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ABSTRACT 

 

Advances in computing, networking, and sensing technologies have resulted in the ubiquitous 

deployment of medical cyber-physical systems in various clinical and personalized settings. The 

increasing complexity and connectivity of such systems, the tight coupling between their cyber 

and physical components, and the inevitable involvement of human operators in supervision and 

control have introduced major challenges in ensuring system reliability, safety, and security.  

This dissertation takes a data-driven approach to resiliency assessment of medical cyber-

physical systems. Driven by large-scale studies of real safety incidents involving medical devices, 

we develop techniques and tools for (i) deeper understanding of incident causes and measurement 

of their impacts, (ii) validation of system safety mechanisms in the presence of realistic hazard 

scenarios, and (iii) preemptive real-time detection of safety hazards to mitigate adverse impacts on 

patients.  

We present a framework for automated analysis of structured and unstructured data from public 

FDA databases on medical device recalls and adverse events. This framework allows 

characterization of the safety issues originated from computer failures in terms of fault classes, 

failure modes, and recovery actions. We develop an approach for constructing ontology models 

that enable automated extraction of safety-related features from unstructured text. The proposed 

ontology model is defined based on device-specific human-in-the-loop control structures in order 

to facilitate the systems-theoretic causality analysis of adverse events. Our large-scale analysis of 

FDA data shows that medical devices are often recalled because of failure to identify all potential 

safety hazards, use of safety mechanisms that have not been rigorously validated, and limited 

capability in real-time detection and automated mitigation of hazards.  

To address those problems, we develop a safety hazard injection framework for experimental 

validation of safety mechanisms in the presence of accidental failures and malicious attacks. To 

reduce the test space for safety validation, this framework uses systems-theoretic accident causality 

models in order to identify the critical locations within the system to target software fault injection. 

For mitigation of safety hazards at run time, we present a model-based analysis framework that 

estimates the consequences of control commands sent from the software to the physical system 
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through real-time computation of the system’s dynamics, and preemptively detects if a command 

is unsafe before its adverse consequences manifest in the physical system.  

The proposed techniques are evaluated on a real-world cyber-physical system for robot-assisted 

minimally invasive surgery and are shown to be more effective than existing methods in 

identifying system vulnerabilities and deficiencies in safety mechanisms as well as in preemptive 

detection of safety hazards caused by malicious attacks.  
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INTRODUCTION 

 

 Motivation  
Advances in computing, networking, and sensing technologies have resulted in the ubiquitous 

deployment of cyber-physical systems in safety-critical settings such as aerospace, energy, 

transportation, and healthcare. In particular, there is significant deployment of medical cyber-

physical systems in various clinical and personalized settings, ranging from tiny implantable 

pacemakers and defibrillators to wearable health monitoring devices, complex patient monitors in 

intensive care units (ICUs) and expensive systems for radiation therapy and robot-assisted surgery.  

The increasing complexity and connectivity of medical systems, the tight coupling between 

their cyber and physical components, and the inevitable involvement of human operators in 

supervision and control have introduced significant challenges in ensuring system reliability, 

safety, and security. During 2007–2013, over 6.8K medical device recalls and 2.4 million adverse 

events (including 923K injuries and 49K deaths) were reported to the U.S. Food and Drug 

Administration (FDA) [1]. Nearly 24% of the recalls were due to computer-related failures in 

software, hardware, batteries, or system interfaces, which affected more than 18 million medical 

devices on the market [2], [3], incurring medium-to-high risk of severe health consequences to 

patients and considerable costs for manufacturers and caregivers. 

Even though state-of-the-art medical systems are often designed with safety mechanisms that 

attempt to detect failures and put system into safe states, in practice, they have limited capability 

in real-time detection and automated recovery from safety hazards. Many medical devices are 

recalled because of design flows that missed comprehensive hazard analysis and risk assessment, 

or use of safety mechanisms that were not rigorously validated for resiliency. The recovery 

mechanisms are often limited to recommendations on manual actions to be taken by the device 

operators or costly repair or replacement of the devices by the manufacturers [2].  
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 Challenges 
This section presents some of the challenges in design and assessment of resilient medical 

cyber-physical systems. These challenges motivate the research presented in this dissertation. 

1.2.1. Analyzing Incident Causes and Impacts 

Medical device incidents are reported by healthcare professionals, device manufacturers, and 

investigators to the U.S. Food and Drug Administration (FDA) [1]. A major component of these 

reports are human-written narratives describing adverse events, reasons for recalling a device, or 

corrective actions taken by the manufacturers. Analysis of those reports provides valuable insights 

on the causes and impacts of real incidents experienced in the field and how the designs of devices 

could be improved in the future. However, automated extraction of safety-related semantics from 

the reports is a challenging task, requiring interpretation of free-form natural language text, which 

is often abstract and inconsistent. Further, without models to describe the complex interactions 

within the system and between the system and operators, and without considering domain-specific 

semantics and underlying context, it is difficult to automatically infer all the incident causes from 

the reports.  

Previous work on analysis of the FDA data mostly relied on manual review of incident reports 

and keyword searching to identify specific types of problems (e.g., software faults or security 

exploits) [4] – [9]. These approaches require a significant amount of human effort and may still 

produce inaccurate results and non-comprehensive demonstration of real problems.  

1.2.2. Safety Assessment 

Medical cyber-physical systems are embedded with interconnected electronic components and 

software modules that interact with mechanical/physical components, multiple human operators, 

and patients, under stringent timing constraints. With a variety of internal and external disturbances 

and changes in dynamics of patients and the environment, comprehensive safety assessment of the 

system as a whole is a challenging task.  

Standard hazard analysis and safety assessment techniques recommended and used by the 

medical device industry (e.g., Fault-Tree Analysis (FTA) [10] and Failure Mode and Effect 

Analysis (FMEA) [11]) primarily focus on the failures of individual components or human errors 
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in the system. Other important factors that contribute to system safety, such as complex software 

errors, unsafe component interactions, and contextual factors (the system states and conditions 

under which actions are taken) are often not thoroughly considered during typical hazard 

analyses [12]. Therefore, many incidents occur because the safety hazards and security 

vulnerabilities were not identified and removed during the design process, or because the resiliency 

of detection and mitigation mechanisms are not adequately validated. Further, with the increasing 

size and complexity of software, even if the most rigorous risk analyses and validation processes 

are used, some residual failures manifest as unforeseeable hazards during the device operation [2].  

