition of new monitoring tech-

nologies and interpretation tools. Hence, the major contribution this thesis is

found in Chapter 4 and Chapter 5. Chapter 4 applies two incremental learn-

ing algorithms to the problem of condition monitoring while Chapter 5 uses

multi-agent system for condition monitoring. A brief outline of the thesis is

given below.

Chapter 2 provides the background information on condition monitoring.

This chapter describes various condition monitoring technologies. The

5



1.5. OUTLINE OF THE THESIS

issues of condition monitoring technology are described and Artificial In-

telligence techniques that can be used to address some of these problems

are mentioned.

Chapter 3 discusses the fundamentals of machine learning and various popu-

lar machine learning tools such as Artificial Neural Networks and Support

Vector Machines. This chapter also looks at the ensemble approach and

its benefit to pattern recognition.

Chapter 4 introduces the incremental learning approach to the problem of

condition monitoring. The chapter will start by giving a brief definition

of incremental learning. Two incremental learning techniques are ap-

plied to the problem of condition monitoring. The first method uses the

incremental learning ability of Fuzzy ARTMAP and explores whether

ensemble approach can improve the performance of the FAM. The first

technique uses Learn++ that uses an ensemble of MLP classifier.

Chapter 5 uses distributed artificial intelligence technique to the problem of

condition monitoring. Intelligent agent and multi-agent systems are used

to build an automatic condition monitoring system. The advantages of

using multi-agent system are also explored.

Chapter 6 summarizes the findings of the work and gives suggestions for

future research.

Appendix A is the description of the Fuzzy ARTMAP algorithm

Appendix B is the description of the Learn++ algorithm.

Appendix C lists the papers that have been published based on the work

performed in this thesis.

Figure 1.1 shows the layout of the dissertation. The reader is advised to

read the dissertation in a sequential way, however, due to the independence of

Chapter 4 and Chapter 5, these chapters can be read independently.

6



1.5. OUTLINE OF THE THESIS

Figure 1.1: Structure of the thesis

7



Chapter 2

Approaches to Condition

Monitoring

The aim of this chapter is to introduce the reader to aspects of condition

monitoring and various condition monitoring techniques. In this work, various

condition monitoring techniques are reviewed. The general framework of a

condition monitoring system that consists of the measurement stage, data

preprocessing and/or feature extraction stage and the classification stage is

outlined. A brief review of artificial intelligence (AI) techniques that have

been used for condition monitoring is also given.

2.1 Overview of Condition Monitoring

Condition monitoring of machines is gaining importance in industry due to

the need to increase machine reliability and decrease the possible loss of pro-

duction due to machine breakdown [11]. By definition, condition monitoring

is performed when it is necessary to access the state of a machine and to

determine whether it is malfunctioning through reason and observation [11].

Condition monitoring can also be defined as a technique or process of moni-

toring the operating characteristics of a machine so that changes and trends of

8



2.2. VARIOUS CONDITION MONITORING TECHNIQUES

the monitored signal can be used to predict the need for maintenance before a

breakdown or serious deterioration occurs, or to estimate the current condition

of the machine. Condition monitoring has become increasingly important, in

different industries due to an increased need for normal undisturbed opera-

tion of equipment. An unexpected fault or shutdown can result in a serious

accident and financial loss for the company. Hence, utilities must find ways

to avoid failures, minimize downtime, reduce maintenance costs, and lengthen

the lifetime of their equipment.

2.2 Various Condition Monitoring Techniques

There are numerous machine characteristics which can be monitored. Each of

these characteristics can be translated into a technique by which the condi-

tion of a machine is monitored. The condition monitoring techniques can be

roughly divided into the four categories electrical, chemical, vibrational and

temperature [3]. This research focuses only on analysis of information obtained

from chemical and vibration techniques.

2.2.1 Vibration-based Condition Monitoring

The most commonly used condition monitoring system is the vibration-based

condition monitoring [12]. The vibration monitoring technique is based on the

principle that all systems produce vibration. When a machine is operating

properly, vibration is small and constant; however, when faults develop and

some of the dynamic processes in the machine change, the vibration spectrum

also changes [13]. It is claimed that vibration monitoring is the most reliable

method of assessing the overall health of a rotating system [14]. Machines

have complex mechanical structures that oscillate and coupled parts of ma-

chines transmit these oscillations. This results in a machine related frequency

spectrum that characterizes healthy machine behavior. When a mechanical

9



2.2. VARIOUS CONDITION MONITORING TECHNIQUES

part of the machine either wears or breaks down, a frequency component in

the spectrum will change. Each fault in a rotating machine produces vibra-

tions with distinctive characteristics that can be measured and compared with

reference datasets in order to perform the fault detection and diagnosis pro-

cesses. Vibration monitoring system requires storing of a large amount of

data. Vibration is often measured with multiple sensors mounted on different

parts of the machine. For each machine there are typically several vibration

signals being analyzed in addition to static parameters such as load. The ex-

amination of data can be tedious and sensitive to errors. Also, fault related

machine vibration is usually corrupted with structural machine vibration and

noise from interfering machinery. Further, depending on the sensor position,

large deviations on noise may occur in measurements.

Various artificial intelligence techniques have been applied for vibration-based

condition monitoring. During the last years artificial neural network based

models like Multi-layer Perceptron (MLP) and Radial Basis Function (RBF)

have been used extensively for bearing condition monitoring. Samanta et al.

[14] used artificial neural network with time-domain features for rolling element

bearing detection. Yang et al. [15] applied the ART-KOHONEN to the prob-

lem of fault diagnosis of rotating machinery. Lately, kernel-based classifiers

such as Support Vector Machine have been used for bearing fault diagnosis.

Rojas and Nandi [16] used SVM for the detection and classification of rolling

element bearing faults. Samanta [17] used both ANN and SVM with genetic

algorithm for bearing fault detection. Yang et al. [18] used multi-class SVM

for fault diagnosis of rotating machinery. However, data-based statistical ap-

proaches such Gaussian mixture model and hidden Markov model (HMM) have

achieved considerable success in speech recognition and have been recently used

for condition monitoring. Ertunc et al. [19] used HMM to determine wear sta-

tus of the drill bits in a drilling process. Ocak and Loparo [20], Purushotham

et al. [21], Miao et al. [22] and Marwala et al. [23] used HMM for bearing fault

detection and diagnosis. In this work, vibration data set from motor bearing

is used.
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2.2.2 Dissolved Gas Analysis

Dissolved Gas analysis is one of the most popular chemical techniques that

are used in oil-filled equipment. DGA is the most commonly used diagnos-

tic technique for oil-filled machines such as transformers and bushings [24].

DGA is used to detect oil breakdown, moisture presence and partial discharge

activity. The gaseous byproduct are produced by degradation of transformer

and bushing oil and solid insulation, such as paper and pressboard, which are

all made of cellulose. The gases produced from the transformer and bushing

operation can be listed as follows [25]:

• Hydrocarbons and hydrogen gases: methane, ethane, ethylene, acetylene

and hydrogen.

• Carbon oxide: carbon monoxide and carbon dioxide.

• Naturally occurring gases: nitrogen and oxygen.

The symptoms of faults are classified into four main groups; corona, low energy

discharge, high energy discharge and thermal. The quantity and types of gases

reflect the nature and extent of the stressed mechanism in the bushing. Oil

breakdown is shown by the presence of hydrogen, methane, ethane, ethylene

and acetylene while high levels of hydrogen show that the degeneration is due

to corona. High levels of acetylene occur in the presence of arcing at high tem-

peratures. Methane and ethane are produced from low temperature thermal

heating of oil and high temperature thermal heating produces ethylene, hydro-

gen as well as a methane and ethane. Low temperature thermal degradation

of cellulose produces carbon dioxide and high temperature produces carbon

monoxide [24].

Existing diagnostic approaches for power transformers, which are based on the

dissolved gas information, can be divided into two categories; the conventional

approaches and artificial intelligence techniques.

11



2.2. VARIOUS CONDITION MONITORING TECHNIQUES

Conventional Approaches

Several renowned DGA interpretation schemes are; D̈rnenburg Ratios [26],

Rogers Ratios [27], Duval Triangle [28], and the IEC Ratios [29]. These

schemes have been implemented, either in modified format, by various power

utilities throughout the world. These schemes require computation of sev-

eral key gas ratios. Fault diagnosis is accomplished by associating the value

of these ratios with several predefined conditions of bushing. Two types of

incipient faults can be detected from these schemes; electrical fault and ther-

mal fault. Electrical fault can be divided into partial discharges and electrical

discharges [27], and examples of thermal fault are hot-spots and overheating.

A decision has to be made on whether fault diagnosis is necessary based on

the comparison of dissolved gas concentrations with a set of typical values of

gas concentration. If all dissolved gas concentrations are below these typical

values, then the power transformer concerned can be regarded as operating in

a normal manner.

2.2.3 Artificial Intelligence Approaches

Various attempts have been made to utilize AI techniques for diagnosis of

transformer condition based on the dissolved gas information [30, 31, 32, 33, 34,

35]. The intention of these approaches is to resolve some inherent limitations

of the conventional interpretation schemes and to improve the accuracy of

diagnosis.

Single AI Approaches

Single AI approaches only involve the utilization of one AI technique. The

most popular AI technique is the supervised artificial neural network (ANN).

A simple feed-forward ANN for detecting thermal and arcing faults is reported

12
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in [30]. Training samples were taken from post-mortem data and were carefully

selected so that various operating conditions were represented. It was reported

in [31] that more accurate diagnoses can be obtained, if compared to Rogers

Ratios and Drnenburg Ratios. Furthermore, two separate ANN were also used

in [32] for fault diagnosis and detection of cellulose degradation. It was found

that carbon dioxide and carbon monoxide are not needed as inputs for fault

diagnosis, and a single output that indicates whether cellulose was involved in

a fault is sufficient for the detection of cellulose degradation [31]. The same

authors also reported in the later publication [32] that higher diagnosis accu-

racy could be achieved if gas generation rates were included as inputs to the

ANN. While the aforementioned ANN-based approaches utilize actual DGA

data as training inputs, there are also other ANN-based approaches which

rely on conventional DGA interpretation schemes for generating the training

outputs. An example of such approaches can be found in [36], where key gas

concentrations, IEC Ratios, and Rogers Ratios were used to generate training

outputs for three independently trained ANN; fault diagnoses as given by these

ANN were combined to arrive at a final decision. The ANN-based approach, as

suggested in [33], relies totally on conventional interpretation scheme, where 13

characteristic patterns of gaseous composition were used as inputs to the ANN,

which was trained to detect different types of fault as specified in the Japanese

ECRA method. Unsupervised ANN were also implemented for the analysis

of the dissolved gas data. Specifically, self-organizing map was applied for ex-

ploratory analysis on historical DGA data [35]. It was reported that interesting

and comprehensive patterns have been unearthed, which could be associated

with certain incipient faults in power transformers. Kernel based approaches

such as Support Vector Machine (SVM) were also utilized for bushing fault

diagnosis [25]. The SVM approaches suggested in [25] rely on the conventional

DGA interpretation schemes for generating the training outputs.
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Hybrid AI Approaches

Other AI approaches applied for DGA interpretation are of hybrid nature

[36, 37, 38]. The use of a fuzzy expert system was reported in [37]; it was

implemented using if-then rules and fuzzy logic was introduced to resolve the

inherent uncertainties in normality thresholds, key-gas ratios, and concentra-

tions. The knowledge-base of the fuzzy expert system incorporates not only

popular DGA interpretation schemes such as Drnenburg Ratios, key gas con-

centrations, and IEC Ratios, but also synthetic expertise and heuristic main-

tenance rules based on expert experiences. Nevertheless, only a fairly simple

form of fuzzy concept was considered in [37] and a more general framework

associated with fuzzy measures and bodies of evidence was not pursued [38].

Consequently, a more general approach, known as the fuzzy information the-

ory, was proposed in [37] in order to systematically manage the uncertainties

that arise from different DGA interpretation schemes. In the fuzzy expert

system as reported in [37], each DGA interpretation scheme was represented

by several fuzzy rules; conflicts that arise between rules were resolved using

fuzzy information theory to find the most consistent solution. Diagnosis as

given by various schemes were combined to arrive at a final decision, in which

higher weights were attached to more certain diagnosis [32]. Although the

introduction of fuzzy concepts greatly improves the diagnosis accuracy of an

expert system, membership functions of fuzzy subsets are either determined

empirically or basically in a trial-and-error manner, where the conventional

DGA interpretation schemes are to be implicitly followed. Hence, a novel

approach known as the fuzzy evolutionary programming has been proposed

in [36], whereby conventional DGA interpretation schemes were used to con-

struct the preliminary framework of the fuzzy system, and an evolutionary

programming-based optimization algorithm was employed to further modify

the fuzzy if-then rules and simultaneously adjusting the membership functions

of the fuzzy subsets. Consequently, the cumbersome process of manually ad-

justing the fuzzy rules and membership functions can be avoided altogether.
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Limitation of Existing Approaches

There are several limitations pertaining to the foregoing ratio-based approaches.

Firstly, uncertainty and ambiguity still exist as to which key-gas ratios should

be considered and on the credibility of the suggested ratio values, since each

scheme has its own recommendation of key-gas ratios and their values [24].

Therefore, power utilities may have to adapt these ratio-based schemes heuris-

tically or on the experimental basis until satisfactory diagnoses are obtained.

