746 research outputs found

    Impact analysis of actuator torque degradation on the IRB 120 robot performance using simscape-based model

    Get PDF
    Actuators in a robot system may become faulty during their life cycle. Locked joints, free-moving joints, and the loss of actuator torque are common faulty types of robot joints where the actuators fail. Locked and free-moving joint issues are addressed by many published articles, whereas the actuator torque loss still opens attractive investigation challenges. The objectives of this study are to classify the loss of robot actuator torque, named actuator torque degradation, into three different cases: Boundary degradation of torque, boundary degradation of torque rate, and proportional degradation of torque, and to analyze their impact on the performance of a typical 6-DOF robot (i.e., the IRB 120 robot). Typically, controllers of robots are not pre-designed specifically for anticipating these faults. To isolate and focus on the impact of only actuator torque degradation faults, all robot parameters are assumed to be known precisely, and a popular closed-loop controller is used to investigate the robot’s responses under these faults. By exploiting MATLAB-the reliable simulation environment, a simscape-based quasi-physical model of the robot is built and utilized instead of an actual expensive prototype. The simulation results indicate that the robot responses cannot follow the desired path properly in most fault cases

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Modeling, Control and Estimation of Reconfigurable Cable Driven Parallel Robots

    Get PDF
    The motivation for this thesis was to develop a cable-driven parallel robot (CDPR) as part of a two-part robotic device for concrete 3D printing. This research addresses specific research questions in this domain, chiefly, to present advantages offered by the addition of kinematic redundancies to CDPRs. Due to the natural actuation redundancy present in a fully constrained CDPR, the addition of internal mobility offers complex challenges in modeling and control that are not often encountered in literature. This work presents a systematic analysis of modeling such kinematic redundancies through the application of reciprocal screw theory (RST) and Lie algebra while further introducing specific challenges and drawbacks presented by cable driven actuators. It further re-contextualizes well-known performance indices such as manipulability, wrench closure quality, and the available wrench set for application with reconfigurable CDPRs. The existence of both internal redundancy and static redundancy in the joint space offers a large subspace of valid solutions that can be condensed through the selection of appropriate objective priorities, constraints or cost functions. Traditional approaches to such redundancy resolution necessitate computationally expensive numerical optimization. The control of both kinematic and actuation redundancies requires cascaded control frameworks that cannot easily be applied towards real-time control. The selected cost functions for numerical optimization of rCDPRs can be globally (and sometimes locally) non-convex. In this work we present two applied examples of redundancy resolution control that are unique to rCDPRs. In the first example, we maximize the directional wrench ability at the end-effector while minimizing the joint torque requirement by utilizing the fitness of the available wrench set as a constraint over wrench feasibility. The second example focuses on directional stiffness maximization at the end-effector through a variable stiffness module (VSM) that partially decouples the tension and stiffness. The VSM introduces an additional degrees of freedom to the system in order to manipulate both reconfigurability and cable stiffness independently. The controllers in the above examples were designed with kinematic models, but most CDPRs are highly dynamic systems which can require challenging feedback control frameworks. An approach to real-time dynamic control was implemented in this thesis by incorporating a learning-based frameworks through deep reinforcement learning. Three approaches to rCDPR training were attempted utilizing model-free TD3 networks. Robustness and safety are critical features for robot development. One of the main causes of robot failure in CDPRs is due to cable breakage. This not only causes dangerous dynamic oscillations in the workspace, but also leads to total robot failure if the controllability (due to lack of cables) is lost. Fortunately, rCDPRs can be utilized towards failure tolerant control for task recovery. The kinematically redundant joints can be utilized to help recover the lost degrees of freedom due to cable failure. This work applies a Multi-Model Adaptive Estimation (MMAE) framework to enable online and automatic objective reprioritization and actuator retasking. The likelihood of cable failure(s) from the estimator informs the mixing of the control inputs from a bank of feedforward controllers. In traditional rigid body robots, safety procedures generally involve a standard emergency stop procedure such as actuator locking. Due to the flexibility of cable links, the dynamic oscillations of the end-effector due to cable failure must be actively dampened. This work incorporates a Linear Quadratic Regulator (LQR) based feedback stabilizer into the failure tolerant control framework that works to stabilize the non-linear system and dampen out these oscillations. This research contributes to a growing, but hitherto niche body of work in reconfigurable cable driven parallel manipulators. Some outcomes of the multiple engineering design, control and estimation challenges addressed in this research warrant further exploration and study that are beyond the scope of this thesis. This thesis concludes with a thorough discussion of the advantages and limitations of the presented work and avenues for further research that may be of interest to continuing scholars in the community