1.2.3. Mitigation of Safety Hazards  

Although medical systems are often embedded with safety mechanisms that detect failures and 

put the system into a safe state, in practice, timely detection and effective mitigation of safety 

hazards (caused either by incidental failures or malicious attacks) are very challenging. This is 

because of the complex nature of incidents, the difficulty of accurately modeling the causality 

relationships [12], and uncertainties in operator actions and patient health status. 

Mitigation of safety hazards requires preemptive detection of the adverse consequences of 

commands and understanding of the semantics of interactions among operators and cyber and 

physical components at different layers of the system.  

Existing detection and recovery mechanisms are designed primarily based on inclusion of 

redundancy and consistency checks or monitoring the software and physical system components 

separately from each other. The interactions among operators, software modules, and physical 

components, the dynamics of the physical system, and the patient status are often not considered 

in the design of those mechanisms, mostly because of cost and real-time constraints. 

 Contributions 
This dissertation addresses the aforementioned challenges by taking a data-driven approach to 

resiliency assessment and design for resiliency of medical cyber-physical systems. The overall 

contribution of this dissertation is a methodology that combines data analytics, systems-theoretic 

accident causality analysis, safety hazard injection, and dynamic-model based state estimation to 



4 

assess system resiliency and derive design of safety monitors that can make quantitative 

measurements of the system’s safety and mitigate hazards in a timely manner.  

We assert that in medical cyber-physical systems, resiliency can be best achieved through: 

• Large-scale analysis of past incidents to enhance our understanding of the multidimensional 

causes involved in incidents and to obtain statistically confident measures of their impacts. 

• Experimental validation of safety and security protection mechanisms in the presence of 

realistic safety hazard and security attack scenarios. 

• Design of mechanisms for continuous monitoring of human operators, cyber and physical 

system states, and patient status, and rapid detection of events that can lead to safety 

violations.  

In particular, we focus on resiliency assessment and design of protection mechanisms for robot-

assisted surgical systems used in minimally invasive surgery [13], as an example of safety-critical 

cyber-physical systems with multiple humans in the loop. We present a simulation platform that 

integrates the following: 

• A systems engineering approach to safety (adapted from [12]), which uses a causality model 

based on systems and control theories to analyze safety-critical events and identify 

hazardous system states and their potential causes based on the hierarchical control structure 

of the surgical robot. 

• A robotic surgical simulator, which leverages the robot control software and enables 

modeling of the behavior of human operators and the dynamics of robotic hardware and 

mechanical components (and potentially tool-tissue dynamics). 

• A safety hazard injection engine that performs detailed injections into robot control software 

(i) in a surgical simulator to emulate the impact of safety hazards, without causing adverse 

impacts on the electrical and mechanical components of the real robot, or (ii) in the actual 

robot to conduct resiliency assessment and validation of the safety mechanisms in a real-

world system. 

• A dynamic-model based analysis framework that estimates the consequences of interactions 

between the cyber and physical components by real-time measurement and computation of 

the robot’s dynamics, and preemptively detects safety hazards to issue efficient and timely 

mitigation/recovery actions. 
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This platform is built based on the results of our study on causes of adverse events and reasons 

for recalls of robot-assisted surgical systems. The proposed solution can potentially be applied to 

a broader class of safety-critical medical and cyber-physical systems that involve humans in the 

loop, including electric power grid and transportation systems. 

The main contributions of this dissertation can be summarized as follows:  

• Analysis of computer failures in medical devices: We present MedSafe, a framework for 

large-scale analysis of structured and unstructured data from the public FDA databases on 

medical device recalls and adverse events. By combining techniques from natural language 

processing and statistical learning, MedSafe enables discovery of safety issues that 

originated from computer failures in medical devices with an average accuracy of 91%. We 

characterize the computer failures in terms of fault classes, failure modes, and recovery 

actions taken by the manufacturers, and measure their impact on the patients and the 

manufacturers in terms of severity of hazards and the number of device repairs and 

removals. Our analysis of over 13K recall records using MedSafe shows that although 

software is the major cause of failures in computer-based medical devices, hardware, 

battery, and I/O failures have much larger impact in terms of the number of recalled devices 

and the cost of device removal/repairs. We also identify several classes of safety-critical 

medical devices that posed serious hazards to patients and provide many examples of 

devices that were designed without appropriate handling of safety issues or rigorous 

validation of their safety mechanisms. 

• Systems-theoretic analysis of adverse events: We develop an approach for constructing 

ontology models based on the human-in-the-loop control structures used in system-theoretic 

accident causality analysis [12] to formalize the semantic interpretation of incident 

narratives. The proposed ontology model enables automated extraction of important safety-

related features from the unstructured text to provide deeper understanding of 

multidimensional causes of incidents. We demonstrate the effectiveness of system-theoretic 

analysis of adverse events in a case study of more than 10K adverse events reported for 

robotic surgical systems used in minimally invasive surgery. We characterize those events 

by identifying the system hazards and potential causal factors that led to unsafe control 

actions during robotic procedures as well as inadequate safety mechanisms in both system 

design and operational practices that led to health-threatening events (injuries and death). 
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We also analyze the trends of adverse events and patient impacts across the years and 

surgical specialties. 

• Safety hazard simulation for resiliency assessment and safety training: Driven by the 

insights gained from analysis of real incidents, we propose a technique for experimental 

resiliency assessment of system in the presence of potential safety hazards. This framework 

uses software fault injection to emulate the safety hazards caused by accidental failures or 

malicious threats targeted at different layers of the system control structure. In order to 

reduce the test space for safety validation, the systems-theoretic accident causality 

models [12] are used to identify the critical locations within the cyber-physical system to 

target with software fault injection. We demonstrate the effectiveness of this technique by 

validating the safety mechanisms in the RAVEN II robot, an open-source platform for 

research in telerobotic surgery [14], [15]. Our results show that with a reduced number of 

targeted fault injections, we can identify several vulnerabilities in the safety mechanisms, 

which, if not removed, might lead to adverse consequences for the patient and physical 

system. We also demonstrate the application of the safety hazard injection framework to the 

simulation of real hazard scenarios (extracted from the FDA data) in a virtual environment 

for simulation-based safety training of robotic surgeons.  

• Cyber-physical attacks on control systems of surgical robots: We introduce a new family 

of targeted attacks on the control systems of teleoperated surgical robots that strategically 

inject malicious control commands into the system at a critical time during surgery. We 

illustrate these attacks by implementing prototype malware targeting the RAVEN II robot 

and show that they can lead to unforeseen and abrupt jumps of a few millimeters in the robot 

manipulators within only a few milliseconds or the unavailability of the system due to an 

unwanted transition to a halt state. We discuss the detectability of the attacks and that their 

adverse consequences can be best mitigated by continuous monitoring of both cyber and 

physical components and by estimating the physical consequences of control commands. 