Second, the heuristic and empirical nature of these ratio-based schemes have

brought about discrepancies in interpretation; application of different interpre-

tation schemes on identical set of DGA data may produce diverse diagnoses

of the transformer condition, thereby causing confusion among power utili-

ties. Lastly, the diagnosis of transformer condition is sometimes impossible to

achieve owing to the inability of these schemes to provide interpretation for ev-

ery possible combination of ratio values, with the exception of Duval Triangle

[28]. Consequently, the interpretation of a DGA data may have to depend on

expert judgement, which may instigate even more confusion since each expert

may have their own idea on what is happening inside the transformer based

on the dissolved gas information presented. It is known that supervised ANN

depend on either post-mortem data or conventional DGA schemes for training

outputs. However, the acquisition of a sufficient amount of post-mortem data

is difficult since it is too costly to dismantle a particular power transformer

for the purpose of investigating a suspected fault, since the transformer may

operate normally despite the increase in certain key gases. Consequently, there

might not be a lot of good cases for the training. Hybrid-AI approaches such as

fuzzy expert systems are used to tackle the ambiguity of conventional DGA in-

terpretation schemes, which are integrated into the foregoing approaches, and

expert experiences are incorporated to improve the credibility of diagnosis.

However, due to the incorporation of conventional schemes and expert expe-

riences, too many uncertainties are introduced to these approaches and would

thereby lead to the lack of confidence on final diagnoses if these uncertainties
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were not managed appropriately. Furthermore, the aforementioned methods

do not have the capability to incrementally adapt over time, as new informa-

tion becomes available, or the systems being monitored undergo modifications.

This is essential since the monitoring system should be able to quickly adapt

to changes so as to maintain and improve system performance. Addition-

ally, these methods are too stable, they are incapable of incorporating new

experiences with minimal training time, and without overwriting (unlearning)

previous training experiences.

2.3 Components of Condition Monitoring

Condition Monitoring systems generally consists of the measurement system,

preprocessing, feature extraction and classification as shown in Figure 2.1.

Figure 2.1: General block diagram of a condition monitoring system
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2.3.1 Measurement System and Preprocessing

Condition monitoring systems depend on sensors for obtaining the necessary

information. However, the odds of sensor failure are often of the same order of

magnitude as the odds of machinery failure. Since the diagnosis determined by

a condition monitoring system can only be accurate if the measured informa-

tion is correct, the first step should be to evaluate the sensor signals to ensure

that the correct signal is received. Direct methods are based on an evaluation

of the actual sensor signals. There are two methods that can be used for sensor

evaluation and these are; sensor redundancy and model-based methods [11].

Sensor redundancy aims to double redundant sensors can indicate the failure of

one of the sensors, but cannot tell which [11]. Triple redundant sensors in most

cases can locate the failing sensor [11]. Model-based methods use information

about the monitored machinery to create an analytic sensor redundancy. In-

stead of using two or more redundant sensors, the model will function as one

of the redundant sensors. These methods can identify less prominent sensor

faults than the direct methods mentioned above. Two successful model-based

methods that are used are; observer-based sensor monitoring and sensor fault

analysis. Observer-based sensor monitoring is based on models of parts of the

machinery and other sensor values, several observers calculate an estimate for

the value of a specific sensor. These estimated values are redundant with the

measured values and, thus, give an indication of a sensor fault. Sensor fault

analysis ensures that if a sensor fails, a characteristic pattern will appear in

the measured sensor data. This pattern is unique for a specific sensor fault.

2.3.2 Feature Extraction

Feature extraction is the process of representing a signal as a set of features

that lends itself to easy discrimination between pattern classes of the original

signal [39]. Feature extraction is a key component of any classification system

as it influences the complexity of the classification problem. If features do
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not capture all relevant information that is necessary to distinguish between

pattern classes, reliable classification may be extremely difficult to achieve.

Features that contain too much information can sometimes be undesirable as

the additional, unnecessary information may confuse the classifier the classifi-

cation problem. In most classification systems, feature extraction also fulfills a

data reduction function by extracting features that are of a lower dimensional-

ity than the original signal. Generally, features in a lower dimensional feature

space are also easier to classify than features in a high dimensional feature

space and result in more computationally efficient classifiers. Another useful

property for feature extractors is to extract features that are invariant to sig-

nal amplitude and time. This may be advantageous for a time-varying signal.

Determining an optimal feature extraction method can be a challenging task

which is problem and classifier dependent.

Feature extraction techniques can be classified into three domains namely;

frequency domain analysis, time-frequency domain analysis and time domain

analysis [40]. The frequency domain methods often involve frequency analysis

of the signals and look at the periodicity of high frequency transients. The

frequency domain methods search for a train of ringings occurring at any of the

characteristic defect frequencies [12]. This procedure gets complicated consid-

ering the fact that the periodicity of the signal may be suppressed. These fre-

quency domain techniques include the frequency averaging technique, adaptive

noise cancellation and the high frequency resonance technique amongst others.

The main disadvantage of the frequency domain analysis is that it tends to

average out transient vibrations and therefore becomes more sensitive to back-

ground noise. To overcome this problem, the time-frequency domain analysis

is used which shows how the frequency contents of the signal changes with

time. The examples of such analysis are: Short Time Fourier Transform, the

Wigner-Ville Distribution and most commonly the Wavelet Transform. These

techniques are studied in detail in [12]. The last category of the feature extrac-

tion is the time domain analysis. Time domain methods usually involve indices

that are sensitive to impulsive oscillations, such as peak level, root mean square
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value, crest factor analysis, kurtosis analysis, shock pulse counting, time series

averaging method, signal enveloping method and many more. In this study,

Mel-frequency Cepstral Coefficients (MFCC) and statistical features are used.

Mel-frequency Cepstral Coefficients

MFCCs have been widely used in the field of speech recognition and have

managed to represent the dynamic features of a signal as they extract both

linear and non-linear properties [41]. MFCC can be a useful tool of feature

extraction in vibration signals as vibrations contain both linear and non-linear

features. MFCC is a type of wavelet in which frequency scales are placed on a

linear scale for frequencies less than 1 kHz and on a log scale for frequencies

above 1 kHz [41]. The complex cepstral coefficients obtained from this scale

are called the MFCC [41]. The MFCC contain both time and frequency infor-

mation of the signal and this makes them more useful for feature extraction.

The following steps are involved in MFCC computations;

1. Transform input signal, x(n) from time domain to frequency domain by

applying Fast Fourier Transform (FFT), using [41]:

Y (m) =
1

F

F−1∑
n=0

x(n)w(n)e−j 2π
f

nm (2.1)

Where F is the number of frames, and w(n) is the hamming window

function given by:

w(n) = β

(
0.5− 0.5 cos

2πn

F − 1

)
(2.2)

Where 0 ≤ n ≤ F − 1 and β is the normalization factor defined such

that the root mean square of the window is unity [41].

2. Mel-frequency wrapping is performed by changing the frequency to the

Mel using the following equation.

mel = 2595× log10

(
1 +

fHz

700

)
(2.3)
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Mel-frequency warping uses a filter bank, spaced uniformly on the Mel

scale. The filter bank has a triangular band pass frequency response,

whose spacing and magnitude are determined by a constant Mel-frequency

interval.

3. The final step converts the logarithmic Mel spectrum back to the time

domain. The result of this step is what is called the Mel-frequency Cep-

stral Coefficients. This conversion is achieved by taking the Discrete

Cosine Transform of the spectrum as:

Cm =
F−1∑
n=0

cos
(
m

π

F
(n + 0.5) log10(Hn)

)
(2.4)

Where 0 ≤ m ≤ and L is the number of MFCC extracted form the ith

frame of the signal. Hn is the transfer function of the nth filter on the

filter bank.

These MFCC are then used as a representation of the signal.

Statistical Features

Basic statical features such as mean, root mean square, variance (σ), skew-

ness (normalized 3rd central moment) and kurtosis (normalized 4th central

moment) are implemented to obtain the signature of faults. The root mean

square value contains all the energy in the signal and therefore also all the noise

and all the elements that depend on the cutting process. Therefore, it is not

the most effective parameter but has retained its place because it is so easy to

produce and understand [14]. There is a need to deal with the occasional spik-

ing of vibration data, which is caused by some types of faults and to achieve

this task Kurtosis is used. The success of Kurtosis in signals is based on the

fact that signals of a system under stress or having defects differ from those

of a normal system. The sharpness or spiking of the vibration signal changes

when there are defects in the system. Kurtosis is a measure of the sharpness
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of the peak and is defined as the normalized fourth-order central moment of

the signal [42]. The Kurtosis value is useful in identifying transients and spon-

taneous events within vibration signals and is one of the accepted criteria in

fault detection.

2.3.3 Classification

Condition classification includes the identification of the operating status of the

machine and type of failure by interpreting the representative system condition.

The classification system can be classified into two main groups, knowledge-

based and data-based models. Knowledge-based models rely on human-like

knowledge of the process and its faults. Knowledge-based models like expert

systems or decision trees apply human-like knowledge of the process for fault

diagnosis. In fault diagnostics, the human expert could be a person who oper-

ates the diagnosed machine or process and who is very well aware of different

kinds of faults occurring in it. Building the knowledge base can be achieved by

interviewing the human operator on faults occurring in the diagnosed machine

and on their symptoms. Expert systems are usually suitable for problems,

where a human expert can linguistically describe the solution. Typical hu-

man knowledge is vague and inexact, and handling this kind of information

has often been a problem with traditional expert systems. For example, the

limit when the temperature in a sauna is too high is vague in human mind.

In practice, it is very difficult to obtain adequate representations of the com-

plex and highly non-linear behavior of faulty plants using quantitative models.

Knowledge-based models may be utilized together with a simple signal-based

diagnostics, if the expert knowledge of the process is available. However, it

is often impossible even for a human expert to distinguish faults from the

healthy operation, and also multiple information sources may need to be used

for trustworthy decision making. Thus, the data-based models are the most

flexible approach to automated condition monitoring. Data-based models are

applied when the process model is not known in the analytical form and expert
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knowledge of the process performance under faults is not available.

Learning machines must be adaptive if they have to operate effectively in

complex, real world problems. In many real-world applications, the knowl-

edge environment is non-stationary and the main assumption of a dynamic

work environment is that all information is not available a priori in the train-

ing set. The environment changes over time and requires that the learning

process tracks this change and includes it in its knowledge base. Building

a successful machine learning for a real-world problem might only be possi-

ble by incorporating the flexibility in acquiring the knowledge from each new

observation. It is possible to accomplish this task in reproducing entirely a

new knowledge base from the new observation plus all previous ones. This

solution is impractical since it requires the storage of all available training set

and a considerable computation time. Thus the system must learn from each

observation when it becomes available while preserving its current knowledge.

Incremental learning is a way to control the cost of knowledge update, it learns

from the new observation to adapt the previous knowledge to the changes in

the work environment. Incremental learning has a lot of advantages; it en-

ables learning of new observation, it adapts the knowledge base to the changes

of work environment and reinforces current knowledge. In Chapter 4, two

condition monitoring system that take advantages of incremental learning are

implemented.

2.4 Condition Monitoring Issues

Measurements from the system can be taken every few seconds. This leads

to an overwhelming volume of data per equipment to be interpreted by engi-

neers. When this is multiplied by the number of equipment to be monitored,

the problem of data overload becomes insurmountable in terms of manual data

interpretation. The second problem is the limited base of experts able to in-

terpret the complex condition monitoring data. The third issue is that most of
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the time to effectively monitor the condition of a machine, more than one tech-

nology is used [7]. Thus, there is a longer term requirement for the integration

of further monitoring technologies.

Based on the problem, condition monitoring system identified above; the re-

quirements of an online condition monitoring system are [7]:

• The system must capture and condition the relevant data automatically.

• It should have the capacity to learn the typical plant behavior over a

period of time and then use this to indicate when anomalies and de-

fects arise and provide clear and concise defect information and remedial

advice to the operation engineer.

• It should have the ability to monitor changes and deviations in measure-

ments to allow differentiation between sensor defects and actual plant

defects.

• Extensibility and flexibility to include further interpretation techniques

and monitoring technologies.

The extensibility criterion is essential for longevity and practical implementa-

tion. The architecture must be scalable and support the introduction of new

sensors, data sets and interpretation techniques as they become available. This

requirement necessitates the use of intelligent and multi-agent system. For in-

stance, if requirements increase, agents can be added, replaced for better ones,

improved by providing agents with more experience or even having multiple

agents with the same goal working parallel, if one agent misses a symptom,

the other agent may observe it. Agents may also specialize of different tasks,

e.g. one agent may be an expert on partial discharge and another agent on

dissolved gas analysis, and then both agents may share some sensors or get

information from a sensor agent, an agent specialized in pre-processing the sen-

sor data and removing noise and other artifacts. Furthermore, new findings
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and research results can be integrated into the relevant agents without any

redesign or modifications of the condition monitoring system. This suggests

that each of the required functions should be stand-alone, with the ability to

cooperate and exchange information as required. In Chapter 5, it is demon-

strated how the above requirements can be met using agents and multi-agent

system.
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Chapter 3

Machine Learning

Machine learning has been used extensively in the area of condition monitoring

systems as described in the previous chapter. In this chapter, the theoretical

foundation of various machine learning tools such as Artificial Neural Networks

(ANN), Support Vector Machine (SVM), Extension Neural Network (ENN)

and Fuzzy ARTMAP (FAM) are briefly presented. As there are numerous

different types of ANNs, emphasis is given to the variant that is used in this

study called multi-Layer Perceptrons (MLPs). The design process for ensemble

of classifiers is outlined and the advantages of the ensemble approach are also

discussed.

3.1 Overview of Machine Learning

Machine learning is an area of artificial intelligence involving developing tech-

niques to allow computers to learn. More specifically, machine learning is a

method for creating computer programs by the analysis of data sets, rather

than the intuition of engineers. Machine learning algorithms are organized

into a taxonomy, based on the desired outcome of the algorithm. Common

algorithm types include [1]:
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• Supervised - In the supervised paradigm a parameter update is based on

an error, given by the difference between the actual output y(t) = F (x(t))

and the target output y
′
(t). The target output is sometimes also called

teacher signal.

• Unsupervised - Learning without external signal or control.

• Reinforcement - In the reinforcement learning, a scalar reinforcement

signal is provided.

In all these three cases though, this learning can be represented mathemati-

cally, where for some input signal x(t) ∈ Rn and an output y(t) ∈ Rm for some

time step t ∈ N , the system learns a mapping F : Rn ⊃ X → Y ⊂ Rm or

simply x 7−→ y is learned [39]. The mapping F is usually a function defined

by some matrix of weight values.