    Integration of fault tolerance and hardware redundancy techniques into the design of mobile platforms

    Get PDF
    This work addresses the development of a fault-tolerant mobile platform. Fault-tolerant mechanical system design is an emerging technology that attempts to build highly reliable systems by incorporating hardware and software architectures. For this purpose, previous work in fault-tolerant were reviewed. Alternate architectures were evaluated to maximize the fault tolerance capabilities of the driving and steering systems of a mobile platform. The literature review showed that most of the research work on fault tolerance has been done in the area of kinematics and control systems of robotic arms. Therefore, hardware redundancy and fault tolerance in mobile robots is an area to be researched. The prototype constructed as part of this work demonstrated basic principles and uses of a fault-tolerant mechanism, and is believed to be the first such system in its class. It is recommended that different driving and steering architectures, and the fault-tolerant controllers\u27 performance be tested on this prototype

    Modular robotics overview of the `state of the art`

    Full text link

    Fault-tolerant control strategies for a class of Euler-Lagrange nonlinear systems subject to simultaneous sensor and actuator faults

    Get PDF
    The problem of Fault Detection, Isolation, and Estimation (FDIE) as well as Fault-Tolerant Control (FTC) for a class of nonlinear systems modeled with Euler-Lagrange (EL) equations subjected to simultaneous sensor and actuator faults are considered in this study. To tackle this problem, first state and output linear transformations are introduced to decouple the effects of sensor and actuator faults. These transformations do not depend on the system nonlinearities. An analytical procedure based on two Linear Matrix Inequality (LMI) feasibility conditions is proposed to obtain these transformations. Once, the effects of faults are decoupled, two Sliding Mode Observers (SMO) are designed to reconstruct each type of fault, separately. Subsequently, the results of fault estimations are fed back to the controller and the effects of faults are compensated for. In this study, the mathematical stability proof of the coupled controller, observers, and the nonlinear system is provided. Unlike previous methodologies in the literature, no limiting assumptions such as Lipschitz conditions are imposed on the system. Next, a novel fault tolerant control scheme is proposed in which a single SMO is used to reconstruct sensor faults and provide a compensation term to rectify the effects of faults. However, to deal with actuator faults, a Sliding Mode Controller (SMC) is employed. Using this robust FTC technique, zero tracking error in the presence of uncertainties, measurement noise, disturbances, and faults as well as estimation of the actuator faults are possible. The stability proof for the coupled nonlinear controller, observer and plant is provided by using the properties of Euler-Lagrange equations and sliding mode techniques. Finally, to evaluate the performance of the proposed FDIE and FTC approaches, extensive sets of simulations are performed on a 3 Degrees Of Freedom (DOF) Autonomous Underwater Vehicle (AUV). Simulation studies show the promising results obtained as a result of the presented approaches as compared to those obtained by using the existing methodologies

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Optimal actuator fault tolerance for static nonlinear systems based on minimum output velocity jump

    Full text link
    Fault tolerance for a class of non linear systems is addressed based on the velocity of their output variables. This paper presents a mapping to minimize the possible jump of the velocity of the output, due to the actuator failure. The failure of the actuator is assumed as actuator lock. The mapping is derived and it provides the proper input commands for the healthy actuators of the system to tolerate the effect of the faulty actuator on the output of the system. The introduced mapping works as an optimal input reconfiguration for fault recovery, which provides a minimum velocity jump suitable for static nonlinear systems. The proposed mapping is validated through different case studies and a complementary simulation. In the case studies and the simulation, the mapping provides the commands to compensate the effect of different faults within the joints of a robotic manipulator. The new commands and the compare between the velocity of the output variables for the health and faulty system are presented
    corecore