We also discuss other possible ways that the availability of commercial surgical robots can 

be compromised on a wider scale, by discussing vulnerabilities in the open-source robotic 

middleware and the servers used for remote diagnostic services during surgery. 
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• Preemptive detection of safety hazards caused by incidental failures or malicious 

attacks: We present a dynamic-model based analysis framework that estimates the 

consequences of control commands sent from the cyber domain to physical domain through 

real-time computation of the system’s dynamics to preemptively determine if a command 

is unsafe before the actual execution of the command progresses and its adverse 

consequences manifest in the physical system. The proposed framework can be used for 

timely and effective mitigation of safety hazards due to either accidental failures or 

malicious attacks. We evaluate the detection accuracy of the framework using two real 

attack scenarios implemented on the RAVEN II robot. Our experiments show that the 

dynamic-model based analysis framework achieves better performance than the existing 

safety mechanisms that rely solely on monitoring of the control commands in the cyber 

domain, without considering their semantics in the physical system. 

 Dissertation Organization 
The rest of this dissertation is organized as follows. Chapter 2 presents the design of MedSafe 

and our large-scale analysis of computer-related failures in medical devices. Chapter 3 describes 

our proposed ontology model for systems-theoretic analysis of adverse events and the case study 

of adverse events in robotic surgery. Chapter 4 describes our safety hazard simulation framework 

for resiliency assessment and safety training, which is demonstrated on the RAVEN II robot. 

Chapter 5 presents the targeted cyber-physical attacks on the control system of teleoperated 

surgical robots and the dynamic-model based analysis framework for real-time detection and 

mitigation of safety hazards. Finally, Chapter 6 concludes the dissertation and presents directions 

for future research. Appendix A discusses concerns regarding underreporting in collection and 

analysis of data. Appendix B provides a full description of example adverse event reports from the 

FDA MAUDE database, which are discussed in Table 3.3. Appendix C describes our previous 

work on design of resilient patient monitoring devices, serving as preliminary results for one of 

the directions for future work suggested in Chapter 6.  
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COMPUTER FAILURES IN MEDICAL DEVICES  

 

 Overview 
The U.S. Food and Drug Administration (FDA) regulates medical devices sold in the United 

States by requiring manufacturers to follow a set of pre- and post-market regulatory controls. 

Medical devices are classified by the FDA into 5,853 distinct types and 19 medical specialties, 

such as anesthesiology, cardiovascular, clinical chemistry, general hospital, general surgery, and 

radiology, indicating their regulatory class and marketing requirements. All devices must comply 

with general controls such as registration, listing, quality system, and labeling, but device classes 

require additional special controls. Devices such as pacemaker chargers, patient beds, or chairs 

which do not pose a very serious risk to health of patients are exempt from special regulatory 

controls. Most of the devices with medium level of risk such as patient monitors, robotic devices, 

and diagnostic software require a special set of controls, including submission of a Premarket 

Notification 510(k) to FDA. The 510(k) Premarket Notification must demonstrate that the device 

is substantially equivalent to one legally in commercial distribution in the United States. Devices 

such as pacemakers, radiation therapy equipment, and infusion pumps that pose a significant risk 

of illness or injury to patients are required to go through a Premarket Approval (PMA) process in 

which claims made for their functionality should be proved by submission of clinical data [1]. 

After a medical device is distributed in the market, FDA collects and monitors the reports of 

adverse events and other problems with the devices, and alerts health professionals and the public, 

by issuing recalls or safety notifications, to ensure proper use of devices and patients’ health and 

safety.  

The FDA data on medical device recalls and adverse events of medical devices provide valuable 

insights on the past failures of medical devices and how the designs could be improved in the 

future. However, the automatic analysis of these reports is a challenging task, requiring semantic 

                                                 
 This chapter contains material from the previously published works [2], [3], coauthored with Z. Kalbarczyk, R. K. 
Iyer, J. Raman, and R. Hoagland, copyrighted by IEEE. 
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interpretation of natural language text and consideration of all potential causes and contextual 

factors, including faulty components, human errors, and system states.  

We developed MedSafe, a framework for automated analysis of data on failures and safety 

incidents of medical devices. It enables the analysis of larger sets of reports from the FDA 

databases, in order to provide deeper understanding of the causes of failures and safety incidents 

in various types of medical devices and statistically confident measures on how the failures and 

safety issues impact the patients.  

MedSafe combines state-of-the-art techniques in natural language processing, machine 

learning, knowledge discovery, and accident analysis, to extract structured information from the 

unstructured human-written descriptions of recalls and adverse events data. Figure 2.1 shows the 

input and output for recalls and adverse events analyses in MedSafe, which comprises the 

following steps:  

1. Data extraction, filtering, and coalescing: 

• Collect the recalls and adverse events data from the online FDA databases for any desired 

period of time, device type, or manufacturing company. 

• Filter non-relevant records and coalesce duplicate records related to the same events. 

• Extract additional information on the recalled or faulty devices, by cross-referencing recall 

records and adverse event reports with the product classification and device-related data. 

2. Recalls data analysis: 

• Identify recalls related to computer-based medical devices. 

• Characterize computer-related recalls in terms of fault classes, failure modes, recovery 

actions taken by the companies. 

• Measure the impact of failures on the patients and the manufacturers in terms of severity of 

potential hazards and the number of device repairs/removals. 

3. Ontology modeling for accident analysis: 

• Create a device-specific ontology model based on the control structure of the device by 

identifying the main control loops, the controllers, the controlled processes, the interactions 

among them, the contextual factors, and control flaws. 

• Define a set of tags and semantic dictionaries for each class in the ontology model and a set 

of pattern matching rules for identifying and annotating the tags in the natural language text. 
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4. Adverse event data analysis: 

• Semantically parse the adverse event descriptions by ontology-driven annotation of the 

natural language text with safety-related features (e.g., operator actions and device 

malfunctions) to facilitate system-theoretic causal accident analysis of adverse events.  

Section 2.2 provides an overview on the data sources used in our analysis. Section 2.3 presents 

our preliminary analysis of recalls and adverse events to identify safety-critical computer failures 

in medical devices. In Section 2.4 the MedSafe recalls data analysis is described. The MedSafe 

adverse event data analysis is presented in more detail in Chapter 3. The source code for MedSafe 

is publicly available for use by the other researchers [16], [17].   

 
(a) 

 
(b) 

Figure 2.1. MedSafe framework: (a) Recalls data analysis, (b) Adverse event data analysis. 
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 Data Sources 
In what follows we provide a brief overview on the following three databases used by the FDA 

for collection of pre- and post-market data on medical devices: the Medical & Radiation Emitting 

Device Recalls (Recalls) database; the Manufacturer and User Facility Device Experience 

(MAUDE) database, and the Total Product Life Cycle (TPLC) database [1]. 