3.2 Machine Learning Tools

3.2.1 Artificial Neural Network

ANNs are powerful data processing systems that are able to learn complex

input-output relationships from data. A typical ANN consists of a large num-

ber of simple processing elements called neurons that are highly interconnected

in an architecture that is loosely based on the structure of biological neurons

in the human or animal brain. A few attributes of interest are learning ability,

parallelism, distributed representation and computation, fault tolerance and

generalization ability. When used for pattern classification, the ANN performs

a nonlinear mapping function producing an output that indicates membership

of an input vector to a specific pattern class. The ANN learns this map-

ping function from training data and, if trained correctly, is able to generalize

on new data. This ability to learn from examples is useful for classification
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problems that are too complex to be solved using algorithmic or rules-based

methods. There are several different types of ANN models that can be used

for classification. Two of the more commonly-used models are Multi-Layer

Perceptron (MLP) and Radial Basis Function (RBF) neural networks. MLP

networks generate a representation in the space of its hidden layer units that

is a more global and distributed representation of the input space than RBF

networks [1]. As a result, MLPs generally extrapolate better in regions of the

feature space that are not well represented by the training data. The disad-

vantage of using MLP networks is that they require more training time and

are more difficult to interpret than RBF networks [1]. In this work, MLP is

used.

Multi-layer Perceptron

ANNs provide a framework for representing nonlinear, parameterized mapping

functions between multi-dimensional spaces. The ANN learns a mapping func-

tion, F , from a set of training data such that F : x → y where x is a vector of

input variables and y is a vector of output variables. Learning is accomplished

by adjusting a set of ANN parameters called weights until a suitable response

is achieved. Each output, yk, of the ANN is, therefore, a function of its inputs,

x, and weights, w such that

yk = f(X; W ) (3.1)

In most cases, ANNs consist of simpler processing units called artificial neurons

arranged according to some topology [1]. Each input to the neuron is multiplied

by an adjustable weight parameter. The sum of all the weighted inputs is called

the activation of the neuron and is represented by

aj =
N∑

i=0

wij × xij (3.2)

Where aj is the activation of neuron j, N is the number of inputs, xi, to

the neuron and wij is the weight parameter between input i and neuron j.
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The input x0 is a special input, called a bias, that is always equal to 1. The

activation of the neuron becomes the input to a nonlinear activation function

which returns the output of the neuron

zj = f(aj) (3.3)

Where zj is the output of neuron j and f( · ) is the activation function. In

classification problems, common choices for the activation functions are the lo-

gistic sigmoid and hyperbolic tangent function. By itself, the single neuron has

limited data processing capabilities. In order to implement a useful mapping

function, multiple neurons are combined according to a network topology. For

computational reasons, the topology is restricted to a layered structure where

the outputs of all neurons in a lower layer become the inputs to each neuron

in the next higher layer.

For a MLP architecture with one neuron in the output layer, M neurons in the

hidden layer, and N inputs in the input layer, the response of the jth neuron

in the hidden layer can be derived from equations 3.2 and 3.3 as

y = fhidden(
N∑

i=0

w1
ijxi) (3.4)

where w1
ij is the weight between input xi and hidden neuron j, w0j is the weight

of the bias input to neuron j and fhidden( · ) is the activation function. The

representational capability of the MLP refers to the range of mappings that

the MLP can implement as its weight parameters are varied. This indicates

whether the MLP is capable of implementing a desired mapping function. Pre-

vious work on this subject has shown that a sufficiently large network with a

sigmoidal activation function and one hidden layer of neurons is able to approx-

imate any function with arbitrary accuracy [1]. This universal approximation

capability proves that an MLP with one hidden layer is theoretically able to

implement any required mapping function. When used for classification, the

ANN is required to function as a statistical model of the process from which

the input data is generated. In order to realize this model, two problems have
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to be solved. Firstly, an appropriate architecture for the model needs to be

selected. For the MLP ANNs used in this study, this involves determining the

number of hidden layer neurons. Once an appropriate architecture is selected,

suitable values for the adjustable weight parameters of the ANN have to be

determined. These values are estimated from a representative set of training

data.

The goal of parameter estimation is to maximize the probability of the weight

parameters, w, given the training data, D. This probability is computed using

Bayes rule [1]:

p (w|D) =
p (D|w) p (w)

p (D)
(3.5)

The parameter p(D) is called the evidence when the evidence framework is

discussed. As the evidence does not depend on w, only the expression in the

numerator of equation 3.5 needs to be maximized in order maximize p(w|D).

Alternatively, the negative logarithm of the numerator can be minimized. This

is given by;

E (w) = −`np (w|D)− lnp (w) (3.6)

E(w) is defined as an error function, p(D|w) is defined as the likelihood of

w and p(w) is defined as the prior probability of w. During training, the

error function defined by equation 3.6 is minimized in order to find the most

probable weights given the training data. A supervised learning approach was

used in this study to estimate these weight parameters. A set of training

data consisting of example training patterns is sequentially presented to an

ANN. The targets are the desired output for the ANN in response to the input

vector. The actual output of the ANN together with its associated target are

used by an error function to quantify the error of the ANN mapping. An

optimization algorithm uses the summed error for the entire training set to

adjust weight parameters in a direction of decreasing error. Most optimization

algorithms first compute the gradient of the error with respect to each weight

parameter and then use the gradient to adjust weights. These are not used in

this study because they are computationally expensive. The above procedure
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is repeated for many cycles called epochs until a satisfactory performance is

achieved. Once the error of the ANN on the training set of data and the

derivative of the error with respect to each weight parameter of the ANN have

been computed, an optimization algorithm can be used to adapt the weights

in order to minimize the error. For full details on artificial neural network, the

reader is referred to [1].

Figure 3.1: Architecture of the feed-forward multi-layer perceptron [1]

3.2.2 Support Vector Machine

SVMs were introduced by Vapnik in the late 1960s on the foundation of sta-

tistical learning theory. However, since the middle of 1990s, the algorithms

used for SVMs started emerging with greater availability of computing power,

paving the way for numerous practical applications [2, 43, 44]. The basic SVM

deals with two-class problems in which the data are separated by a hyperplane

defined by a number of support vectors. The SVM can be considered to cre-

ate a line or hyperplane between two sets of data for classification. In case

of two-dimensional situation, the action of the SVM can be explained easily

without any loss of generality. In Figure 3.2, a series of points for two different

classes of data are shown, circles represents class A and class B is represented

by squares.

The SVM attempts to place a linear boundary (solid line) between the two

different classes, and orient it in such a way that the margin (represented
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Figure 3.2: The optimal separating hyperplane maximizes generalization abil-

ity of the classifier [2]

by dotted lines) is maximized. In other words, the SVM tries to orient the

boundary such that the distance between the boundary and the nearest data

point in each class is maximal. The boundary is then placed in the middle of

this margin between the two points. The nearest data points are used to define

the margins and are known as support vectors, represented by gray circle and

square). Once the support vectors are selected, the rest of the feature set

can be discarded, since the Support Vectors (SVs) contain all the necessary

information for the classifier. The boundary can be expressed in terms of

(w.b) + b = 0 w ∈ Rn, b ∈ R, (3.7)

where the vector w defines the boundary, x is the input vector of dimension

N and b is a scalar threshold. At the margins, where the SVs are located, the

equations for class A and B, respectively, are

(w.b) + b = 1 (3.8)

and

(w.b) + b = −1 (3.9)

As SVs correspond to the extremities of the data for a given class, the following
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decision function holds good for all data points belonging to either A or B:

f (x) = sign ((w.x) + b) (3.10)

The optimal hyperplane can be obtained as a solution to the optimization

problem, equation 3.11 is minimized

τ (w) =
1

2
‖w‖2 (3.11)

subject to

yi ((w.xi) + b) ≥ 1, i = 1 . . . l (3.12)

where l is the number of training sets. The solution of the constrained quadratic

programming optimization problem can be obtained as

w =
∑

vixi (3.13)

where xi are SVs obtained from training. Putting equation 3.13 in equation

3.10 the decision function is obtained as follows:

f (x) = sign
(∑

(vi (x ·xi)) + b
)

(3.14)

In cases where the linear boundary in input spaces will not be enough to

separate two classes properly, it is possible to create a hyperplane that allows

linear separation in the higher dimension (corresponding to curved surface in

lower dimensional input space). In SVMs, this is achieved through the use of

a transformation that converts the data from an N-dimensional input space to

Q-dimensional feature space: s = φ (x) where x ∈ RN and s ∈ RQ: Figure 3.3

shows the transformation from input space to feature space where nonlinear

boundary has been transformed into a linear boundary in feature space.

Substituting the transformation in equation 3.14 gives

f (x) = sign
(∑

(vi (φ (x) ·φ (xi))) + b
)

(3.15)

The transformation into higher-dimensional feature space is relatively computation-

intensive. A kernel can be used to perform this transformation and the dot
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Figure 3.3: Classification of data by SVM [2]

product in a single step provided the transformation can be replaced by an

equivalent kernel function. This help in reducing the computational load and

at the same time retaining the effect of higher-dimensional transformation.

The kernel function K(x · y) is defined as

K (x.y) = φ (x) .φ (xi) (3.16)

The decision function is accordingly modified as

f (x) = sign
(∑

(vi (K (x.y))) + b
)

(3.17)

The parameters vi are used as weighting factors to determine which of the

input vectors are actually support vectors 0 < vi < ∞. There are different

kernel functions like polynomial, sigmoid and radial basis function (RBF) used

in SVM. In this work, RBF kernel, given by equation 3.18 is used.

K (x.y) = exp
(
− |x− y|2 /2σ2

)
(3.18)

The width of the RBF kernel parameter (σ) can be determined in general by an

iterative process selecting an optimum value based on the full feature set. In

case there is an overlap between the classes with nonseparable data, the range
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of parameters vi can be limited to reduce the effect of outliers on the boundary

defined by SVs. For nonseparable case, the constraint is modified (0 < vi < C).

For separable case, C is infinity while for nonseparable case, it may be varied,

depending on the number of allowable errors in the trained solution: few errors

are permitted for high C while low C allows a higher proportion of errors in

the solution. To control generalization capability of SVM, there are a few free

parameters like limiting term C and the kernel parameters like RBF width.

For more details on SVM, the reader is referred to [2, 44, 45].

3.2.3 Extension Neural Network

The Extension Neural Network (ENN) is a new pattern classification system

based on concepts from neural networks and extension theory [46]. The ex-

tension theory uses a novel distance measurement for classification processes,

and the neural network can embed the salient features of parallel computation

power and learning capability. The classifier is well suited to classification

problems; where there exists patterns with a wide range of continuous inputs

and a discrete output indicating which class the pattern belongs to. The struc-

ture of the ENN is shown in Figure 3.4

ENN comprises of input layer and the output layer. The input layer nodes

receive an input feature pattern and uses a set of weighted parameters to

generate an image of the input pattern. There are two connection weights

between input nodes and output nodes; one connection represents the lower

bound for this classical domain of the features, and the other represents the

upper bound.The entire network is thus represented by a matrix of weights for

the upper and lower limits of the features for each class WU and WL. A third

matrix representing the cluster centers is also defined as [46]:

z =
WU + WL

2
(3.19)

ENN uses supervised learning, which tune the weights of the ENN to achieve a

good clustering performance or to minimize the clustering error. The network
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Figure 3.4: Structure of the extension neural network

is trained by adjusting the network weights and recalculating the network

centers for each training pattern depending on the extension distance (ED) of

that pattern to its labelled cluster. Each training pattern adjusts the networks

weights and the center by an amount depending on a learning rate β. In

general, the weight update for a variable is

wnew = wold − β(xi − wold) (3.20)

where xi is the ith training pattern, β is the learning rate and w can be either

the upper or lower weight matrices of the network centers. It can be shown

that for t training patterns for a particular class C, the weight is given by:

wc(t) = (1− ρ)wc(0)− β
t∑

i=1

(1− β)t−1xc
i (3.21)

This equation demonstrates how each training pattern reinforces the learning

in the network by having the most recent signal xt
c determine only a fraction

of the current value of zt
c. The equation indicates that there is no convergence

of the weight values since the learning process is adaptive and reinforcing.
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Equation 3.21 also highlights the importance of the learning rate β. Small

values of β require many training epochs, whereas large values may results

in oscillatory behavior of the network weights, resulting in poor classification

performance.

3.2.4 Fuzzy ARTMAP

The fuzzy ARTMAP architecture is an auto-organized learning system [47].

This kind of network has supervised training and pertains to the adaptive res-

onance theory (ART) family; its structure is based on the adaptive resonance

theory and is similar to the fuzzy ART network, which employs calculus based

on fuzzy logic. This network is composed of two fuzzy ART modules; ARTa

and ARTb, interconnected by an inter-ART by an associative memory module

as illustrated in Figure 3.2.4 [47].

Figure 3.5: Structure of the fuzzy ARTMAP

A fuzzy ARTMAP has an internal controller that ensures autonomous system
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operation in real time. The inter-ART module has a self-regulator mechanism

named match tracking, whose objective is to maximize the generalization and

minimize the network error. The F a
2 layer is connected to the inter-ART

module by the weights wab
jk. The input patterns of the ARTa is represented by

the vector a = [a1 . . . aMa] and the input patterns of the ARTb is represented

by the vector b = [b1 . . . bMb]. There are three fundamental parameters for the

performance and learning of the fuzzy ART network [47].

• The chosen parameter, (α > 0) which acts on the category selection.

• Training rate, (β ε [0, 1]) which controls the velocity or the learning rate

of the network adaptation, β = 1 permits the system to adapt faster

while 0 < β < 1 allows the system to adapt slower.

• Vigilance parameter, (ρ ε [0, 1]) which controls the network resonance.

The vigilance parameter is responsible for the number of categories formed.

