11 research outputs found

    Second-order SM approach to SISO time-delay system output tracking

    Get PDF
    A fully linearizable single-input-single-output relative-degree n system with an output time delay is considered in this paper. Using the approach of Pade approximation, system center approach, and second-order sliding-mode (SM) control, we have obtained good output tracking results. The Smith predictor is used to compensate the difference between the actual delayed output and its approximation. A second-order supertwisting SM observer observes the disturbance in the plant. A nonlinear example is studied to show the effect of this methodology

    산업용 로봇 고장 진단을 위한 암묵신호 분리 기반 다축 간섭 최소화 기법

    Get PDF
    학위논문(석사)--서울대학교 대학원 :공과대학 기계항공공학부,2019. 8. 윤병동.As smart factory is becoming popular, industrial robots are highly demanding in many manufacturing fields for factory automation. Unpredictable faults in the industrial robot could bring about interruptions in the whole manufacturing process. Therefore, many methods have been developed for fault detection of the industrial robots. Because gearboxes are the main parts in the power transmission system of industrial robots, fault detection of the gearboxes has been widely investigated. Especially, vibration analysis is a well-established technique for fault detection of the industrial robot gearbox. However, the vibration signals from the gearboxes are mixed convolutively and linearly at each axes, which makes it difficult to locate a damaged gearbox, and reduce fault detection performance. Thus, this paper develops a vibration signal separation technique for fault detection of industrial robot gearboxes under multi-axis interference. The developed method includes two steps, frequency domain independent component analysis (ICA-FD) and time domain independent component analysis (ICA-TD). ICA-FD is aimed at separating convolutive mixture of signals, and ICA-TD is aimed at eliminating the residual mixed components. The experiment is performed to demonstrate the effectiveness of the proposed method. The results show that the proposed method could successfully separate the mixed signals by obtaining vibration signals from each gearbox, and enhance fault detection performance for the industrial robot gearboxes.Chapter 1. Introduction 1 1.1 Background and Motivation . 1 1.2 Scope of Research 1 1.3 Structure of the Thesis . 5 Chapter 2. Structure of Industrial Robot . 6 2.1 Structure of Experimental Robot 6 2.2 Problem in Industrial Robot Fault Detection . 8 Chapter 3. Methodology 10 3.1. Time Domain Independent Component Analysis (ICA-TD) . 10 3.2. Frequency Domain Independent Component Analysis (ICA-FD) 12 3.2.1 Separation 12 3.2.2 Permutation . 14 3.2.3 Scaling . 17 3.3. Multi-stage Independent Component Analysis (MSICA) . 17 Chapter 4. Experiment Evaluation . 19 4.1 Experiment with MSICA 19 4.1.1 Experiment Process . 19 4.1.2 Result Analysis 28 4.2 Comparison Experiment Using Basic ICA Method . 33 4.3 Comparison Experiment Using ICA-FD Method . 38 Chapter 5. Discussion and Conclusion . 45 5.1 Conclusions and Contributions 45 5.2 Future Work 46 Bibliography . 47Maste

    A Kinematic Analysis and Evaluation of Planar Robots Designed From Optimally Fault-Tolerant Jacobians Khaled M. Ben-Gharbia, Student Member, IEEE,

    Get PDF
    Abstract—It is common practice to design a robot’s kinematics from the desired properties that are locally specified by a manipulator Jacobian. In this work, the desired property is fault tolerance, defined as the postfailure Jacobian possessing the largest possible minimum singular value over all possible locked-joint failures. A mathematical analysis based on the Gram matrix that describes the number of possible planar robot designs for optimally fault-tolerant Jacobians is presented. It is shown that rearranging the columns of the Jacobian or multiplying one or more of the columns of the Jacobian by ±1 will not affect local fault tolerance; however, this will typically result in a very different manipulator. Two examples, one that is optimal to a single joint failure and the second that is optimal to two joint failures, are analyzed. This analysis shows that there is a large variability in the global kinematic properties of these designs, despite being generated from the same Jacobian. It is especially surprising that major differences in global behavior occurs for manipulators that are identical in the working area. Index Terms—Fault-tolerant robots, robot kinematics, redundant robots. I

    Present Status and Future Growth of Advanced Maintenance Technology and Strategy in US Manufacturing

    Get PDF
    The goals of this paper are to 1) examine the current practices of diagnostics, prognostics, and maintenance employed by United States (U.S.) manufacturers to achieve productivity and quality targets and 2) to understand the present level of maintenance technologies and strategies that are being incorporated into these practices. A study is performed to contrast the impact of various industry-specific factors on the effectiveness and profitability of the implementation of prognostics and health management technologies, and maintenance strategies using both surveys and case studies on a sample of U.S. manufacturing firms ranging from small to mid-sized enterprises (SMEs) to large-sized manufacturing enterprises in various industries. The results obtained provide important insights on the different impacts of specific factors on the successful adoption of these technologies between SMEs and large manufacturing enterprises. The varying degrees of success with respect to current maintenance programs highlight the opportunity for larger manufacturers to improve maintenance practices and consider the use of advanced prognostics and health management (PHM) technology. This paper also provides the existing gaps, barriers, future trends, and roadmaps for manufacturing PHM technology and maintenance strategy