2.2.1. Medical Device Recalls  

The FDA’s Recalls database contains classified medical device recalls since November 1, 2002. 

A recall is a voluntary action that a manufacturer, distributor, or other responsible party takes to 

correct or remove from the market any medical device that violates the laws administrated by the 

FDA. Recalls are initiated to protect the public health and well-being from devices that are 

defective or that present health risks such as disease, injury, or death. In rare cases, if the company 

fails to voluntarily recall a device that presents a health risk, the FDA might issue a recall order to 

the manufacturer.  

The FDA classifies recalls into three classes based on the relative degree of health hazard the 

device presents. Class I recalls indicate that there is a reasonable chance that use of the device will 

cause serious adverse health problems or death. Examples of recalled devices in this class are 

defibrillator/monitors, anesthesia machines, and drug delivery systems. Class II indicates devices 

that might cause temporary or medically reversible adverse health consequences or pose a remote 

chance of serious health problems. Glucose monitors and multi-parameter patient monitors are 

examples of devices recalled in this class. Class III indicates devices that violate the laws 

administrated by the FDA but are not likely to cause adverse health consequences, such as patient 

programmers and ultrasound system software.  

Each record submitted to the FDA’s recalls database contains structured information such as a 

unique Recall Number; the Recall Class; Date Posted on FDA, as well as unstructured narratives 

describing the Product Name (i.e. the name of device and a description of its functionality), 

Recalling Firm/Manufacturer, Quantity in the Commerce (i.e. number of devices distributed on 

the market), and important information on the safety issues of the device, Reason for Recall and 
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the recovery Action taken by the manufacturer to address the device problems. Figure 2.2 shows a 

sample record from the recalls database [18]. There are several challenges in analyzing the recalls 

data: 

(i) The recalls data is accessible online through the FDA website, but all the fields of the 

records are not provided in the downloadable files. Also, the Quantity in the Commerce 

field contains a combination of textual and numeric information which should be parsed 

for calculation of the total number of devices distributed in the market that are affected by 

a recall.  

(ii) Many of the recall records represent the same failure event reported for different devices 

or device models manufactured by one company. These recalls have the same 

Manufacturer fields and very similar Reason for Recall and Action fields, while their 

Quantity in the Commerce fields contain different values.  

Class 2 Recall - Vivid E9 ultrasound system 
Date Classified November 21, 2013 
Recall Number Z-0373-2014 
Product GE Vivid E9 ultrasound system. GE Vivid E9 is a Track 3 diagnostic ultrasound system, 

which is primarily intended for cardiac imaging and analysis, but which also includes 
vascular and general radiology applications. The Vivid E9 incorporates a variety of 
electronic array transducers operating in linear, curved linear, sector/phased array or 
matrix array format, including two dedicated CW transducers and several real time 3D 
transducers. It consists of a mobile console with keyboard control panel; color LCD/TFT 
touch panel, LCD color video display and optional image storage and printing devices. It 
provides high performance ultrasound imaging and analysis and has comprehensive 
networking and DICOM capability. 

Recalling Firm/ 
Manufacturer GE Healthcare, LLC 

Manufacturer  
Reason for Recall 

GE became aware of a potential safety issue due to a system slow down and system lock 
up associated with the software of Vivid E9 ultrasound system. During a critical procedure 
the Vivid E9 Scanner may gradually become unresponsive and eventually lock up, with the 
result that the vivid E9 Scanner must be rebooted. 

Action An Urgent Medical Device Correction letter, dated 10/11/2013, was sent to 3 
departments within the affected hospitals. The letter described the safety issue, and 
identified affected devices. The letter stated to reboot the scanner in an unresponsive 
/lock up condition. Also if the system is being used for an interventional procedure, the 
TEE probe should remain in the patient while system is rebooting. A GE healthcare service 
engineer will install a correction to affected devices. 

Quantity in 
Commerce 710 

Distribution Worldwide and U.S. 

Figure 2.2. A sample record from the FDA Recalls database, available at [18]. 
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(iii) Only a fraction (22.9%) of the recalls are related to failures of computer-based medical 

devices, i.e. the computer failures of medical devices. The identification of these records 

requires the semantic interpretation of natural language text in the Product Name, Reason 

for Recall, and Action fields of the records.  

(iv) Recalls data does not include the FDA device classification information such as the 

Medical Specialty, Product Code, Device Type, Device Class, and Submission Type, which 

could provide important insights on the regulatory process used for the approval of recalled 

devices and understanding the impact of device failures in different medical specialties.  

2.2.2. Medical Device Adverse Event Reports 

The MAUDE database is a publicly available collection of suspected medical device-related 

adverse event reports, submitted by mandatory (user facilities, manufacturers, and distributors) 

and voluntary (healthcare professionals, patients, and customers) reporters to the FDA. FDA 

regulations require firms that receive complaints to notify the FDA of medical device incidents, 

including device malfunctions, serious injuries, and deaths associated with devices. Not all 

reported adverse events lead to recalls; manufacturers and the FDA regularly monitor adverse 

events to detect and correct problems in a timely manner.  

Each adverse event report contains information such as: unique MDR Report Key; device Brand 

Name and Generic Name; Event Type indicating the impact of adverse event on the patient 

(“Malfunction,” “Injury,” “Death,” or “Other”); Device Problem indicating the problem from a list of 

problem categories provided by the FDA; and human-written Event Description and Manufacturer 

Narrative fields that provide a short description of what actually happened, as well as any 

comments made or follow-up actions taken by the manufacturer to detect and address device 

problems or indications on whether the adverse event was actually related to a device malfunction.  

2.2.3. Total Product Life Cycle Data 

The Total Product Life Cycle (TPLC) database integrates pre-market data on medical devices, 

including device classifications, pre-market approvals (PMA), and pre-market notifications 

(510(k)), with post-market data, including adverse events and recalls. Each record provides the 

pre-market review information and a list of adverse events and recalls reported for a device type.  
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 Safety-Critical Computer Failures in Medical Devices 
We first performed a preliminary study on the causes of computer-related failures in medical 

devices and their impact on patients, by analyzing human-written descriptions of recalls and 

adverse event reports, obtained from the FDA databases. We define computer-related failure as 

any event causing a computer-based medical device to function improperly or present harm to 

patients/users, due to failures in any of the following components of the device: software, 

hardware, I/O, or battery. Other failures of computer-based devices that could not be easily 

categorized in these four classes are classified in other category.  