If the vigilance parameter is very large, it produces a good classification,

providing the generation of several categories and this means that the

network has less errors but has less capacity for generalization. If it is

very small, it will generate few categories, which implies that the net-

work will have more capacity for generalization, but more possibility of

making mistakes.

The ART network affects the processing of two ART networks, ARTa and

ARTb, and after the resonance is confirmed in each network, J is the active

category for the ARTa network and K is the active category for the ARTb

network. The next step is to verify using the match tracking, if the active

category on ARTa corresponds to the desired output vector presented on ARTb.

The vigilance criterion is given by [47]:

|yb ∧ wab
JK |

|yb|
= ρab, (3.22)

It works by causing a little increment on the vigilance parameter only enough

to exclude that category and select another category which will be active and
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reintroduced in the process until the active category correspond to the desired

output. After the input has completed the resonance state by the vigilance

criterion, the weight adaptation is effected. The adaptation of the ARTa and

ARTb module weights is given by [47]:

wnew
J = β(I ∧ wold

J ) + (1− β)wold
J , (3.23)

The adaptation for the inter-ART module is effected as follows [47]:

wab
JK = 1,

wab
JK = 0 for k 6= K

Full explanation of the Fuzzy ARTMAP algorithm can be found in Appendix

A.

3.3 Ensemble of Classifiers

Modeling using neural networks often involves trying multiple networks with

different architectures and training parameters in order to achieve acceptable

model accuracy. Selection of the best network is based on the performance

of the network on an independent validation or test set, and to keep only the

best performing network and to discard the rest. There are two disadvantages

with such an approach; first, all the effort involved in training the remaining

neural networks is wasted, second, the networks generalization performance is

greatly reduced. Ensemble approaches typically aim at improving the classifier

accuracy on a complex classification problem through a divide-and-conquer

approach. Perrone and Copper [48] proved mathematically that an ensemble

method can be used to improve the classification ability of a single classifier.

They argue that the ensemble method have the following advantages:

1. It efficiently uses all the networks in the population - none of the network

need to be discarded.

2. It uses all the available data for training without overfitting.
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3. It performs regularization by smoothing in functional space which helps

with overfitting.

4. It is suited for parallel computing.

In essence, a group of simple classifiers is generated typically from boot-

strapped, jackknifed, or bagged replicas of the training data or by changing

other design parameters of the classifier, which are combined through a clas-

sifier combination scheme, such as the weighted majority voting [49]. The

ensemble generally is formed from weak classifiers to take advantage of their

so called instability [49]. This instability promotes diversity in the classifiers

by forcing them to construct sufficiently different decision boundaries (clas-

sification rules) for minor modifications in their training datasets, which in

turn causes each classifier to make different errors on any given instance. A

strategic combination of these classifiers then eliminates the individual errors,

generating a strong classifier. The success of an ensemble method depends on

two factors; a pool of diverse individual classifiers to be fused and a proper de-

cision fusion method. A proper classifier team should be robust and generate

the best fusion performance. It should also be optimal so that it can reduce

the time for calculation while improving the classification accuracy. Figure 3.6

shows the flowchart of decision-level fusion.

3.3.1 Classifier Selection Methods

Various classifier selection techniques such as Q static, generalized diversity

and agreement have been used successfully for classifier selection [50, 51]. Many

researchers have found that the dependency among classifiers can affect the

fusion results. Goebel et al. [52] recommended an effective method for classifier

selection based on calculating the correlation degree of n classifiers. This

method is used to select the classifiers to be fused. This correlation degree is
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Figure 3.6: Flowchart of decision-level fusion

given by [52];

ρn =
nNF

N −NF −NR + nNF
(3.24)

where NF is the number of samples which are misclassified by all classifiers NR

represent the samples which were classified correctly by all classifiers. N is the

total number of experiments example. It should be noted that the correlation

calculated is for the outcomes of the classifiers. Generally, smaller correlation

degree can lead to better performance of classifier fusion because independent

classifiers can give more effective information.
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3.3.2 Decision Fusion Methods

A number of researchers have investigated the properties of combined classi-

fiers. Wolpert introduced the idea of combining hierarchical levels of classifiers,

using a procedure called stacked generalization [53]. Kitler et al. [54] analyzed

error sensitivities of various voting and combination schemes, whereas Ran-

garajan et al. [55] investigated the capacity of voting systems. Ji and Ma [56]

also gave an excellent review of various methods for combining classifiers.
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Chapter 4

Incremental Learning and its

Application to Condition

Monitoring

The problem of fault diagnosis of machine has been an ongoing research in vari-

ous industries. Many machine learning tools have been applied to this problem

using static machine learning structures such as neural network and support

vector machine that are unable to accommodate new information as it becomes

available into their existing models. The chapter introduces the incremental

learning approach to the problem of condition monitoring. The chapter starts

by giving a brief definition of incremental learning. Two incremental learn-

ing techniques are applied to the problem of condition monitoring. The first

method uses the incremental learning ability of Fuzzy ARTMAP (FAM) and

explores whether ensemble approach can improve the performance of the FAM.

The second technique uses Learn++ that uses an ensemble of MLP classifiers.

Lastly, these two methods are compared with each others.

42



4.1. INCREMENTAL LEARNING

4.1 Incremental Learning

An incremental learning algorithm is an algorithm that is able to learn addi-

tional information from data while retaining previously learned information.

The algorithm should not require access to the original data and must also be

able to learn classes that may be introduced by incoming data. The FAM and

Learn++ fulfill all these criteria.

The characterization of machine incremental learning applies to three dimen-

sions of machine incremental learning; structural changes, learning parameter

adjustments and input data variations. In characterization, let s = (si)i=0...n,

l = (lj)j=0...n and d = (dk)k=0...n be families of real numbers. An incremental

learning system I = (s; l; d) is a learning system which is parameterized by

three families of incremental learning parameters which can be modified dur-

ing training [57]. The first is the structure parameters (s = (si)i=0...n), which

are, for example, the number of neurons, density of connections, or other pa-

rameters which determine structure and functionality of a neural network.

Learning parameters (l = (lj)j=0...n) which are, for example, evolutionary or

other learning parameters, such as the stepsize. Data-complexity parameters

(d = (dk)k=0...n) which can represent any complexity measure of the training

data. Accordingly, there are three main forms of incremental learning. Each

of them modifies members of one of the parameter families defined above [57]:

• Structure Incremental Learning: The structure or functional capacity of

the neural network is changed during learning.

• Learning Parameter Incremental Learning: A selection of learning pa-

rameters from l = (lj) is adapted during learning.

• Data Incremental Learning: The data set or its complexity is increased

in stages during learning controlled by parameter changes of d = (dk).

The incremental learning in the fuzzy ARTMAP is a combination of structure
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and data incremental learning. As data of different classes is added to the

system or more data on existing classes are added, the structure of the sys-

tem adapts creating a larger number of categories in which to map the output

labels. The incremental learning in Learn++ is a data incremental learning

because as new data is added new classifiers are build to be added to the

existing system. Learning new information without requiring access to previ-

ously used data, however, raises “stability-plasticity dilemma”. This dilemma

indicates that a completely stable classifier maintains the knowledge from pre-

viously seen data, but fails to adjust in order to learn new information, while

a completely plastic classifier is capable of learning new data but lose prior

knowledge.

Various incremental learning algorithms have been developed. Notable exam-

ples of incremental learning include growing neural network architectures one

node at a time [58, 59]. Another group of algorithms that claim incremental

learning are those that modify the weights of a neural network architecture

by retraining, typically with misclassified signals. Although, these schemes

are closer in meaning to the definition of incremental learning, however, they

violate the major requirement since they forget previous learning and require

access to old data. Vo [60] describes an incremental learning algorithm for

time delay neural networks , which supplements the original time delay neural

network architecture with the capability of learning a misclassified pattern in a

single epoch by adding a dedicated hidden layer unit. Hoya and Constantinides

[61] describe an incremental learning scheme for generalized recursive neural

network and related family of networks such as probabilistic neural network

and exact RBF networks; however, this algorithm does not learn new patterns

but rather previously misclassified patterns. Higgins and Goodman [62] have

suggested incremental learning with a rule based network, which actually has

the same fundamental idea of the work described in [61]. The algorithm in-

volves growing a network incrementally using the new data without requiring

old data. Chen and Soo [63] introduced an incremental feed-forward neural

network which involves learning of one additional instance given a previously
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trained network. They update the weights for the additional instance in such a

way that the influence of the weight update on previously trained instances is

minimum, which is satisfied by minimizing a weight-sensitivity cost function.

Fu et al. [64, 65] introduced an incremental backpropagation learning network

that is capable of learning new data in the absence of old data. However,

this system, also based on learning new instances through minor modification

of current weights by putting a bound on weight modification, is not able to

learn new classes. Various methods have been proposed for incremental SVM

learning in the literature [66, 67].

4.2 Fuzzy ARTMAP and Incremental Learn-

ing

4.2.1 System Design

The proposed system is implemented using the fuzzy ARTMAP. The overview

of the proposed system is shown in Figure 4.1. The population of classifiers is

used to introduce classification diversity. A bad team of classifiers may even

lead to worse performance than the best single classifier due to the fusion of

error decision. A classifier selection process is executed using the correlation

measure. After the classifier selection, majority voting fusion algorithm is

employed for the final decision.

Data Preprocessing

The variables undergo a min-max normalization. The normalization is a re-

quirement for using the FAM, since the FAM complement coding assumed

the data is normalized. The equation for min-max normalization for a single
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Figure 4.1: Block diagram of the proposed system for the fuzzy ARTMAP

feature is given by;

xnorm =
x− xmin

xmax − xmin

(4.1)

Where, xmin and xmax are the minimum and maximum value for that fea-

ture from the data, respectively. The performance of the trained classifier are

evaluated using the standard classification accuracy;

accuracy =
NC

NT

× 100 (4.2)

Where, NC is the number of correct classification and NT is the total number

of data points in the data sets.

Creation of an Ensemble

The creation of an ensemble of classifiers follows a series of steps. First, an ini-

tial population of twelve classifiers with different permutations of the training
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data are created. This permutation is needed in order to create diversity of the

classifiers being added since FAM learns in an instance-based fashion, which

makes the order in which the training patterns are received an important fac-

tor. From the created population, the best performing classifier of the team

is selected based on the classification accuracy. Then the correlation degree

between the best classifier and all the members of the population is calculated

using Equation 3.24. From the unselected classifiers, the classifier with low

correlation is selected for fusion. This is repeated until all the unselected clas-

sifiers are selected. Lastly, the selected classifiers are fused using the majority

voting to give the final decision. The algorithm for this system is shown in

Figure 4.2.

4.2.2 Experimental Results and Discussion

The available data was divided into three data set; training, validation and

testing data sets. The validation data set is used to evaluate the performance

of each classifiers in the initial population and this performance is used to

select the classifiers for the ensemble. The testing data set is used to evaluate

the performance of the system on unseen data. The first experiment compares

the performance of fuzzy ARTMAP with MLP, SVM and ENN. The second

experiment shows that an ensemble of classifiers improve the classification

accuracy compared to a single classifier. The third experiment evaluates and

compares the incremental capability of a single FAM and the ensemble of FAM

for new classes. The last experiment uses an ensemble of FAM so as to compare

the performance of FAM with that of Learn++.

Bushing Data

A previously mentioned, the gases produced from the transformer and bushing

operation can be listed as follows [25]:
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TRAINING PHASE

1. Create a population of 12 classifiers with different permutation of the

input data.

2. Select an appropriate performance measure as the initial evaluation crite-

rion such as accuracy rate, which is the ratio. number of sample classified

correctly to the total sample.

3. Find the best performing classifiers to be the first classifier of the ensem-

ble.

4. Calculate the correlation degree between the first classifier and other

classifiers, respectively using Equation 3.24

5. Select the classifier with low correlation for fusion. 6 Repeat 4 and 5

between selected classifiers yet to be selected until all the classifiers are

determined.

6. Fuse the individual classifier’s prediction using majority voting strategy.

OPERATION PHASE

1. If a new data becomes available during the operation phase.

2. Add new data to the ensemble of classifiers by training the individual

classifier and then combine through majority voting.

Figure 4.2: The algorithm for the fuzzy ARTMAP system

• Hydrocarbons and hydrogen gases: methane , ethane, ethylene, acetylene

and hydrogen.

• Carbon oxide: carbon monoxide and carbon dioxide.

• Naturally occurring gases: nitrogen and oxygen
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Comparison of Classifiers This experiment aims to compare the perfor-

mance of a batch trained fuzzy ARTMAP in terms of classification accuracy

with batch trained MLP, SVM and ENN. An MLP with 12 hidden layer units

that uses a tangent activation function is used. A fuzzy ARTMAP with a

vigilance parameter of 0.578 determined empirically was used. Support vector

machine that uses an RBF kernel function was used. ENN with a learning rate

of 0.125 which was determined empirically was implemented. Table 4.1 shows

that fuzzy ARTMAP outperformed the other classifiers.

Table 4.1: Comparison of classifiers for bushing fault diagnosis

Classifier Validation Accuracy(%) Testing Accuracy (%) Time (s)

MLP 98.00 95.87 0.2031

SVM 97.70 95.63 30.7031

ENN 99.00 98.50 0.0156

fuzzy ARTMAP 98.50 97.50 0.5687

Table 4.1 shows that FAM gave slightly better results than MLP and SVM.

However, ENN gave slightly better results than the fuzzy ARTMAP.

Comparison of a single FAM and an ensemble Table 4.2 shows the

distribution of the data set in various database, Dj j = 1, . . . , 3.

Table 4.2: Distribution of bushing classes on different data set

Normal Corona Low Energy High Energy Thermal

Training 200 200 200 200 200

Validation 300 300 300 300 300

Testing 500 500 500 500 500

The results for different numbers of classifiers are shown in Table 4.3. Figure

4.3 shows the effect of classifier selection. It further shows that the optimal

49



4.2. FUZZY ARTMAP AND INCREMENTAL LEARNING

results is achieved with six classifiers hence six classifiers are chosen to form

the ensemble.