    Fault detection for robot manipulators via second order sliding modes

    No full text
    This paper presents a model-based fault detection (FD) and isolation scheme for rigid manipulators. A single fault acting on a specific actuator or on a specific sensor of the manipulator is detected (and, if possible, the exact location of the fault), and an estimation of the fault signal is performed. Input-signal estimator and output observers are considered in order to make the FD procedure possible. By using the suboptimal second-order sliding-mode (SOSM) algorithm to design the input laws of the observers, satisfactory stability properties of the observation error are established. The proposed algorithm is verified in simulation and experimentally on a COMAU SMART3-S2 robot manipulator

    Fault-tolerant control strategies for a class of Euler-Lagrange nonlinear systems subject to simultaneous sensor and actuator faults

    Get PDF
    The problem of Fault Detection, Isolation, and Estimation (FDIE) as well as Fault-Tolerant Control (FTC) for a class of nonlinear systems modeled with Euler-Lagrange (EL) equations subjected to simultaneous sensor and actuator faults are considered in this study. To tackle this problem, first state and output linear transformations are introduced to decouple the effects of sensor and actuator faults. These transformations do not depend on the system nonlinearities. An analytical procedure based on two Linear Matrix Inequality (LMI) feasibility conditions is proposed to obtain these transformations. Once, the effects of faults are decoupled, two Sliding Mode Observers (SMO) are designed to reconstruct each type of fault, separately. Subsequently, the results of fault estimations are fed back to the controller and the effects of faults are compensated for. In this study, the mathematical stability proof of the coupled controller, observers, and the nonlinear system is provided. Unlike previous methodologies in the literature, no limiting assumptions such as Lipschitz conditions are imposed on the system. Next, a novel fault tolerant control scheme is proposed in which a single SMO is used to reconstruct sensor faults and provide a compensation term to rectify the effects of faults. However, to deal with actuator faults, a Sliding Mode Controller (SMC) is employed. Using this robust FTC technique, zero tracking error in the presence of uncertainties, measurement noise, disturbances, and faults as well as estimation of the actuator faults are possible. The stability proof for the coupled nonlinear controller, observer and plant is provided by using the properties of Euler-Lagrange equations and sliding mode techniques. Finally, to evaluate the performance of the proposed FDIE and FTC approaches, extensive sets of simulations are performed on a 3 Degrees Of Freedom (DOF) Autonomous Underwater Vehicle (AUV). Simulation studies show the promising results obtained as a result of the presented approaches as compared to those obtained by using the existing methodologies

    Availability estimation and management for complex processing systems

    Get PDF
    “Availability” is the terminology used in asset intensive industries such as petrochemical and hydrocarbons processing to describe the readiness of equipment, systems or plants to perform their designed functions. It is a measure to suggest a facility’s capability of meeting targeted production in a safe working environment. Availability is also vital as it encompasses reliability and maintainability, allowing engineers to manage and operate facilities by focusing on one performance indicator. These benefits make availability a very demanding and highly desired area of interest and research for both industry and academia. In this dissertation, new models, approaches and algorithms have been explored to estimate and manage the availability of complex hydrocarbon processing systems. The risk of equipment failure and its effect on availability is vital in the hydrocarbon industry, and is also explored in this research. The importance of availability encouraged companies to invest in this domain by putting efforts and resources to develop novel techniques for system availability enhancement. Most of the work in this area is focused on individual equipment compared to facility or system level availability assessment and management. This research is focused on developing an new systematic methods to estimate system availability. The main focus areas in this research are to address availability estimation and management through physical asset management, risk-based availability estimation strategies, availability and safety using a failure assessment framework, and availability enhancement using early equipment fault detection and maintenance scheduling optimization

    Distributed Control of Networked Nonlinear Euler-Lagrange Systems

    Get PDF
    Motivated by recent developments in formation and cooperative control of networked multi-agent systems, the main goal of this thesis is development of efficient synchronization and formation control algorithms for distributed control of networked nonlinear systems whose dynamics can be described by Euler-Lagrange (EL) equations. One of the main challenges in the design of the formation control algorithm is its optimality and robustness to parametric uncertainties, external disturbances and ability to reconfigure in presence of component, actuator, or sensor faults. Furthermore, the controller should be capable of handling switchings in the communication network topology. In this work, nonlinear optimal control techniques are studied for developing distributed controllers for networked EL systems. An individual cost function is introduced to design a controller that relies on only local information exchanges among the agents. In the development of the controller, it is assumed that the communication graph is not fixed (in other words the topology is switching). Additionally, parametric uncertainties and faults in the EL systems are considered and two approaches, namely adaptive and robust techniques are introduced to compensate for the effects of uncertainties and actuator faults. Next, a distributed H_infinity performance measure is considered to develop distributed robust controllers for uncertain networked EL systems. The developed distributed controller is obtained through rigorous analysis and by considering an individual cost function to enhance the robustness of the controllers in presence of parametric uncertainties and external bounded disturbances. Moreover, a rigorous analysis is conducted on the performance of the developed controllers in presence of actuator faults as well as fault diagnostic and identification (FDI) imperfections. Next, synchronization and set-point tracking control of networked EL systems are investigated in presence of three constraints, namely, (i) input saturation constraints, (ii) unavailability of velocity feedback, and (iii) lack of knowledge on the system parameters. It is shown that the developed distributed controllers can accomplish the desired requirements and specification under the above constraints. Finally, a quaternion-based approach is considered for the attitude synchronization and set-point tracking control problem of formation flying spacecraft. Employing the quaternion in the control law design enables handling large rotations in the spacecraft attitude and, therefore, any singularities in the control laws are avoided. Furthermore, using the quaternion also enables one to guarantee boundedness of the control signals both with and without velocity feedback
    corecore