In-depth study of recall data allowed us to characterize the computer-related failures based on: 

• fault class: the defective components that led to device failure 

• failure mode: the impact of failures on the device’s safe functioning 

• recovery action category: the type of actions the manufacturer took to address the recall  

• number of recalled devices: the quantity of recalled devices distributed on the market  

• device category: the categories and types of recalled devices  

We used the overall number of devices that are affected by each recall, as a metric to measure 

the impact of failures. We specifically focused on safety-critical recalls that include: 

(i) Recalls classified by FDA as Class I, presenting a high likelihood of severe injury or death 

to patients 

(ii) Recalls for which the Reason for Recall field specifically indicated a patient safety issue 

such as injury or death 

(iii) Recalls for which the Reason for Recall field explicitly indicated potential of exposing 

patients/users to immediate “Physical Safety Hazards” such as “overdose”, 

“overexposure”, “electrical shock”, “burning”, and “fire” (classified under “Physical 

Safety Hazard” failure mode in Section 2.3.2.2).  

Safety-critical recalls were used as a basis to find categories and types of safety-critical medical 

devices, whose failures will most likely lead to life-critical consequences for patients. Analysis of 

adverse event reports allows us to measure the impact of device failures in terms of actual adverse 

consequences (e.g., serious injuries or deaths) reported to the FDA. Finally, based on specific 

safety issues identified for life-critical medical devices, we discuss the challenges in design of 

next-generation medical devices. 
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2.3.1. Analysis Flow 

Figure 2.3 shows the overall analysis flow, which started with extraction of 13,413 recall 

records from the database, reported to the FDA from January 1, 2006 to December 31, 2011.  

In Step 2, we identified the computer-related recalls by analysis of the Reason for Recall and 

Action fields of records in the FDA recalls database. Those fields contain human-written 

unstructured text explaining the main reason for the recall and recovery actions taken by the 

manufacturer to address the recall. Many of the recall records have the same reasons because the 

same component or part is used in different devices or models manufactured by the same company. 

After coalescing recall records that indicated the same manufacturing company and the same 

reason for recall in their descriptions, we came up with 5,294 unique Recall Events (40% of the 

total recall records) or what we refer to as Recalls in the FDA database. 

In Step 3, we used text normalization and part-of-speech tagging (using Natural Language 

Toolkit (NLTK) [19]) to automatically extract the most frequently used adjectives and nouns in 

the “Reason for Recall” description of the recalls. This list was then manually reviewed to create 

a dictionary of 461 common computer-related keywords that could potentially represent failures 

of computer-based devices. The list of computer-related keywords was further categorized into the 

 

Figure 2.3. Methodology for analyzing safety-critical computer-related recalls. 
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classes of Software, Hardware, Battery, Input/Output (I/O), and Other, corresponding to defects in 

different components of the device.  

In Step 4, the extracted dictionary was then used to identify computer-related recalls by 

searching for keywords in Reason for Recall descriptions. That led us to a reduced list of 4,200 

potential computer-related recalls, whose corresponding recall records were manually reviewed 

for validation and further categorization.  

In Step 5, we manually reviewed and excluded many of the records from the list of computer-

related recalls because their Product Name, Reason for Recall and Action fields did not indicate a 

computer-based device recall. The final list of computer-related recalls included 1,116 unique 

recall events. 

In Step 6, we also found 94 additional computer-related recalls reported because of software 

errors (software-related recalls) that were missed in our reason analysis process because the 

human-written explanations of reasons did not include any terms from the dictionary related to 

computers. We extracted these additional recalls by searching  for the terms 'software', 'version', 

and 'release' in the Product Name field and terms 'software', 'update', and 'upgrade' in the Action 

fields.  

In Step 7, by manual review of the computer-related recalls, we extracted Fault Class, Failure 

Mode, Recovery Action Category, and Number of Recalled Devices for each recall.  The number 

of recalled devices was calculated by summing up the quantities listed in the recall records related 

to each recall event. For example, in Table 2.1 the fourth recall event was reported in five records 

in the recalls database, which together affected a total number of 7,152 devices on the market. In 

some instances where the total number was entered in all the recall records related to a recall event, 

we only counted it once. 

We then used the FDA TPLC database which integrates the information such as device name, 

type, category (medical specialty), and regulatory class of recalled devices with a subset (3,676) 

of recall records. We extracted that information for 794 of computer-related recalls in our study 

and then used it as a training set for finding the names, types, and categories of the rest of computer-

related recalls. 

Finally, we obtained a total of 1,210 computer-related recalls that affected an overall number 

of 12,024,836 devices distributed in the United States and worldwide. The 1,210 recalls were used 

as the basis for deriving statistics on Fault Classes, Failure Modes, and Recovery Actions of 
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computer-related failures (Section 2.3.2), to identify safety-critical medical devices, their specific 

safety issues, and patient impact (Section 2.3.3), and to provide insights on the challenges in design 

of next-generation medical devices (Section 2.3.4).  

2.3.2. Data Analysis Results 

During the study period, over 5,290 recalls and 1,154,450 adverse events were reported to the 

U.S. Food and Drug Administration (FDA). As Figure 2.4  shows, since 2006, there was a 69.8 

percent increase in the number of recalls and a 103.3 percent increase in the number of adverse 

events, reaching approximately 1,190 recalls (see Figure 2.4(a)), 92,600 patient injuries, and 4,590 

deaths in 2011 (see Figure 2.4(b)). The number of computer-related recalls almost doubled, 

reaching an overall number of 1,210 (22.9 percent of all recalls) in 2011. Previous studies 

conducted during the periods of 1983–1997 [4] and 1999–2005 [5] attributed, respectively, 383 

(six percent) and 1,261 recalls (33.4 percent) to software-based medical devices.  

 

Table 2.1. Examples of computer-related recalls. 

 
 



18 

 Fault Classes   
Table 2.2 lists example keywords from the dictionary used to identify computer-related failures 

in each fault class. The “Software” class represents failures due to software errors. The “Hardware” 

category includes both electrical issues and defects of internal circuits, while the “Input/Output 

(I/O)” category includes failures due to sensors, connections, display, or speakers. The “Battery” 

category represents defects in batteries, power cords, or power supply units that might cause 

interruption/failure of computer-based device function or cause harm to patients. “Battery” failures 

were included as computer-related failures because a typical safety-critical computer system 

should be able to detect, respond, and manage such failures and prevent harm to patients. The 

“Other” category includes recalls whose descriptions indicate a computer-related failure, but are 

not sufficient to be categorized in any of the above categories.  