Table 4.3: Results of the FAM classifiers created to be used in the ensemble

for the bushing data

Classifier Validation Accuracy(%) Correlation (ρ)

1 98.5 Best Classifier

2 97.5 0.624

3 97.5 0.6319

4 97.5 0.6239

5 95.0 0.6310

6 95.0 0.6296

7 95.0 0.6359

8 92.5 0.6377

9 92.5 0.6143

10 92.5 0.6178

11 92.5 0.6340

12 92.5 0.6476

Table 4.4 shows the classification accuracy for both the best classifier and the

ensemble. The table shows that the ensemble of fuzzy ARTMAP performs

better that the best fuzzy ARTMAP classifier.

Table 4.4: Comparison of classification accuracy for the best classifier and

ensemble for bushing data

Classifier Validation Accuracy(%) Testing Accuracy (%)

Best Classifier 98.5 95.2

Ensemble 100.0 98.0
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Figure 4.3: The effect of classifier selection

Incremental Learning Any condition monitoring system that has to be

used online must have incremental learning capability for it to be rendered

useful. As mentioned earlier an incremental learning algorithm must accom-

modate both new data and new classes that may be present in the new data

without compromising the classification accuracy of the previously learned

data. Carpenter et al. [47] showed that the fuzzy ARTMAP is able to accom-

modate these types of data.

The incremental learning capability of a single FAM is compared with that of

an ensemble of classifiers. For the initial experiment the knowledge of a fourth

class is added to the classification system. Using the existing model of the

classifier in the ensemble, each classifier is trained on data of this new class.

Experimentation is performed on independent test set for this class for both

the best classifier and ensemble of the classifiers. Both the best classifier and

the ensemble gave a classification accuracy of 100%. Experimentation of the

system on the testing data set of the initial three classes is performed, this

is to determine how addition of new information affects previously learned

information. The classifier accuracy achieved is 94.88% for the best classifier
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and 98% for the ensemble. This simple experiment shows that the system

is able to learn new classes, while still preserving existing knowledge of the

system. The small change in the accuracy of the three classes is due to the

tradeoff between stability and plasticity of the classifier during training. The

learning ability of the system on a further fifth class is shown in Figure 4.4.

Figure 4.4: Incremental learning of the best classifier on the fifth class

Figure 4.4 shows that as more training examples are added the ability of the

system to correctly classify the data generally increases as shown by the in-

crease in classification accuracy. The classification accuracy of the best clas-

sifier and the ensemble is 95% and 96.33%, respectively. The best classifier

gave a classification accuracy of 90.20% while the ensemble gave a classifica-

tion accuracy of 89.67% on the original test data with three classes. Again,

the change in the accuracy of the three classes is due to the tradeoff between

stability and plasticity of the classifier during training.

Incremental Learning with the Ensemble of FAM Table 4.5 shows the

distribution of the classes in various databases, Dj j = 1, . . . , 3 indicated by

the first column. Table 4.6 shows the results of the ensemble of FAM, the first

row shows the training cycles, Ti i = 1, . . . , 4 and the first column indicate

the various databases Dj j = 1, . . . , 3.

The classification performance of fuzzy ARTMAP is always 100% on train-

ing data, since according to the ARTMAP learning algorithm convergence is
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Table 4.5: Distribution of the five classes on different databases

Normal Corona Low Energy Discharge High Energy Discharge Thermal

D1 300 300 0 300 0

D2 20 20 300 0 0

D3 20 20 20 20 300

Test 300 300 300 300 300

Table 4.6: Classification performance of Learn++ on five classes of the bushing

data

T1 T2 T3 T4

D1 100 100 100 100

D2 - 100 100 100

D3 - - 100 100

D4 - - - 100

Test 48 68 79 93

achieved only when all training data are correctly classified. Furthermore, once

a pattern is learned, a particular cluster is assigned to it, and future training

does not alter this clustering. Therefore, ARTMAP never forgets what it has

seen as a training data instance. Table 4.6 shows that FAM gave a classifica-

tion accuracy of 48% which improved to 93%, this show that FAM is able to

accommodate new classes without forgetting previously learned information.

Vibration Data

The investigation in this study is based on the data obtained from Case West-

ern Reserve University [68]. The experimental setup comprised of a Reliance

Electric 2HP IQPreAlert connected to a dynamometer. Faults of size 0.007,
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0.014, 0.021 and 0.028 inches were introduced into the drive-end bearing of

a motor using the Electric Discharge Machining method. These faults were

introduced separately at the inner raceway, rolling element and outer race-

way. An impulsive force was applied to the motor shaft and the resulting

vibration was measured using two accelerometers, one mounted on the motor

housing and the other on the outer race of the drive-end bearing. All signals

were recorded at a sampling frequency of 12 kHz. The statistical features

mentioned in Chapter 2 were used for feature extraction.

Comparison of Classifiers As with the bushing data, the first experiment

aims to compare the performance of the fuzzy ARTMAP in terms of classifi-

cation accuracy and computation time with MLP, SVM and ENN. An MLP

with 15 hidden layer units that uses a tangent activation function is used. A

fuzzy ARTMAP with a vigilance parameter of 0.65 was used. Support vector

machine that uses radial basis function kernel function was used. ENN with

a learning rate of 0.345 was used. Table 4.7 shows the performance of ENN,

SVM, MLP and fuzzy ARTMAP and it shows that FAM gave similar accuracy

to the other classifiers.

Table 4.7: Comparison of classifiers for bearing fault diagnosis

Classifier Validation Accuracy(%) Testing Accuracy (%) Time (s)

MLP 99 99 1.25

SVM 100 100 1.54

ENN 100 100 0.93

fuzzy ARTMAP 100 100 0.78

Ensemble of Classifiers Table 4.8 shows the distribution of the different

classes in data set.
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Table 4.8: Distribution of bearing classes on different data set

Normal Inner Raceway Ball Outer Raceway

Training 38 38 38 38

Validation 20 20 20 20

Testing 20 20 20 20

The results for different classifiers trained with different permutation of data

is shown in Table 4.8. Figure 4.5 shows the effect of classifier selection. The

figure shows that the classifier selection gives an accuracy of 99.92% with seven

classifiers, and classifier combined without selection gave a 100% accuracy

with four classifiers. In this case, classifier selection is not effective due to

the high correlation of the classifier, this might be due to the fact that the

features extracted are highly correlated, hence the permutation of data did

not have a very big impact. It was decided to use the classifiers that are not

selected using correlation measure. The good performance of the classifiers

may be attributed to the fact the features extraction techniques used where

able to discriminate different condition. Consequently, making it easy for the

classifiers to discriminate the different conditions. Table 4.10 shows the

classification accuracy for both the best classifier and the ensemble. The table

shows that the ensemble of fuzzy ARTMAP gave similar results as the best

fuzzy ARTMAP classifier. This is expected as the single fuzzy ARTMAP gave

a 100% accuracy, the ensemble of FAM could not do better.

Incremental Learning The incremental learning capability of a single FAM

as previously stated is compared with that of an ensemble of classifiers. For

the initial experiment we add the knowledge of a third class to the classifica-

tion. Using the existing model of the classifier in the ensemble, each classifier

is trained on data of this new class. Experimentation is performed on an in-

dependent test set for this class for both the best classifier and ensemble of

the classifiers. Both the best classifier and the ensemble gave a classification
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Table 4.9: Results of the FAM classifiers created to be used in the ensemble

for the vibration data

Classifier Validation Accuracy(%) Correlation (ρ)

1 100 Best Classifier

2 100 1.00

3 100 1.00

4 100 1.00

5 99.5 0.96

6 99.5 0.96

7 99.5 0.96

8 99.5 0.96

9 99 0.94

10 99 0.94

11 99 0.94

12 99 0.94

Figure 4.5: The effect of classifier selection on vibration data

accuracy of 100% on the independent test data. Experimentation of the sys-

tem on the testing data set of the initial three classes is performed, this is to
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Table 4.10: Comparison of classification accuracy for the best classifier and

ewnsemble for the vibration data

Classifier Validation Accuracy(%) Testing Accuracy (%)

Best Classifier 100 100

Ensemble 100 100

determine how addition of new information affects previously learned informa-

tion. The classifier accuracy achieved is 98% for the best classifier and 100%

for the ensemble. This simple experiment shows that the system is able to

learn new classes, while still preserving existing knowledge of the system. The

small change in the accuracy of the three classes is due to the tradeoff between

stability and plasticity of the classifier during training. The classification accu-

racy of the best classifier and the ensemble is 95% and 98%, respectively. The

best classifier gave a classification accuracy of 98% while the ensemble gave

a classification accuracy of 100% on the original test data with two classes.

Again, the change in the accuracy of the three classes is due to the tradeoff

between stability and plasticity of the classifier during training.

Incremental Learning with the ensemble of FAM Table 4.11 shows

the distribution of the data in various databases indicated by the first column.

Table 4.12 shows the performance of fuzzy ARTMAP under incremental learn-

ing condition, again the first row gives the database and the first column gives

the training cycle.

As mentioned previously, FAM’s performance is always 100% on training data.

Table 4.12 shows that FAM performance increased from 49% to 91%.
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Table 4.11: Distribution of the four bearing classes on different database for

FAM

Normal Inner Raceways Rolling Ball Outer Raceways

D1 30 30 0 0

D2 5 5 30 0

D3 5 5 5 30

Test 38 38 38 38

Table 4.12: Classification performance of FAM ensemble on new classes for

vibration data

T1 T2 T3

D1 100 100 100

D2 - 100 100

D3 - - 100

Test 49 73 91

4.3 Learn++ and Incremental Learning

4.3.1 Overview of Learn++

Learn++ is an incremental learning algorithm that uses an ensemble of classi-

fiers that are combined using weighted majority voting [8]. Each database Dj,

which is an independent set of data that is to be added to the system consists

of a training instances xi, and corresponding labels yi. The algorithm specifies

a weak learner and an integer Tk, which is the number of classifiers to add to

the system for a given database Dj. The concept of strong and weak learning

is explained in the next section. The system trains each of the Tk classifiers

with a different subset of the training data, effectively creating multiple hy-

potheses for the training data. These multiple hypotheses are combined using
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weighted majority voting scheme, where the voting weight for each classifier in

the system is determined using the performance of that particular classifier on

the entire set of training data used for the current increment. The Learn++

algorithm is shown in Figure 4.6 and more details on the algorithm can be

found in Appendix B.

4.3.2 Strong and Weak Learning

Consider an instance space χ, a concept class ` = c : χ → 0, 1, a hypothesis

space H = h : χ → 0, 1, and an arbitrary probability distribution over the

instance space χ. In this setup, c is the true concept that we wish to learn,

h is the approximation of the learner to the true concept c. We assume that

we have access to an oracle, which obtains a sample x ∈ χ, according to the

distribution D, labels it according to c, and outputs < x, c(x) >. Both training

and testing are performed using the examples provided by the oracle [69].

Definition 1 A concept class ` defined over an instance space χ is said to

be potentially strong learnable using the hypothesis class H, (which may or

may not be the same as V ) if for all target concepts c ∈ `, a consistent learner

is guaranteed to output a hypothesis h with error less than δ > 0 and probability

at least 1− δ, δ < 0, after processing a finite number of examples, m, obtained

according to D . The learner ` is then a strong learner [69].

It should be noted that strong learning imposes very stringent requirements on

the learner L, since L is required to learn all concepts within a concept class

with arbitrarily low error δ > 0 and with an arbitrarily high probability 1− δ,

δ < 0. Such a learner that satisfies these requirements may not be realizable,

and hence such a learner is only a potentially strong learning algorithm.

Definition 2 A concept class ` defined over an instance space χ is weakly

learnable using the hypothesis class H, if there exists a learning algorithm L0
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Input: For each database drawn from Dj j = 1, 2, . . . , K

• Sequence of m training examples S = [(x1, y1), (x2, y2), . . . , (xi, yi)].

• Weak learning algorithm WeakLearn.

• Integer Tk, specifying the number of iterations.

Initialize w1(i) = D1(i) = 1/mk, ∀i, i = 1, 2, . . . mk

Do for k = 1, 2, . . . , K

Do for t = 1, 2, . . . , Tk

1. Set Dt = wt/
∑m

i=1 wt(i)

2. Choose training and testing subsets from Dt

3. Call weakLearn, providing it with the training data, TR

4. Obtain a hypothesis ht : X → Y and calculate the error

ht : εt =
∑

i:ht(xi)=yi

Dt(i)

on both the training and testing. If εt > 1/2, set t=t-1, discard ht and

go to step 2. Otherwise, compute a normalized error as βt = εt/(1− εt)

5. Call weighted majority voting and obtain the composite hypothesis

Ht = argmax
∑

t:ht(x)=y

log(1/βt)

6. Compute the error of the composite hypothesis,

Et =
∑

t:Ht(xi) 6=yi

Dt(i) =
m∑

i=1

Dt(i)[|Ht(xt(i) 6= y(i))|]

7. Set Bt = Et/(1− Et) and update the weights

wt+1 = wt(i)×Bt, ifHt(xi = yi)

Call weighted majority voting and Output the final hypothesis

Hfinal(x) = argmax

K∑
k=1

∑
t:ht(x)=y

log1/βt

Figure 4.6: The Learn++ algorithm
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and constants δ < , and δ < 1 such that for every concept c ∈ ` and for every

distribution D on the instance space χ, the algorithm L0, given access to an

example set drawn from (c, D), returns a hypothesis h ∈ H with probability at

least δ < 0 and errors D(h)δ < 0 [69].

It should be noted that unlike strong learning, weak learning imposes the least

possible stringent conditions, since it is required to perform only slightly better

than chance.

4.3.3 System Design

The architecture of the proposed condition monitoring framework is shown in

Figure 4.7. The framework consists of two major stages after data acquisition,

which are; pre-processing and/or feature extraction stage and classification

stage with incremental learning.

