487 research outputs found

    Detection and Discrimination of Islanding and Faults in distribution system with Distributed Generation by using Wavelet based Alienation approach

    Get PDF
    This paper presents a wavelet transform based alienation technique for the protection of a radial 5 bus  distribution system integrated with four wind type doubly fed Induction generators (DFIG).This technique is used to detect islanding condition and faults, classification of faults and their discrimination. Islanding is simulated at point of common coupling (PCC) and faults are simulated at each DG bus of the network. Daubechies wavelet transform has been used to decompose the current signals to get approximate coefficients. The Alienation coefficients of these approximate decompositions are termed as islanding and fault indexes. These indexes have been compared with predetermined threshold to detect islanding and faults. The same threshold value is utilized to discriminate transients associated with islanding and fault. Alienation coefficients at each bus over a half cycle window clearly detect both islanding and fault. Testing of the proposed algorithm has been carried out for various angles of incidence. Hence, the proposed algorithm is more effective and successful for finding the islanding condition as well as faults in distribution system with distributed generation

    The power system and microgrid protection-a review

    Get PDF
    In recent years, power grid infrastructures have been changing from a centralized power generation model to a paradigm where the generation capability is spread over an increasing number of small power stations relying on renewable energy sources. A microgrid is a local network including renewable and non-renewable energy sources as well as distributed loads. Microgrids can be operated in both grid-connected and islanded modes to fill the gap between the significant increase in demand and storage of electricity and transmission issues. Power electronics play an important role in microgrids due to the penetration of renewable energy sources. While microgrids have many benefits for power systems, they cause many challenges, especially in protection systems. This paper presents a comprehensive review of protection systems with the penetration of microgrids in the distribution network. The expansion of a microgrid affects the coordination and protection by a change in the current direction in the distribution network. Various solutions have been suggested in the literature to resolve the microgrid protection issues. The conventional coordination of the protection system is based on the time delays between relays as the primary and backup protection. The system protection scheme has to be changed in the presence of a microgrid, so several protection schemes have been proposed to improve the protection system. Microgrids are classified into different types based on the DC/AC system, communication infrastructure, rotating synchronous machine or inverter-based distributed generation (DG), etc. Finally, we discuss the trend of future protection schemes and compare the conventional power systems

    A Review on Challenges and Solutions in Microgrid Protection

    Get PDF
    Protection of microgrid has become challenging due to the hosting of various actors such as distributed generation, energy storage systems, information and communication technologies, etc. The main protection challenges in the microgrid are the bi-directional power flow, protection blinding, sympathetic tripping, change in short-circuit level due to different modes of operation, and limited fault current contribution by converter-interfaced sources. This paper presents a comprehensive review of the available microgrid protection schemes which are based on traditional protection principles and emerging techniques such as machine learning, data-mining, wavelet transform, etc. A categorical assessment of the reviewed protection schemes is also presented. The key findings of the paper suggest that the time-domain and communication-assisted protection schemes could be suitable solutions to address the identified protection challenges in the microgrid

    A Hybrid Algorithm for Fault Locating in Looped Microgrids

    Get PDF

    Fault Classification in a DG Connected Power System using Artificial Neural Network

    Get PDF
    Distributed generation is playing an important role in power system to meet the increased load demand. Integration of Distributed Generator (DG) to grid leads to various issues of   protection and control of power system structure.  The effect of the distributed generators to the grid is changes the fault current level, which makes the fault analysis more complex. From the different fault issues occurs in a distributed generator integrated power system, classification of fault remains as one of the most vital issue even after years of in-depth research. This paper emphasis on the classification of faults in DG penetrated power system using Artificial Neural Network (ANN). Because researchers are attempting to detect and diagnose these faults as soon as possible in order to avoid financial losses, this work aims to investigate the sort of fault that happened in the hybrid system. This paper proposed artificial neural network based approaches for fault disturbances in a microgrid made up of wind turbine generators, fuel cells, and diesel generator. The voltage signal is retrieved at the point of common coupling (PCC). The extracted data are used for training and testing purpose.  Artificial neural network technique is utilized for the classification of fault in the simulated model. Furthermore, performance indices (PIs) such as standard deviation and skewness are calculated for reduction of data size and better accuracy. Both the fault and parameters are varied to check the usefulness of the proposed method. Finally, the results are discussed and compared with different DG penetration

    Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review

    Get PDF
    The protection of AC microgrids (MGs) is an issue of paramount importance to ensure their reliable and safe operation. Designing reliable protection mechanism, however, is not a trivial task, as many practical issues need to be considered. The operation mode of MGs, which can be grid-connected or islanded, employed control strategy and practical limitations of the power electronic converters that are utilized to interface renewable energy sources and the grid, are some of the practical constraints that make fault detection, classification, and coordination in MGs different from legacy grid protection. This article aims to present the state-of-the-art of the latest research and developments, including the challenges and issues in the field of AC MG protection. A broad overview of the available fault detection, fault classification, and fault location techniques for AC MG protection and coordination are presented. Moreover, the available methods are classified, and their advantages and disadvantages are discussed

    A comparative study of smart THD-based fault protection techniques for distribution networks

    Get PDF
    The integration of Distributed Generators (DGs) into distribution systems (DSs) leads to more reliable and efficient power delivery for customers. However, the possibility of bi-directional power flow creates new technical problems for protection schemes. This poses a threat to conventional strategies because the relay settings have to be adjusted depending on the network topology and operational mode. As a solution, it is important to develop novel fault protection techniques to ensure reliable protection and avoid unnecessary tripping. In this regard, Total Harmonic Distortion (THD) can be used as a key parameter for evaluating the grid’s waveform quality during fault events. This paper presents a comparison between two DS protection strategies that employ THD levels, estimated amplitude voltages, and zero-sequence components as instantaneous indicators during the faults that function as a kind of fault sensor to detect, identify, and isolate faults. The first method uses a Multiple Second Order Generalized Integrator (MSOGI) to obtain the estimated variables, whereas the second method uses a single SOGI for the same purpose (SOGI-THD). Both methods rely on communication lines between protective devices (PDs) to facilitate coordinated protection. The effectiveness of these methods is assessed by using simulations in MATLAB/Simulink considering various factors such as different types of faults and DG penetrations, different fault resistances and fault locations in the proposed network. Moreover, the performance of these methods is compared with conventional overcurrent and differential protections. The results show that the SOGI-THD method is highly effective in detecting and isolating faults with a time interval of 6–8.5 ms using only three SOGIs while requiring only 447 processor cycles for execution. In comparison to other protection methods, the SOGI-THD method exhibits a faster response time and a lower computational burden. Furthermore, the SOGI-THD method is robust to harmonic distortion, as it considers pre-existing harmonic content before the fault and avoids interference with the fault detection process.Peer ReviewedPostprint (published version

    Artificial intelligence-based protection for smart grids

    Get PDF
    Lately, adequate protection strategies need to be developed when Microgrids (MGs) are connected to smart grids to prevent undesirable tripping. Conventional relay settings need to be adapted to changes in Distributed Generator (DG) penetrations or grid reconfigurations, which is a complicated task that can be solved efficiently using Artificial Intelligence (AI)-based protection. This paper compares and validates the difference between conventional protection (overcurrent and differential) strategies and a new strategy based on Artificial Neural Networks (ANNs), which have been shown as adequate protection, especially with reconfigurable smart grids. In addition, the limitations of the conventional protections are discussed. The AI protection is employed through the communication between all Protective Devices (PDs) in the grid, and a backup strategy that employs the communication among the PDs in the same line. This paper goes a step further to validate the protection strategies based on simulations using the MATLABTM platform and experimental results using a scaled grid. The AI-based protection method gave the best solution as it can be adapted for different grids with high accuracy and faster response than conventional protection, and without the need to change the protection settings. The scaled grid was designed for the smart grid to advocate the behavior of the protection strategies experimentally for both conventional and AI-based protections.This work is supported by Li Dak Sum Innovation Fellowship Funding (E06211200006) from the University of Nottingham Ningbo China.Peer ReviewedPostprint (published version
    • …
    corecore