Table 2.2. Example dictionary keywords. 
Fault Class Example Dictionary Keywords 

Software software, application, function, code, version, backup, database, program, bug, java, run, upgrade 

Hardware board, chip, hardware, processor, memory, disk, pcb, disk, electronic, electrical, circuit, leak, 
short-circuit, capacitor, transistor, resistor 

Other error, system, fail, verification, self-test, reboot, web, robotic, calculation,  document, 
performance, workstation 

Battery battery, power, supply, outlet, plug, power-up, discharge, charger 

Input/ 
Output 

sensor, alarm, message, screen,  signal, interface, monitor, connect,  button, scanner, key, 
speaker, wireless, terminal, communication 

 

 
(a) (b) 

Figure 2.4. (a) Total number of recalls per year (2006-2011): Computer-related and non-computer-
related, (b) Total number of adverse events (2006-2011): Malfunctions, Deaths, and Injuries (Numbers 

on the bars indicate number of deaths in thousands per year). 
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Table 2.1 shows example recall records categorized in each fault class. Figure 2.5 illustrates the 

distribution of recalls across different fault classes and recall classes (risk classes). The following 

are our observations based on these results:  

• Note that all Class I recalls are classified as safety-critical according to criterion (i) in the 

beginning of Section 2.3. Our analysis shows among Class I recalls, 42 were due to 

computer-related failures (Figure 2.5, column 2). Software failures accounted for 33.3% 

(14) of Class I recalls, while Hardware (8), Other (10), Battery (8), and I/O (2) combined 

were the reason for 66.7%. Clearly, a non-negligible fraction of computer-related recalls are 

due to non-software-related failures.  

• The majority (90.5%) of computer-related recalls were classified by FDA as Class II, with 

a medium risk of health consequences. Of these, we classified 66 to be safety-critical based 

on criterion (ii) for safety-critical recalls introduced in the beginning of Section 2.3. In each 

case the manufacturer’s description explicitly indicated that the device failure resulted in or 

had the potential to result in a patient safety issue, injury, or death.  

 
Figure 2.5. Distribution of computer-related recalls in fault classes and risk levels. The last column of the 

table shows the total number of devices on the market affected by the recalls in each fault class. 
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• When we simply look at the overall number of recalls, similar to what other studies (e.g., [4]  

– [7]) reported, software is a major cause (14.7%) of the total recalls. Additionally, 64.3% 

of computer-related recalls are due to software failures. However, we get a very different 

perspective by considering the total number of devices on the market that were impacted by 

specific recall types (software, hardware, other, battery, and I/O). This analysis can be 

derived from the last column of Figure 2.5. If we look at the total number of devices, 

hardware-related recalls had a larger impact (almost 84% more) compared to software. Of 

all the recalled devices on the market, 57.3% were recalled because of hardware, battery, or 

I/O failures, and only 19.2% because of software faults. 

 Failure Modes 
To show the breadth of failures that might impact the safe functioning of a computer-based 

medical device, we group the failures under six different categories shown in Table 2.3. Number 

of recalls in different FDA recall classes categorized in each failure mode along with example 

failures of each category is shown in the table. For example, 84 of 1,210 computer-related recalls 

were due to failures affecting the alarm functionality of the device and were grouped under the 

“Alarm/Message Error” category.  

We draw the attention to safety-critical recalls identified based on criterion (iii) in the beginning 

of Section 2.3. For these 91 recalls, devices had potential to expose patients/user to immediate 

safety hazards (e.g., overdose, electrical shock, and fire), and are grouped under the “Physical 

Safety Hazards” failure mode. It is interesting that nearly all physical safety hazards were in Class 

II, but it is important to consider them as safety-critical because the manufacturer’s description 

explicitly indicated a possibility of immediate harm to patients/users. 

The last three columns of Table 2.3 show example recalls in each failure mode category that 

are classified as safety-critical according to the criteria defined in Section 2.3 and will be further 

discussed in Section 2.3.3. In each example, information used for identification of the safety-

critical recall is highlighted in bold in the reason description and the corresponding criteria are 

shown in the last column. For example, the third recall is related to a hardware defect that might 

lead to loss of the system pump and injection of hot fluid into patient's uterus. Although this recall 

was classified in Class II, it was selected as a safety-critical recall by criterion (ii).  
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For 113 of the 1,210 recalls there was not enough details on failure symptoms, or the event 

could not be classified in any of the defined failure modes.  

 Recovery Actions 
We classified the recovery actions taken by manufacturers to five categories shown in Table 2.4. 

Also Table 2.1 (column 5) shows actions taken for the example computer-related recalls. In the 

following, the denominators refer to the number of recalls/devices in the specified fault classes: 

Table 2.3. Computer-related failure modes. 

Failure 
Mode 

Recalls 
Count/ 

Example Failures 

Example Safety-Critical Recalls 

Class 

Re
ca

ll 
Cl

as
s Recall Record Number: 

Reason for Recall Summary Cr
ite

ria
 

I II III 

Alarm/ 
Message 

Error 
4 76 4 

- Alarm reset 
- Lack of audible alarms 
- Missed alarms 
- Unexpected/false alarms 

I 

Z-0051-2012: Pumps stop infusing, 
backup alarm sounds; but the "Run" 
LEDs advance as if the pumps were 
infusing.  

(i) 

Physical 
Safety  
Hazard 

2 89 0 

- Electrical shock 
- Smoke/fire/explode 
- Unintended movement 
- Overdose/over exposure 

II 

Z-0119-2009: A short-circuit (e.g., in a 
cable or the control units) can result in 
uncontrolled and unstoppable 
movement of the Video Fluoroscopy 
table. This failure might lead to serious 
deterioration in state of patient health.  

(iii) 

Display/ 
Image 
Error 

1 156 11 

- Blank image 
- Display freeze 
- Image distortion/corruption 
- Loss of image data 

I 

Z-0006-2011: Under certain wireless 
network conditions a communication 
error can occur that freezes the PC Unit 
screen. This failure may result in delay 
of therapy and serious injury or death.  

(i) 
 

(ii) 

Treatment 
Interruption/ 

Therapy 
Failure 

18 129 3 

- Delayed/failed shock 
delivery 
- Infusion/ventilation failure 
- Signal analysis failure 
- Loss of monitoring 

II 

Z-0689-2007: Defective integrated 
circuit board could result in loss of the 
system pump and patient injury (hot 
fluid 90 degree C into uterus). 

(ii) 

Device 
Operation 

Failure 
12 234 23 

- Device inoperable 
- Failure at startup 
- Failure to stop exposure 
- Hangup/Freeze 

II 

Z-1474-2009: Unusual occurrence of 
system lockups of cardiovascular X-ray 
imaging systems causes image 
acquisition failure and user has to reset 
the system. One patient death has 
been reported related to this issue. 