Figure 4.7: Block diagram of the proposed Learn++ system
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4.3.4 Experimental Results and Discussion

Experimentation is performed on two condition monitoring data set, the first

data is the Dissolved Gas Analysis from the high voltage bushing and the sec-

ond data set is the vibration data obtained from bearing. Three experiments

are performed to evaluate the effectiveness of Learn++. The first experiment

evaluates the incremental capability of the algorithm. This is done by eval-

uating the performance of Learn++ as new data is introduced. The second

experiment is performed to evaluate how well Learn++ can accommodate new

classes. The last experiment compares the performance of Learn++ with that

of a batch trained MLP. This is done to compare the classification rate of

Learn++ with that of a strong learner. The format of the tables in the fol-

lowing section was adopted from [8].

Bushing Data

First, the ten variables from the DGA data undergo a min-max normalization.

The normalization is a requirement for training an MLP as it ensure that the

data lies within similar range. Normalization is done using equation 4.1.

For the first experiment, the training data was divided into four databases each

with 300 training instances. In each training session, Learn++ is provided with

each database and generates 12 classifiers. The base Learner uses an MLP with

30 hidden layer neurons and 100 training cycles. To ensure that the method

retains previously seen data, for each training session, the previous database

is tested. Table 4.13 presents the results in which first four rows indicates

the classification performance of Learn++ on each of the databases after each

training session while the last row show the generalization capability on the

testing data. This demonstrates the performance improvement of Learn++

as inherited from AdaBoost on a single database. Table 4.13 further shows

that classifiers performances on the testing dataset, gradually improved from
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65.7% to 95.8% as new databases become available thereby demonstrating

incremental learning capability of Learn++. The table further shows that

Learn++ does not forget previously learned information, when new data set

is introduced. The small change in accuracy is due to the trade-off between

stability and plasticity.

Table 4.13: Classification performance of Learn++ on new data for bushing

data

T1 T2 T3 T4

D1 89.5 85.8 83 86.9

D2 - 91.5 94.2 92.9

D3 - - 96.5 90.46

D4 - - - 98

Test 65.7 79.0 85 95.8

For the second experiment, the training data was divided into three databases.

Table 4.5 shows the distribution of the data in four databases. In each training

session, Learn++ is provided with each database and generates a specified

number of hypotheses, which is indicated by the number inside the bracket in

Table 4.14. Table 4.14 and Figure 4.8 show that the classifiers performance

increases from 49% to 95.67% as new classes are introduced in the subsequent

training dataset.

An MLP with the same set of training examples as Learn++ was trained.

The trained MLP was tested with the same validation data as Learn++. The

training data consisted of all the data in the three databases and an MLP that

consists of 12 hidden layer units was trained. The MLP gave a classification

rate of 100% tested on the same testing data as Learn++. This shows that the

classification accuracy of Learn++ is comparable with that of an MLP trained

using batch learning.
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Table 4.14: Classification performance of learn++ on new classes for bushing

data

T1(8) T2 (12) T3 (15) T4(18)

D1 97.00 96.42 93.00 94.58

D2 - 98.78 96.00 92.10

D3 - - 95.00 95.00

D4 - - - 98.00

Test 49 67.00 81.00 95.67

Figure 4.8: Incremental capability of Learn++ on new classes for bushing data

Vibration Data

The first stage of bearing fault detection and diagnosis is signal pre-processing

and feature extraction. The signal is first pre-processed by dividing the vibra-

tion signals into, T, where T is the number of windows. The pre-processing is

followed by extraction of features of each window using MFCC. The optimal

number of MFCC is chosen empirically and it was found to be 13. Detailed

explanation of MFCC can be found in [41].

Due to the large variations of the vibration signal, this makes direct compar-

ison of the signals difficult. Hence, non-linear pattern classification methods
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are used in order to be able to correctly classify different bearing conditions.

The feature extracted using the process in Figure 4.7 serves as input to the

classification stage of the framework. The classification is performed using

MLP. Furthermore, the MLP is used as a base learner for on-line learning of

the bearing fault diagnosis framework.

For the first experiment, the training data was divided into three databases

each with 30 training instances. In each training session, Learn++ is pro-

vided with each database and generates the 15 hypothesis. The base Learner

uses an MLP with 60 hidden layer neurons and 50 training cycles. To ensure

that the method retains previously seen data, for each training session, the

previous database is tested as previously. Table 4.15 shows that the system

performances on the testing dataset, gradually improved from 79% to 100% as

new databases become available thereby demonstrating incremental learning

capability of Learn++.

Table 4.15: Classification performance of Learn++ on new data for vibration

data

T1 T2 T3

D1 100 98 94

D2 - 99.5 96

D3 - - 97.5

Test 79 87.6 100

For the second experiment, the training data is divided into three databases.

Table 4.11 shows the distribution of the data in the four databases, where a new

class was introduced with each dataset. In each training session, Learn++ is

provided with each database and generates the specified number of hypothesis

which, is given by the number in the bracket. Table 4.16 and Figure 4.9 show

that the classifiers performance increases from 56.92% to 92.23% as new classes

are introduced in the subsequent training dataset. Learn++ had to generate

42 classifiers to achieve this performance.
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Table 4.16: Classification performance of Learn++ on new classes for vibration

data

T1(8) T2(12) T3(15)

D1 100 100 97.89

D2 - 100 96

D3 - - 95.69

Test 56.92 78.15 92.84

Figure 4.9: Incremental capability of Learn++ on new classes for vibration

data

4.4 Comparison of Learn++ and Fuzzy ARTMAP

One disadvantage of Fuzzy ARTMAP is that it is very sensitive to the order of

presentation of the training data. Fuzzy ARTMAP is also extremely sensitive

to the selection of the vigilance parameter, and finding the optimal value for

the vigilance parameters can be quite challenging.

In ensemble approaches that use a voting mechanism for combining classifier

outputs, each classifier votes on the class it predicts. The final classification is

then determined as the class that receives the highest total vote from all clas-
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sifiers. Learn++ uses weighted majority voting, where each classifier receives

a voting weight based on its training performance. This works well in practice

for most applications. However, for incremental learning problems that involve

introduction of new classes, the voting scheme proves to be unfair towards the

newly introduced class. Since none of the previously generated classifiers can

pick the new class, a relatively large number of new classifiers that recognize

the new class are needed, so that their total weight can out-vote the first batch

of classifiers on instances of the new class. This in return populates the en-

semble with an unnecessarily large number of classifiers. When incrementing

the system with new classes, it is best to ensure that the number of classifiers

that is added to the system is greater than the number of classifiers added

during a previous system increment. It is also better to include some data

from classes that have previously been seen. This ensures that if any pattern

is classified into one of the new classes, the votes from the previous classifiers

do not ‘outvote’ votes received from new classifiers. The major disadvantage

of Learn++ is that it is computationally expensive. Generally, to allow incre-

mental learning of the classes, classifiers had to be generated for the system,

while the same performance was obtained from a single classifier trained in

batch mode.

4.5 Summary

Current condition monitoring techniques provide promising results but lack

the incremental learning capability that will enable them to be used for au-

tomatic and continuous on-line monitoring. In this chapter, two incremental

learning algorithms were implemented and compared with each other. The

first algorithm uses fuzzy ARTMAP and the second algorithm uses Learn++.

The performance of the two algorithm is very comparable, however, the main

disadvantage of Learn++ is that it is computationally expensive and FAM is

sensitive to the selection of the vigilance parameter.
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Chapter 5

A Multi-Agent System for

Condition Monitoring

Engineers have introduced better decision support systems for condition mon-

itoring procedures through applications of centralized intelligent systems by

using a variety of artificial intelligence (AI) techniques [7]. It is now widely rec-

ognized that problems due to the complexity of condition monitoring systems

can be overcome with architectures that contain many dynamically interacting

intelligent distributed modules, called intelligent agents [9]. Each agent is an

autonomous system, which processes as a selection of input, and the complete

interpretation and diagnosis is accomplished through interaction with other

agents. This chapter also looks at the advantages of using multi-agent tech-

niques, and how they can be used for condition monitoring. The chapter also

presents the conceptual framework of the multi-agent system and describes the

analysis and design including the information flow between agents to replicate

the diagnostic tasks performed by the engineers.
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5.1 Agent and Multi-Agent System

Intelligent agents are software systems that function autonomously to achieve

desired objectives in their environment. Generally, intelligent agents must

exhibit four characteristics: autonomy, social ability, pro-activeness and re-

activeness [70]. Autonomy means each agent will operate in an independent

mode, continually performing its function while altering its behavior as re-

quired. Social ability implies each agent can cooperate and communicate with

other agents. Reactivity means intelligent agents are able to perceive their en-

vironment, and respond in a timely fashion to changes that occur in it in order

to satisfy their design objectives. Proactiveness is the ability of agents to solve

problems and ensure that they deliver the correct information or initiate the

required control activity. A multi-agent system (MAS) is defined as a loosely

coupled network of problem solvers that work together to solve problems that

are beyond the individual capabilities or knowledge of each problem solver [70].

The increasing interest in MAS research is due to advantages inherent in such

systems, including their ability to solve problems that may be too large for a

centralized single agent, provide enhanced speed and reliability and tolerance

for uncertainty in data and knowledge.

There are several motivations for using a multi-agent system. Firstly, they

are able to solve problems that are too large for a centralized single agent

to do due to resource limitations or the sheer risk of having one centralized

system. Secondly, to enhance modularity, which reduces complexity, speed

due to parallelism, reliability due to redundancy, flexibility (i.e. new tasks are

composed more easily from the more modular organization) and reusability

at the knowledge level and hence shareability of resources. Lastly, MAS offer

the extensibility and flexibility framework for integrating the necessary data

capture system, monitoring system and interpretation function.

In the context of condition monitoring system, the agent perceives the en-

vironment through one or more sensors. Additional information about the
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environment may also be acquired through communication with other agents

or systems. An agent’s ability to influence its environment may in the con-

text of condition monitoring be to operate a switch or adjust a process. An

action may also be to communicate with some other agents or human, e.g. a

technician close by and ask for help to carry out some preventive or corrective

needs.

Figure 5.1: Example of an agent

5.2 Potential of MAS

Multi-agent systems have proven to be an effective paradigm in a number of

distributed networked applications that require information integration from

multiple heterogeneous autonomous entities. More recently, MAS have be-

gun to emerge as an integrated solution approach to distributed computing,

communication, and data integration needs in industry.

5.2.1 Agent-based Computing and Agent-oriented Pro-

gramming

A multi-agent system consisting of multiple agents can take advantage of com-

putational resources and capabilities that are distributed across a network of

interconnected entities. An agent-based approach allows for the creation of
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systems that are flexible, robust, and can adapt to the environment [70]. This

is especially helpful when components of the system are not known in advance,

change over time, and are highly heterogeneous. Agent-based computing of-

fers the ability to decentralize computing solutions by incorporating auton-

omy and intelligence into cooperative, distributed applications. Each agent

perceives the state of its environment, infers by updating its internal knowl-

edge according to the newly received perceptions, decides on an action, and

acts to change the state of the environment. Agent-oriented programming is a

software paradigm used to facilitate agent-based computing and extends from

object-oriented programming by replacing the notions of class and inheritance

with the notions of roles and messages, respectively [70].

5.2.2 Knowledge-level Communication Capability

Within a multi-agent system, agents can communicate with each other using

agent communication languages, which resemble human-like speech actions

more than typical symbol-level program-to-program communication protocols

[70]. This capability enables agents to distill useful knowledge from volumi-

nous heterogeneous information sources and communicate with each other on

the basis of which they coordinate their actions. By enabling performance of

computation where computing resources and data are located, and allowing for

flexible communication of relevant results to relevant entities as needed, MAS

offer significant new capabilities to power systems, which have for so long de-

pended on various forms of expensive telemetry to satisfy most communication

needs.

5.2.3 Distributed Data Access and Processing

Another benefit offered by MAS is the distribution of agents across a net-

work [70]. Software agents may have different levels of intelligence, ranging
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from data agents and functional agents to decision agents. Because each agent

is designed to perform a specific role, with associated knowledge and skills,

distributed and heterogeneous information may be efficiently assimilated lo-

cally and utilized in a coordinated fashion in distributed knowledge networks,

resulting in reduced information processing time and network bandwidth in

comparison to that of more traditional centralized schemes.

5.2.4 Distributed Decision Support

MAS also offers a powerful task decomposition approach to problem solving

through interaction among agents. This is facilitated by the ability of different

agents to coordinate behavior through cooperation by agents establishing mu-

tually agreeable objectives, negotiation by agents negotiating until agreement

is reached, or mediation by agents resolving conflicts that cannot be resolved

by appealing to a third, neutral agent [71].

5.3 Functional Design

The requirements of condition monitoring outlined in Chapter 2 lead to the de-

sign of the condition monitoring system where functional modules are grouped

by their overall goal. A hierarchical layer was used due the flow of data from

one layer to another. The condition monitoring system consists of four layers;

• Data Monitoring Layer

• Interpretation Layer

• Diagnostic Layer

• Information Layer
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5.4 System Design

The design framework as described in [72] was followed in designing a multi-

agent system for bushing condition monitoring. Figure 5.2 shows the archi-

tecture used for developing the multi-agent system. The three main phases,

as depicted in the figure are; requirements capture and task decomposition;

agent modelling and agent interactions modelling.

Figure 5.2: Architecture development for the multi-agent system

5.4.1 Task Decomposition

In the agent community; decomposition is concerned with the partitioning of

the problem domain into agents. The main focus of this phase is gaining an un-

derstanding of what the system does in the abstract, which serves as a starting

point for the architecture development process. The activities undertaken in

this phase pertain to understanding the application domain, identifying goals

and boundaries of the system, and relating them to the agent design. The task

hierarchy of the knowledge capture is shown in Figure 5.3.
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Figure 5.3: Task hierarchy of condition monitoring

5.4.2 Agent Modelling

Based on the analyzed goals, agents need to be identified and their relationships

need to be modelled. In any system, there is a choice to be made about how

many functions are combined within a single agent versus function becoming

autonomous. Agents for each layer are discussed below.

