4,136 research outputs found

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Fault tolerant mechanism for multimedia flows in wireless ad hoc networks based on fast switching paths

    Get PDF
    Multimedia traffic can be forwarded through a wireless ad hoc network using the available resources of the nodes. Several models and protocols have been designed in order to organize and arrange the nodes to improve transmissions along the network. We use a cluster-based framework, called MWAHCA architecture, which optimizes multimedia transmissions over a wireless ad hoc network. It was proposed by us in a previous research work. This architecture is focused on decreasing quality of service (QoS) parameters like latency, jitter, and packet loss, but other network features were not developed, like load balance or fault tolerance. In this paper, we propose a new fault tolerance mechanism, using as a base the MWAHCA architecture, in order to recover any multimedia flow crossing the wireless ad hoc network when there is a node failure. The algorithm can run independently for each multimedia flow. The main objective is to keep the QoS parameters as low as possible. To achieve this goal, the convergence time must be controlled and reduced. This paper provides the designed protocol, the analytical model of the algorithm, and a software application developed to test its performance in a real laboratory.This work has been partially supported by Instituto de Telecomunicacoes, Next Generation Networks and Applications Group (NetGNA), Covilha Delegation, and by National Funding from the FCT-Fundacao para a Ciencia e a Tecnologia through the Pest-OE/EEI/LA0008/2013 Project.Díaz Santos, JR.; Lloret, J.; Jimenez, JM.; Sendra, S.; Rodrigues, JJPC. (2014). Fault tolerant mechanism for multimedia flows in wireless ad hoc networks based on fast switching paths. Mathematical Problems in Engineering. 2014:1-12. doi:10.1155/2014/361543S1122014Sendra, S., Lloret, J., Garcia, M., & Toledo, J. F. (2011). Power Saving and Energy Optimization Techniques for Wireless Sensor Neworks (Invited Paper). Journal of Communications, 6(6). doi:10.4304/jcm.6.6.439-459Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification. Sensors, 9(11), 8722-8747. doi:10.3390/s91108722Lloret, J., Bosch, I., Sendra, S., & Serrano, A. (2011). A Wireless Sensor Network for Vineyard Monitoring That Uses Image Processing. Sensors, 11(6), 6165-6196. doi:10.3390/s110606165Akyildiz, I., Melodia, T., & Chowdury, K. (2007). Wireless multimedia sensor networks: A survey. IEEE Wireless Communications, 14(6), 32-39. doi:10.1109/mwc.2007.4407225Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513Diaz, J. R., Lloret, J., Jimenez, J. M., & Rodrigues, J. J. P. C. (2014). A QoS-Based Wireless Multimedia Sensor Cluster Protocol. International Journal of Distributed Sensor Networks, 10(5), 480372. doi:10.1155/2014/480372Diaz, J. R., Lloret, J., Jimenez, J. M., & Sendra, S. (2014). MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture. The Scientific World Journal, 2014, 1-14. doi:10.1155/2014/913046Sadiq, A. S., Bakar, K. A., Ghafoor, K. Z., Lloret, J., & Khokhar, R. (2013). An Intelligent Vertical Handover Scheme for Audio and Video Streaming in Heterogeneous Vehicular Networks. Mobile Networks and Applications, 18(6), 879-895. doi:10.1007/s11036-013-0465-8Diaz, J. R., Lloret, J., Jiménez, J. M., & Hammoumi, M. (2014). A new multimedia-oriented architecture and protocol for wireless ad hoc networks. International Journal of Ad Hoc and Ubiquitous Computing, 16(1), 14. doi:10.1504/ijahuc.2014.062486Pagani, E., & Rossi, G. P. (1999). Mobile Networks and Applications, 4(3), 175-192. doi:10.1023/a:1019198815518Xue, Y., & Nahrstedt, K. (2004). Providing Fault-Tolerant Ad hoc Routing Service in Adversarial Environments. Wireless Personal Communications, 29(3/4), 367-388. doi:10.1023/b:wire.0000047071.75971.cdBoukerche, A., Werner Nelem Pazzi, R., & Borges Araujo, R. (2006). Fault-tolerant wireless sensor network routing protocols for the supervision of context-aware physical environments. Journal of Parallel and Distributed Computing, 66(4), 586-599. doi:10.1016/j.jpdc.2005.12.007Bheemarjuna Reddy, T., Sriram, S., Manoj, B. S., & Siva Ram Murthy, C. (2006). MuSeQoR: Multi-path failure-tolerant security-aware QoS routing in Ad hoc wireless networks. Computer Networks, 50(9), 1349-1383. doi:10.1016/j.comnet.2005.05.035Chao, H. L., & Chang, C. L. (2008). A fault-tolerant routing protocol in wireless sensor networks. International Journal of Sensor Networks, 3(1), 66. doi:10.1504/ijsnet.2008.016463Melamed, R., Keidar, I., & Barel, Y. (2007). Octopus: A fault-tolerant and efficient ad-hoc routing protocol. Wireless Networks, 14(6), 777-793. doi:10.1007/s11276-006-0013-6Lopes, P., Salvador, P., & Nogueira, A. (2013). Methodologies for Network Topology Discovery and Detection of MAC and IP Spoofing Attacks. Network Protocols and Algorithms, 5(3), 153. doi:10.5296/npa.v5i3.431

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Emerging privacy challenges and approaches in CAV systems

    Get PDF
    The growth of Internet-connected devices, Internet-enabled services and Internet of Things systems continues at a rapid pace, and their application to transport systems is heralded as game-changing. Numerous developing CAV (Connected and Autonomous Vehicle) functions, such as traffic planning, optimisation, management, safety-critical and cooperative autonomous driving applications, rely on data from various sources. The efficacy of these functions is highly dependent on the dimensionality, amount and accuracy of the data being shared. It holds, in general, that the greater the amount of data available, the greater the efficacy of the function. However, much of this data is privacy-sensitive, including personal, commercial and research data. Location data and its correlation with identity and temporal data can help infer other personal information, such as home/work locations, age, job, behavioural features, habits, social relationships. This work categorises the emerging privacy challenges and solutions for CAV systems and identifies the knowledge gap for future research, which will minimise and mitigate privacy concerns without hampering the efficacy of the functions

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    A Contribution to Secure the Routing Protocol "Greedy Perimeter Stateless Routing" Using a Symmetric Signature-Based AES and MD5 Hash

    Full text link
    This work presents a contribution to secure the routing protocol GPSR (Greedy Perimeter Stateless Routing) for vehicular ad hoc networks, we examine the possible attacks against GPSR and security solutions proposed by different research teams working on ad hoc network security. Then, we propose a solution to secure GPSR packet by adding a digital signature based on symmetric cryptography generated using the AES algorithm and the MD5 hash function more suited to a mobile environment
    corecore