2,967 research outputs found

    A Review of Fault Diagnosing Methods in Power Transmission Systems

    Get PDF
    Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field

    Transient fault area location and fault classification for distribution systems based on wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS)

    Get PDF
    A novel method to locate the zone of transient faults and to classify the fault type in Power Distribution Systems using wavelet transforms and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) has been developed. It draws on advanced techniques of signal processing based on wavelet transforms, using data sampled from the main feeder current to extract important characteristics and dynamic features of the fault signal. In this method, algorithms designed for fault detection and classification based on features extracted from wavelet transforms were implemented. One of four different algorithms based on ANFIS, according to the type of fault, was then used to locate the fault zone. Studies and simulations in an EMTP-RV environment for the 25kV power distribution system of Canada were carried out by considering ten types of faults with different fault inception, fault resistance and fault locations. The simulation results showed high accuracy in classifying the type of fault and determining the fault area, so that the maximum observed error was less than 2%

    A convolutional neural network based deep learning methodology for recognition of partial discharge patterns from high voltage cables

    Get PDF
    It is a great challenge to differentiate partial discharge (PD) induced by different types of insulation defects in high-voltage cables. Some types of PD signals have very similar characteristics and are specifically difficult to differentiate, even for the most experienced specialists. To overcome the challenge, a convolutional neural network (CNN)-based deep learning methodology for PD pattern recognition is presented in this paper. First, PD testing for five types of artificial defects in ethylene-propylene-rubber cables is carried out in high voltage laboratory to generate signals containing PD data. Second, 3500 sets of PD transient pulses are extracted, and then 33 kinds of PD features are established. The third stage applies a CNN to the data; typical CNN architecture and the key factors which affect the CNN-based pattern recognition accuracy are described. Factors discussed include the number of the network layers, convolutional kernel size, activation function, and pooling method. This paper presents a flowchart of the CNN-based PD pattern recognition method and an evaluation with 3500 sets of PD samples. Finally, the CNN-based pattern recognition results are shown and the proposed method is compared with two more traditional analysis methods, i.e., support vector machine (SVM) and back propagation neural network (BPNN). The results show that the proposed CNN method has higher pattern recognition accuracy than SVM and BPNN, and that the novel method is especially effective for PD type recognition in cases of signals of high similarity, which is applicable for industrial applications

    Intelligent fault classification of rolling bearings using neural network and discrete wavelet transform

    Get PDF
    This paper is about diagnosis and classification of bearing faults using Neural Networks (NN), employing nondestructive tests. Vibration signals are acquired by a bearing test machine. The acquired signals are preprocessed using discrete wavelet analysis. Standard deviation of discrete wavelet coefficient is chosen as the distinguishing feature of the faults. This feature vector is given to the design network as inputs. The input vector is normalized prior to be applied to neural network. There are four output neurons each of which corresponds to: 1) bearing with inner race fault, 2) bearing with outer race fault, 3) bearing with ball defect, and 4) normal bearing. The structure of NN is 6:20:4 and with 99 % performance

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Fault Diagnosis of HVDC Systems Using Machine Learning Based Methods

    Get PDF
    With the development of high-power electronic technology, HVDC system is applied in the power system because of advantages in large-capacity and long-distance transmission, stability, and flexibility. Therefore, as the guarantee of reliable operating of HVDC system, fault diagnosis of the HVDC system is of great significance. In the current variety methods used in fault diagnosis, Machine Learning based methods have become a hotspot. To this end, the performance of several commonly used machine learning classifiers is compared in HVDC system. First of all, nine faults both in AC systems and DC systems of the HVDC system are set in the HVDC model in Simulink. Therefore, 10 operating states corresponding to the faults and normal operating are considered as the output classes of classifier. Seven parameters, such as DC voltage and DC current, are selected as fault feature parameters of each sample. By simulating the HVDC system in 10 operating states (including normal operating state) correspondingly, 20000 samples, each containing seven parameters, be obtained during the fault period. Then, the training sample set and the test sample set are established by 80% and 20% of the whole sample set. Subsequently, Decision Trees, the Support Vector Machine (SVM), K-Nearest Neighborhood Classifier (KNN), Ensemble classifiers, Discriminant Analysis, Backward Propagation Neural Network (BP-NN), long Short-Term Memory Neural Network (LSTM-NN), Extreme Learning Machine (ELM) was trained and tested. The accuracy of testing is used as the performance index of the model. In particular, for BP-NN, the impact of different transfer functions and learning rules combinations on the accuracy of the model was tested. For ELM, the impact of different activation functions on accuracy is tested. The results have shown that ELM and Bagged Trees have the best performance in HVDC fault diagnosis. The accuracy of these two methods are 92.23% and 96.5% respectively. However, in order to achieve better accuracy in ELM model, a large number of hidden layer nodes are set so that training time increases sharply

    Data Mining Applications to Fault Diagnosis in Power Electronic Systems: A Systematic Review

    Get PDF

    Acoustical Measurement and Fan Fault Diagnosis System Based on LabVIEW

    Get PDF
    corecore