(ii) 

Calculation/ 
Output 
Error 

4 311 20 

- Corrupted patient files 
- Inconsistent output 
- Incorrect 
calculation/display 
- Miscalculation 

I 

Z-0263-2012: Drug dosage calculation 
may indicate incorrect values; 
misalignment of ECG-ART waveforms 
was observed on the central station. 

(i) 
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• For 18.4% (223/1,210) of recalls the recovery action was limited to sending notifications to 

customers about the device problem, or providing instructions on how to avoid or 

workaround the problem. 

• The majority of computer-related recalls due to software faults (80% = 623/778) were 

addressed by releasing a new software version or software patch to fix the problem. Sending 

notifications or instructions was the next most common action to address software-related 

recalls (16.7% = 130/778).   

• For hardware-related recalls, in most cases, customers were required to completely remove 

the device and/or return it to the company for replacement (36.3% = 65/179), or the device 

or part of it had to be corrected/repaired by the company (38.5% = 69/179). Interestingly, 

4.5% (8/179) of hardware-related recalls were addressed by a software update.  

• Of all the devices affected by the recalls, approximately 17.8% (2,145,087/12,024,836) 

required replacement of parts or a complete removal. Additionally, the majority of these 

replacements were because of battery (52.9% = 1,135,478/2,145,087) or hardware (37.6% 

= 805,868/2,145,087) failures.  

For 10% (121/1,210) of the records, the Action field information was not available or sufficient 

to categorize them. 

Table 2.4. Recovery action categories and examples. 
Recovery 

Action 
Category 

Example Recovery Actions 

Re
ca

lls
 

Co
un

t 
Safety 

Notification “Consignees were notified by letter on/about December 1, 2005.” 

223 
Safety  

Instructions 

“In the notice letter, Agfa HealthCare is also providing customers with the recommended 
workaround. The workaround is to only print from the Viewer screen or to print the ECG 
once confirmed.  The Viewer screen, however, does not allow the user to print batches of 
reports as does the Index screen.” 

Software  
Update 

“The letters stated that the recall was to the user level and requested that the user perform 
the software upgrade, which will eliminate the possibility of shock and burn.” 632 

Repair 

“The notice asks that the customers inspect their units for signs of discoloration indicative 
of a faulty connector. The customers were instructed to return the product to CSZ for 
repair by contacting their Customer Service division and obtaining a Return Authorization 
number and specific instructions concerning packaging and returning of the unit(s) for 
repair.” 

95 

Replace/ 
Remove 

“The letter indicates that the firm will exchange the recalled defibrillator with a 
replacement and new five (5) year warranty.” 139 
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These results show the importance of non-software-related (e.g., hardware and battery) failures 

in terms of higher cost for manufacturers, caregivers, and patients. For example, for implantable 

cardioverter-defibrillators recalled during 1990–2000, a total cost of $870 million including device 

checks/analyses ($83 million) and replacements ($787 million) was estimated [8]. These costs 

could be considerably reduced by the use of fault-tolerance techniques to enable recovery from 

such failures without requiring complete removal of the devices. 

2.3.3. Safety-Critical Medical Devices 

In the final stage of analysis we focused on safety-critical devices whose failures present the 

highest likelihood of severe life-critical consequences to patients (Step 9 in Figure 2.3). A total of 

197 (16.3%) computer-related recalls were identified as safety-critical, including (i) 42 Class I 

recalls, (ii) 66 Class II recalls whose Reason for Recall field specifically indicated a patient 

“safety” issue such as “injury” or “death”, and (iii) 89 Class II recalls with a “Physical Safety 

Hazards” failure mode. Those 197 recalls together affected 2,447,894 devices on the market.  

We found that the majority (80.7% = 159/197) of safety-critical recalls were for devices used 

in Radiology (e.g., linear accelerators), Cardiovascular (e.g., automated external defibrillators), 

General Hospital (e.g., infusion pumps), Anesthesiology (e.g., ventilators), and General Surgery 

(e.g., electrosurgical accessories). More importantly, 73.8% (31/42) of Class I recalls were for 

Cardiovascular and General Hospital devices such as defibrillators, patient monitors, and infusion 

pumps. Almost all those devices were approved by the FDA under a medium level of regulatory 

controls (510(k) clearance). 

Table 2.5 shows example types of safety-critical medical devices that were recalled because of 

potential harm to patients. The total number of computer-related recalls, safety-critical computer-

related recalls, and example fault classes and failures for each device type were extracted from the 

recalls database. The last three columns of Table 2.5 present the number of adverse events reported 

for these devices in the MAUDE database. We obtained these numbers by searching for the devices 

based on their Names and Product Codes in the MAUDE database (Step 10 in Figure 2.3). For 

extraction of computer-related adverse events, we used the Product Problems of the reports.  
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Table 2.5. Safety-critical medical devices: Computer-related recalls and adverse event reports. 
De

vi
ce

 C
at

eg
or

y 

Device Type 
(Product Codes) 

Safety Critical Computer-Related Recalls 
Number of 

Computer-Related 
Adverse Events 

N
um

 o
f 

Re
ca

lls
 

N
um

 o
f 

De
vi

ce
s Example 

Faults 
Classes 

Example 
Failures De

at
h 

In
ju

ry
 

M
al

-
fu

nc
tio

n  

Ra
di

ol
og

y 

Linear 
Accelerator  

(IYE) 
13 4,415 

Software 

 - No interlock of beam delivery 
 - Unexpected gantry rotation 
 - Incorrect treatment plan 
 - Dose delivered to wrong location 0 0 5 

Other  - Unexpected flat panel movement 
 - Unexpected couch movement 

Image  
Processing 

System  
(LLZ) 

15 15,069 Software 

- Mismatch/wrong image orientation 
- Inaccurate annotation/data print 
- Unintended images displayed 
- Incorrect/incomplete data display 
- Overestimated image scales 

1 0 4 

Image-
Intensified  

Fluoroscopic  
X-Ray System  

(JAA) 

7 3,468 Software 

- Unexpected system lockup 
- Inaccurate detection 
- Incorrect dose exposure 
- Unstoppable X-ray exposure 
- Image storage failure 

0 1 2,186 

Ca
rd

io
va

sc
ul

ar
 

De
fib

ril
la

to
r 

External  
(Non-

Wearable) 
(MKJ) 