Data Monitoring Layer

The data monitoring layer allows only relevant information to come into the

system. Raw data from the sensors and associated condition monitoring sys-

tems is received and all necessary pre-conditioning takes place. This layer

consists of feature extraction agent and data transformation agent.
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Feature Extraction Agent The feature extraction agent was designed to

provide the necessary data to the interpretation agents. Many parameters

may be used to characterize the conditions of the machine. Basic statistical

parameters are used to form the feature vector, providing some indication of

the shape (cross-correlation), symmetry (skew), peakedness (kurtosis) of the

vibration signal, effectively producing the fingerprint of the vibration signal.

The feature vector consists of parameter capable of differentiation between

different faults. Also MFCC features are used.

Data Transformation Agent The data preprocessing agent was designed

to provide the necessary conditioned data to the interpretation layer agents.

Data conditioning is an integral part of neural network architectures as it

makes it easier for the network to learn. There are cases where, one or two

variables are missing due to sensor failure. To accommodate inputs with miss-

ing variable, a zero imputation method is used. Markey et al. [73] showed

that this method is effective in replacing missing variable. The main reason

for retaining these blank entries is to ensure that no information about other

dissolved gases that may still give some information about the condition of the

equipment is lost. Secondly, data is normalized, this is done using the min-max

normalization. The equation for a min-max normalization for a single feature

is given by equation 4.1.

Interpretation Layer

The interpretation layer turns the data into information that can be easily

interpreted by plant operator. This module uses advanced intelligent sys-

tem techniques, coupled with codified knowledge and expertise in the area of

condition monitoring and to diagnose a problem. It supports more that one

interpretation technique. Data interpretation is achieved through three agents,

kernel-based classifier, backpropagation neural network, and extension neural

network.
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Diagnostics Layer

The diagnostic layer consists of two diagnosis agents, that are allowed to shared

information and compare their decision.

Diagnostic Agent This agent takes the outputs of the interpretation layer

agents and builds an overall diagnostic conclusion. It is known that the per-

formance of ensemble is often much better than that of individual classifiers,

because of independently-trained classifiers and their uncorrelated errors [54].

Since several independent agent classifiers are used, we need to aggregate them

in an appropriate manner. A number of decision fusion techniques exist such

as weighted majority voting, majority voting and trained combiner fusion. The

majority voting is the simplest and widely-used aggregation method [54]. This

voting scheme treats all agents with equal weights. Prediction errors of agent

are often different, thus, it is more reasonable to give them different weights, in

proportion to their prediction performance. In the weighted majority voting,

the predicted class label of the diagnosis agent is given by;

Cm = argmax
K∑

k=1

W (k, m)Ikm (5.1)

Where W(k,m) is the weight when the predicted class label of the kth agent is

Cm. The weights can be determined by calculating appropriate performance

measures for each classifier as mentioned in previous sections. The weights of

the classifiers must add up to one. A table is built with classifier tabulated

against conclusion, the cell data is then populated with various results that

have been submitted to the diagnosis agent. Each time new results are added,

the conclusion is recalculated. After the table is fully populated, the weighted

majority voting is used to determine an outcome of the event.
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Information Layer

This layer contains an Operator Assistant Agent. This is designed to present

information to the relevant operator. This is designed to handle diagnostic

information from a number of different motors for which the operator is re-

sponsible for.

Figure 5.4: Condition monitoring system

Registry agent

The registry agent maintains information about the published variables and

monitored conditions for each agent. It is required that all agents must register

with the registry agent. The registry agent also maintains the current status of

all the registered agents. Agent status is a combination of two parameters alive
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and reachable. The status of a communication link between any two agents is

determined by attempting to achieve a reliable communication between them.

The registry agent is used to find information about agents who may supply

required data.

5.4.3 Agent Interaction

Agent interaction defines communications and exchange of information be-

tween different agents. Agent-based systems require a communication infras-

tructure. Agents in the condition monitoring system communicate with each

other by sending messages in the Agent Communication Language specified

by FIPA [74]. Agent interaction is facilitated by the registry agent using sub-

scribes, query, inform and confirm command. These messages correspond to

registration requests, information requests and other agent actions. A brief

overview of agent actions and the corresponding messages is given below.

Registration of an agent with the registry agent : Each agent must register

with the registry agent. A registration message includes the registering agent’s

agent-id, list of published variables. The registry agent issues a confirmation

message upon successfully entering the new agent in its database.

Information request by an agent about other agents : To find agents capable of

providing required input data, the agent sends a search request to the agent

registry. The search request includes the requester’s agent-id, and the required

variables.

Registry agent’s reply to an information request : Upon receiving a search re-

quest, the registry agent verifies that the request is legitimate before searching

its database to determine which agents can supply the requested variables and

the status of these agents. The message from the registry agent to the requester

includes the requested variable name, the agent-id of the agent publishing the

variable and the status of the requested agent.

Request for belief subscription: Upon receiving the list of agents capable of

providing the required input from the registry, the subscribing agent sends
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requests directly to these agents. A subscription request consists of the re-

quester’s agent-id, requested input variable name, the duration of subscription

time, the desired time interval between subsequent updates, and a request-id.

Belief-update messages : Upon receiving a belief subscription request the pub-

lishing agent sends regular updates within the agreed intervals and duration

of the subscription. The message contains the request-id, the sender’s id and

the requested information. Figure 5.5 depicts a sample agent interaction for

the condition monitoring system.

Figure 5.5: Sample agent interaction

5.5 Experimentation

Having designed the condition monitoring system using the most appropriate

features of existing MAS design methodologies, the next stage was to imple-

ment the prototype. To achieve this, the multi-agent building toolkit, JADE

(Java Agent DEvelopment Framework) was used. JADE is a middle-ware that

could be used to develop agent-based applications in compliance with the FIPA

specifications for inter-operable intelligent multi-agent systems. JADE is java-

based and provides the infrastructure for agent communication in distributed

environments, based on FIPA standards.
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5.5.1 Bushing Data

An MLP that consists of 10 inputs layer nodes, 12 hidden layer nodes and 5

output layer nodes was used. Table 5.1 shows the normalized confusion matrix

resulting from the MLP agent. The backpropagation neural network gave an

overall classification accuracy of 95.87%, which is used as the voting weight

for an MLP in the diagnosis stage. A radial basis function kernel function was

Table 5.1: Normalized confusion matrix for MLP for bushing data

Normal Corona Low Energy High Energy Thermal

Normal 95.36 1.18 0.45 0.45 0.56

Corona 0 95.10 0.0000 0.52 4.33

Low Energy 0.00 0.00 91.48 8.5106 0.00

High Energy 1.59 1.06 1.59 90.4762 5.29

Thermal 1.68 3.35 0.00 5.03 89.94

used to train the support vector machines. The normalized confusion matrix

for the SVM is shown in Table 5.2. The overall classification accuracy of the

SVM is 95.63%, which is the voting weight for SVM. The learning rate of ENN

Table 5.2: Normalized confusion matrix for SVM for the bushing data

Normal Corona Low Energy High Energy Thermal

Normal 100 0.00 0.00 0.00 0.00

Corona 0.00 97.00 0.0000 0.0000 3.0000

Low Energy 0.00 4.35 95.65 0.00 0.00

High Energy 0.50 0.50 3.50 95.50 0.50

Thermal 0.30 0.00 0.70 9.00 90.00

was chosen to be 0.103, the value was selected empirically. Table 5.3 shows the

normalized matrix for the ENN. ENN gave a classification accuracy of 97.5%.

All the interpretation agents gave very good classification accuracy, this might
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Table 5.3: Normalized confusion matrix for ENN for the bushing data

Normal Corona Low Energy High Energy Thermal

Normal 100 0 0 0 0

Corona 0 100 0 0 0

Low Energy 0 2.55 96.45 2.00 0

High Energy 0 1.50 2.00 97.5 0

Thermal 2.00 0 0.00 0 98.00

be due to the fact that the features extracted gave a good signature of the

different bearing conditions.

For experimental purposes, one data instance is passed to the data preprocess-

ing agent and processed as described. The preprocessed data is now sent, via

agent subscription and messaging, to each of the interpretation layer agents.

The interpretation layer agents work on data simultaneously and upon com-

pletion the agents will forward their results to the diagnosis agent to perform

diagnosis. From these, the first conclusions are generated by the multi-layer

perceptron agent and this passes the result to the diagnosis agent using the

agent interactions described. The agent returns results detailing the confidence

or probability due to one of the possible condition. The diagnosis table is as

shown in Table 5.4. The table shows that the fault is of a thermal nature

Table 5.4: Diagnostic results for the MLP for bushing data

AGENT NORMAL CORONA LOW ENERGY HIGH ENERGY THERMAL

MLP 0 0 0 0 0.9578

with a confidence level of 95.87%. Next, the kernel-based agent provides its

result. This yields the results shown in Table 5.5 which indicate that there is

a thermal fault with a confidence level of 95.75%.
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Table 5.5: Diagnostic results for the MLP and SVM for bushing data

AGENT NORMAL CORONA LOW ENERGY HIGH ENERGY THERMAL

MLP 0 0 0 0 0.9587

SVM 0 0 0 0 0.9563

Results 0 0 0 0 0.9575

The last result passed to the diagnosis agent is the conclusion from the fuzzy

neural network. When added to the table, the results shown in Table 5.6 are

yielded.

Table 5.6: Diagnostic results for the MLP, SVM and ENN for bushing data

AGENT NORMAL CORONA LOW ENERGY HIGH ENERGY THERMAL

MLP 0 0 0 0 0.9587

SVM 0 0 0 0 0.9563

ENN 0 0 0 0 0.9750

Results 0 0 0 0 0.9633

At this stage, the bushing diagnosis agent concludes its calculation of the

combined result. It determines that there is a thermal fault with a confidence

level of 96.33%. This is now passed to the Operator Assistant Agent for display.

Due to the fact that the different classifiers learn the data differently, this

means they will make errors differently. In this case, the MLP and SVM agree

on the nature of fault, although the ENN gives a different result, hence the

reduced probability.
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5.5.2 Vibration Data

An MLP that consists of 7 inputs layer nodes, 10 hidden layer nodes and 4

output layer nodes was used. Table 5.7 shows the normalized confusion matrix

resulting from the MLP agent. The backpropagation neural network gave an

overall classification accuracy of 100%, which is used as the voting weight for

an MLP in the diagnosis stage.

Table 5.7: Normalized confusion matrix for MLP for vibration data

Normal Inner Outer Ball

Normal 100 0 0 0

Inner 0 100 0 0

Outer 0 0 100 0

Ball 0 0.02 0 99.8

A radial basis function kernel function was used to train the support vector

machines. The normalized confusion matrix for the SVM is shown in Table

5.8. The overall classification accuracy of the SVM is 100%, which is the voting

weight for SVM.

Table 5.8: Normalized confusion matrix for SVM for vibration data

Normal Inner Outer Ball

Normal 100 0 0 0

Inner 0 100 0 0

Outer 0 0 100 0

Ball 0 0 0 100

The learning rate of ENN was chosen to be 0.534, the value was selected

empirically. Table 5.9 shows the normalized matrix for the ENN. ENN gave a

classification accuracy of 99.98%.
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Table 5.9: Normalized confusion matrix for ENN for vibration data

Normal Inner Outer Ball

Normal 100 0 0 0

Inner 0 100 0 0

Outer 0 0.02 99.8 0

Ball 0 0.05 0 99.5

All the interpretation agents gave very good classification accuracies, this

might be due to the fact that the feature extracted gave a good signature

of the different bearing conditions.

For experimental purposes, one data instance is passed to the data preprocess-

ing agent and processed as described previously. The preprocessed data is now

sent, via agent subscription and messaging, to each of the interpretation layer

agents. The interpretation layer agents work on data simultaneously and the

agent forward their results to the diagnosis agent in order of completion. From

these, the first conclusions are generated by the multi-layer perceptron agent

and this passes the result to the diagnosis agent using the agent interactions

described. The agent returns results detailing the confidence or probability

due to one of the possible condition. The diagnosis table is as shown in Table

5.10. The table shows that the bearing is operating under normal condition

with a confidence level of 100%. Next, the kernel-based agent provides its

Table 5.10: Diagnostic results for MLP for vibration data

Normal Inner Outer Ball

MLP 1 0 0 0

result. This yields the table shown in Table 5.11 shows that the bearing is

operating under normal conditions with a confidence level of 100%. The last
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Table 5.11: Diagnostic results for the MLP and SVM for vibration data

Normal Inner Outer Ball

MLP 1.0000 0 0 0

SVM 1.0000 0 0 0

Results 1.0000 0 0 0

result passed to the diagnosis agent is the conclusion from the extension neu-

ral network. When added to the table, the result is shown in Table 5.12. At

this stage, the bearing diagnosis agent concludes its calculation of the com-

bined result. It determines that bearing is operating under normal conditions

with a confidence level of 100%. This is now passed to the Operator Assistant

Agent for display. The system actually predicted the condition correctly as

the normal operation condition was passed to the system.

Table 5.12: Diagnostic results for the MLP, SVM and ENN for vibration data

Normal Inner Outer Ball

MLP 1.0000 0 0 0

SVM 1.0000 0 0 0

ENN 0.9998 0 0 0

Results 0.9999 0 0 0

5.6 Summary

This chapter demonstrates a design of a condition monitoring system using

intelligent agents and multi-agent systems. A conceptual framework for con-

dition monitoring was designed based on the requirements of condition moni-

toring. A functional design of the condition monitoring consists of four layers;
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the data monitoring layer, interpretation layer, diagnostic layer and informa-

tion layer, which were presented. The data monitoring layer consists of two

agents which are responsible for extracting features and conditioning of data

received from the measurement system. The interpretation layer consists of

three agents, the kernel-based agent, backpropagation agent and extension

neural network agent. The interpretation agents are encapsulated with classi-

fiers hence, were trained prior to usage. These agents interpret data from the

data monitoring layer and give a diagnosis on the condition of the equipment.

The diagnosis layer uses weighted majority voting to combine the decision

from the interpretation agents. This information along with the maintenance

recommendations are passed to the operator assistant agent.

The adoption of a distributed MAS architecture also provides a basis for con-

tinual improvement of engineering decision support due to the flexibility and

scalability achieved by the use of common communication mechanism. This

system will enable integration of further data sources and interpretation agents.
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Chapter 6

Conclusion

6.1 Comparison of Classifiers

The fuzzy ARTMAP gave slightly better results than the MLP, SVM and

ENN classifiers. This might be due to the fact that the structure of the fuzzy

ARTMAP adapts, creating a larger number of categories in which to map the

output labels as the training data becomes available.

The ensemble of classifiers gave an improvement on the classification accuracy

from a single fuzzy ARTMAP. In the creation of the ensemble, the correlation

was used. It might be useful to compare various classifier selection techniques

such as the agreement and diversity measure to find a technique that gives

the best results. Also, it might be useful to investigate the effect of different

decision fusion systems for bushing condition monitoring.

6.2 Incremental Learning

The problem with batch learning is that if new information has to be added

to the classifier, for this involves discarding the existing classifier and training
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a new classifier using accumulated data. Another method involves modifying

the weights of the classifier using the misclassified instances only. These meth-

ods suffer from catastrophic forgetting and they require access to old data and

require optimization of the training parameters. In the incremental learning

system, the old system can learn new information on-line without requiring

access to old data or forgetting previously learned information. Two incre-

mental learning algorithm were implemented. The first incremental learning

algorithm uses an ensemble of MLP classifier that are combined using the

weighted majority voting known as Learn++. The second algorithm uses the

fuzzy ARTMAP and to enhance the performance of a single FAM and an en-

semble of FAM, two different scenarios were considered. In the simplest case,

the systems were asked to learn from new data that did not include any new

class information, simply to improve its classification performance. In the

second case, the problem was made considerably more difficult by asking the

systems to learn patterns coming from a new class not encountered before.

Both the algorithm were able to accommodate both new data and new classes

without forgetting previously learned information. Both the algorithm were

able to accommodate both new data and new classes without forgetting pre-

viously learned information. However, the main disadvantage of the Learn++

is that it was computationally expensive and suffers from the problem of out-

voting. The main disadvantage of the FAM system is that it is very sensitive

to the selection of the vigilance parameter.

6.3 Multi-agent System

The work illustrates how a multi-agent system can be used to effectively in-

tegrate existing stand-alone intelligent systems and new interpretation ap-

proaches within an environment which offers long term flexibility and scalabil-

ity. This work has economic impact as the agent-based condition monitoring

system with the integrated tools for data classification and clustering, along
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with the embedded artificial intelligence techniques and automated modelling

and simulation will enable the minimization capital investment and operat-

ing costs. This will be achieved by reducing process steps, predicting specific

problems and conditions under which the problems can occur and increas-

ing equipment utilization through better scheduling and understanding of the

problem domain.

6.4 Suggestions for Future Research

Future work should integrate various measurement data into the existing model.

Since, the agents function in a dynamic environment and they need to update

their knowledge as the environment changes, future work should look into in-

corporating the incremental learning system into the multi-agent system to

ensure that the agents are able to adapt. Learning in multi-agent system af-

fects the co-operation of agents, hence the effect of learning in this system

must also be studied. Also the scalability of the multi-agent system must also

be investigated.

89



Appendix A

Fuzzy ARTMAP

Grossberg introduced the adaptive resonance theory [47], as a concept of cog-

nitive human information process, through a self-organization, effectuating

stable category recognition and answering an arbitrary sequence of input pat-

terns. This kind of network has a self-organization and a self-stabilization

that allows solving the stability-plasticity dilemma. Thus, the ART network is

capable to assimilate new things while maintaining those already instructed.

The ART network structure is composed of three layers as shown on Figure

A.1:

Figure A.1: Structure of ART
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Figure A.2: Structure of the ARTMAP

ART evolved from the analysis of how biological brains work to cope with

changes in the environment in real-time and in a stable fashion. This neural

network architecture was first proposed by Carpenter and Grossberg [47]. The

FAM network is a robust architecture encompassing both fuzzy logic and the

properties of ART, and is capable of handling analog or binary input vectors,

which may represent fuzzy or crisp sets of features.

Figure A a schematic diagram of the FAM network. Each fuzzy ART module

has two layers of nodes: F a
1 (F b

1 ) is the input layer whereas F a
2 (F b

2 ) is a dy-

namic layer in which the number of nodes can be increased when necessary,

and every node encodes a prototype pattern representing a cluster of input

samples. F a
0 (F b

0 ) is a pre-processing layer in which the size of an M-dimensional

input vector, a ∈ [0, 1], is kept constant in order to avoid the category pro-

liferation problem [47]. One of the recommended normalization techniques is

complement-coding [47] where an M-dimensional input vector is normalized

to a 2M-dimensional vector A = (a, 1 − a) = (a1, . . . am, 1 − a1, 1, . . . am) Fol-

lowing the notation used in the FAM paper [47], let 2M , be the number of
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nodes in F a
1 and N , be the number of nodes in F a

2 . The Short Term Memory

traces or activity vectors of Fy and F ; are denoted by xa = (xa
1, . . . , x

a
2Ma

) and

ya = (ya
1 , . . . , y

a
Na

); and wa
j = (wa

j1, . . . , w
a
j.2Ma

), j = 1, . . . , N , is the jth ART,

weight vector or the Long Term Memory trace. The same notation applies

to ARTb when the superscripts or subscripts a and b are interchanged. In

the map field, wab
j = (wab

j1, . . . , w
ab
jNa

), j = 1, . . . , N , is the weight vector from

the jth F b
2 node to Fab, xab = (x1

ab, . . . , n) is the map field activity vector. In

general, the FAM algorithm can be divided into four phases:

A.1 Initialization

In a Fuzzy ART module, the weight vectors subsume both the bottom-up and

top-down weight vectors of ARTa [47]. In ART,, each category node weight

vector fans-out to all the nodes in the Fy layer. These weight vectors are

initialized to unity;

wa
j1 = . . . = wa

j.2Ma
(0) = 1 j = 1, . . . , N, (A.1)

There are three parameters associated with ARTa and ARTb, namely the choice

parameter,ηa , the learning rate, β , and the baseline vigilance parameter, ρ.

To operate in the conservative mode where recoding during learning will be

minimized, ρ, should be initialized close to 0. The values of β, and η are

set between 0 and 1. The same initialization procedure is also applicable

to ARTb. In the map field, the vigilance parameter, ηab, is also initialized

between 0 and 1, whereas the weight vectors from F b
2 to Fab are set to unity.

Note that the number of nodes in Fab is the same as the number of nodes in

F b
2 , and there is a one-to-one permanent link between each corresponding pair

of nodes. Activities in Fuzzy ART. During supervised learning, ART, receives

an input vector, and ARTb receives the associated target vector. After pre-

processing, the complement-coded input vector A is propagated from F a
1 to

F a
2 ; through wa. A fuzzy choice function is used to measure the response of
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each F a
2 prototype node as follows:

Tj(A) =
A ∧ wa

j

αa + wjal
j = 1, . . . , Na (A.2)

The fuzzy MIN operator (∧) and the size l.l are defined as: (x∧y) ≡ min(xi, yi)

and lxl =
∑
‖xi| [75]. The maximally responsive node is selected as the win-

ner, denoted as node J , while all other nodes are shutdown in accordance with

the winner-take-all competition. The winning node then sends its weight vec-

tor to F a
1 , and a vigilance test is performed to compare the similarity between

the activity vector, xa, and the input vector against the vigilance parameter:

xa

A
=

A ∧ wa
j

A
≥ ρa (A.3)

where wj is the weight vector of the Jth winning node in F a
2 . If this novelty

test is satisfied, resonance is said to occur, and learning takes place. However,

if the test fails, the winning node is inhibited, and A is retransmitted to to

search for a new winner which is able to fulfill the vigilance test. If such a

node does not exist, a new node is recruited to code the input vector. The

same search cycle for the target vector goes on simultaneously in ARTb where

a prototype node in F a
2 : that best matches the target vector will be found.

In general, an independent Fuzzy ART module is employed as ARTb to self-

organize the target vectors. However, in one-from-N classification (i.e. each

input pattern belongs to only one of the N possible output classes), ARTb can

be replaced by a single layer containing N nodes. Then, the N-bit teaching

stimulus can be coded to have unit value corresponding to the target category

and zero for all others. Activities in the map field. The comparison between

F a
2 and F b

2 ; activities takes place in the map field. If K is the winning node in

ARTb, then

yb
k =

 1 if j=J and k=K

0 otherwise
(A.4)
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Assuming that both ARTa, and ARTb are active, the Fab activity vector, xab,

obeys

xab = yb ∧ wab
j (A.5)

which forms a prediction from the Jth ART, category to the Kth ARTb target

class via wab
j . A map field vigilance test is performed to determine the similarity

between xab and yb against a user-defined map field vigilance parameter, ρab,

i.e.:
|xab|
|yb|

≥ ρab (A.6)

If equation A.6 is satisfied, learning ensues in ART , ARTb and the map field

as defined in previous section. Conversely, if equation A.6 fails, an activity

called match tracking is triggered which initiates a new search cycle in ARTa,.

A.2 Match tracking

For each new input vector, the ART , vigilance parameter, ρa, equals a user-

defined baseline vigilance, ρa. In response to a failure in the map field vigilance

test, ρa is raised to

ρa =

∣∣A ∧ wa
j

∣∣
|A|

+ δ (A.7)

Where δ is a small positive value slightly greater than zero. Thus, the ARTa,

vigilance test Equation A.7 fails, and a new winner in F a
2 has to be selected.

In other words, match tracking provides a means to select a category node

which satisfies both the ARTa, and the map field vigilance tests. If no such

node exists, the current input vector will be ignored.
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A.3 Learning

Once the search ends, the winning F; weight vector is updated according to:

wnew
J = β(I ∧ wold

J ) + (1− β)wold
J (A.8)

A node without any participation in learning is known as an uncommitted

node. It will become a committed node when information is encoded in the

LTMs. Fast learning corresponds to setting βa = 1 in Equation A.8 at all

times while fast-commit, slow-recode learning corresponds to setting ρ = 1 for

an uncommitted node. and βa < 1 for a committed node. Note that equation

A.8 is also applicable to ARTb with obvious modifications. With fast learning,

the map field weight vector is updated to

wab
JK = 1,

wab
JK = 0 for k 6= K

This learning rule indicates that the Jth category prototype in F a
2 ; is linked

to the Kth target output in F a
2 via wb

ij, and the association is permanent.
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Learn++ Algorithm

For each database Dj that contains training sequence, Sk, where Sk contains

learning examples and their corresponding classes, Learn++ starts by initial-

izing the weights, w, according to the distribution DT , where T is the number

of hypothesis. Initially the weights are initialized to be uniform, which gives

equal probability for all instances to be selected to the first training subset

and the distribution is given by,

D =
1

m
(B.1)

Where, m represents the number of training examples in Sk. The training data

are then divided into training subset TR and testing subset TE to ensure weak

learn capability. The distribution is then used to select the training subset TR

and testing subset TE from Sk. After the training and testing subset have

been selected, the weak Learn algorithm is implemented. The base Learner

is trained using subset, TR. A hypothesis, ht, obtained from base Learner is

tested using both the training and testing subsets to obtain an error, εt,

εt =
∑

t:hi(xi) 6=yi

Dj (B.2)

The error is required to be less than 0.5; a normalized error βt is computed

using,

βt = εt/1− εt (B.3)
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If the error is greater than 0.5, the hypothesis is discarded and new train-

ing and testing subsets are selected according to DT and another hypothesis

is computed. All classifiers generated so far, are combined using weighted

majority voting to obtain composite hypothesis, ht

ht = argmaxy∈Y

∑
t:hix 6=y

log(1/βt) (B.4)

Weighted majority voting gives higher voting weights to a hypothesis that

performs well on the training and testing subsets. The error of the composite

hypothesis is computed as in Equation (15) and is given by,

Et =
∑

t:hix 6=y

Dt(i) (B.5)

If the error is greater than 0.5, the current hypothesis is discarded and the

new training and testing data are selected according to the distribution DT .

Otherwise, if the error is less than 0.5, the normalized error of the composite

hypothesis is computed as,

Bt = Et/1− Et (B.6)

The error is used in the distribution update rule, where the weights of the cor-

rectly classified instances are reduced, consequently increasing the weights of

the misclassified instances. This ensures that instances that were misclassified

by the current hypothesis have a higher probability of being selected for the

subsequent training set. The distribution update rule is given by,

wt+1 = wt(i)×B
1−[|Ht(xi)=yi|]
t (B.7)

Once the T hypothesis is created for each database, the final hypothesis is

computed by combining the hypothesis using weighted majority voting given

by,

Ht = argmaxy∈Y

K∑
k=1

∑
t:ht(x)=y

log(1/βt) (B.8)

The flowchart for the Learn++ algorithm is shown in Figure B.1
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Figure B.1: Block diagram of a Learn++ algorithm
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sis using Extension Neural Network”, In Proceeding of the 10th Inter-

national Conference on Intelligent Engineering Systems 2006, London,

England, IEEE, June 2006, pp 170–174.

• C.B. Vilakazi and T. Marwala, “A Multi-agent System for Bushing Con-

dition Monitoring”, In Proceeding of the 17th Symposium of Pattern

Recognition of South Africa, Bloemfontein, South Africa, November

2006, pp. 201–207.

• C.B Vilakazi, T. Marwala, R.P. Mautla and E.M. Moloto, “On-line

Bushing Condition Monitoring”, WSEAS Transactions on Power Sys-

tem, 2006, pp. 380-287.
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