17 415,537 

Hardware 
Battery 

- Delayed/failed shock delivery 
- Energy discharge failure 

16 1 281 Software - Premature shutdown 
- Incorrect energy/shock delivery 

Other - Unexpected power on/off 

Implantable  
(NIK/LWS/ 

MRM) 
2 170,542 Software 

- Loss of rate response 
- Premature battery depletion 
- Loss of telemetry 
- Aborted therapy 

293 14,281 11,028 

Implantable 
Pacemaker/ 

Pulse Generator 
(DXY/LWP/NVZ) 

1 40,164 Hardware 
- Loss of rate response 
- Premature battery depletion 
- Loss of telemetry 

60 3,301 2,742 

Physiological 
Patient 

Monitor/ 
Arrhythmia  

Detector/Alarm 
(MHX/DSI) 

10 38,394 Software 

- Incorrect dosage 
- Misaligned waveforms displayed 
- Delayed audible alarms 
- Failure to restart 
- Burn or electrical shock hazard  

4 79 276 

G
en

er
al

 
Ho

sp
ita

l 

Infusion Pump 
(FRN/LZH/ 
LKK/MEA) 

15 945,300 

Software - Incorrect safety alarms 

23 574 2,399 Hardware 
Battery 

- Delayed/over/under infusion 
- Infusion failure without alarms 
- Electrical shock, burn, fire hazard 

Insulin Infusion 
Pump (LZG) 2 13,756 Battery - Insulin delivery failure 

- Unexpected shutdown w/o warning 0 4 15 
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Out of 75,267 identified computer-related adverse events, around 50% (representing 398 deaths, 

18,241 injuries, and 18,937 malfunctions) were related to the devices shown in Table 2.5. 

However, our observation is similar to other studies [6], [9] that there are inaccuracies and 

underreporting in the MAUDE database and inconsistencies between MAUDE and Recalls 

databases. As an example of the inconsistency, we see that although safety-critical computer-

related recalls affected a significant number of devices used in Radiology, very few severe adverse 

events due to computer problems could be identified for these devices in the MAUDE database. 

Nonetheless, implantable pacemakers, defibrillators, and infusion pumps dominate the computer-

related failures (35 recalls) and fatalities (392 deaths). This observation can be explained by the 

large number of these devices in use, for treatment of critical conditions such as sudden cardiac 

arrest.  

2.3.4. Discussion   

By relying on complex software, sophisticated hardware, batteries, sensors, and network 

communications, future medical devices face several challenges in terms of reliability, safety, and 

security: Increased complexity raises the possibility of component interaction accidents (e.g., the 

first recall in Table 2.1); portability makes the devices more vulnerable to power outages (e.g., the 

fourth recall in Table 2.1); and interconnectedness increases the chance of error propagation (e.g.,  

the third recall in Table 2.3) and facing failure storms that devices will not be able to handle in a 

fail-safe manner.  

Additionally, medical devices are prone to major security and privacy vulnerabilities such as 

unauthorized control of sensing and communication functions of devices and access to private 

patient data. Despite the significance of challenges related to security and privacy, these issues are 

severely underreported in the FDA databases. According to [9], 142 instances of malware 

infections affecting medical devices were detected between 2009–2011, but none of them were 

reported in the MAUDE database. Our analysis of FDA data found three adverse events related to 

computer malware and virus infections in a defibrillator, a radiology workstation, and an imaging 

system reported by the manufacturers and user facilities, and one voluntary report of unauthorized 

access to a glucose monitor. We only found one FDA recall related to computer malware affecting 

an imaging system and categorized it under the fault class of “Other”. 
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Our study found that: 

• While software failures remain the major cause (64.3%) for recalls of computer-based 

medical devices, hardware, battery and I/O are also significant contributors to failures that 

can lead to potential life-critical hazards. 

• Hardware, battery, and I/O failures had a larger impact (affected 6.5 million, 54%, of 

recalled devices on the market) in terms of the number of devices affected by the recalls 

(almost three times) and the cost of device removals/repairs.  

• Of all the safety-critical recalls, 80.7% were for devices used in radiology (for instance, 

linear accelerators), cardiovascular (e.g., automated external defibrillators), general hospital 

(e.g., infusion pumps), anesthesiology (e.g., ventilators), and general surgery (e.g., 

electrosurgical accessories). More important, 73.8% of Class I recalls were for 

cardiovascular and general hospital devices, such as defibrillators, patient monitors, and 

infusion pumps, for which the highest number of device-associated fatalities are also 

reported. 

• In many cases the chain of events leading to failures could not be identified based on the 

limited information provided in the recalls descriptions. However, by looking at example 

safety-critical failures studied here (e.g., hardware defect that might lead to injection of hot 

fluid into patient's body shown in Table 2.3) we see that many of the recalled devices were 

either designed without identifying and handling the safety issues or the safety mechanisms 

were not designed/implemented correctly.  

 

These results emphasize the importance of designs with well-defined safety requirements and 

implementations that employ robust error detection techniques and fail-safe mechanisms that are 

rigorously validated. In what follows we discuss major challenges in design of next-generation 

safety-critical medical devices. 

 Hazard and Risk Analysis  
International standard for risk management of medical devices (ISO 14971 [20]) and the FDA 

require the manufacturers to maintain a process for identifying foreseeable hazardous situations of 

the device (see [21] for example hazard categories identified for infusion pumps), estimating the 

risks associated with each hazard, and controlling the risks by defining the safety requirements 
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(see [22] for example safety requirements for a generic infusion pump model) and implementing 

effective risk control measures. 

However, traditional safety analysis techniques recommended by the FDA [23] and commonly 

used by the industry (including Fault-Tree Analysis (FTA) [10], Event Tree Analysis [24], Hazard 

and Operability Study (HAZOP) [25]) and reliability analysis techniques (e.g., Failure Mode and 

Effect Analysis (FMEA) [11]), mostly focus on the reliability of individual components in the 

system or performing probabilistic risk assessment. Those techniques have limited capability in 

identifying other contributing factors to the system safety such as complex software errors, 

component interaction failures, human errors, complex human decision-making, and flawed 

management in the design [12]. For example, the first recall in Table 2.1 was due to an interaction 

failure between the device and an instrument that made the instrument nonfunctional and presented 

the risk of complications during surgery. This can be considered as a hazardous situation that was 

not foreseen in the hazard analysis phase. 

In [12] a new hazard analysis technique, called System Theoretic Process Analysis (STPA), for 

safety-driven design of complex software-intensive systems is proposed. This technique treats the 

design process as a control optimization problem rather than a component failure problem. The 

hazardous situations are prevented/mitigated by creating safety constraints based on identifying 

potentially unsafe control actions in the system and modifying the design to eliminate the effect of 

the control flaws.  

 Error Detection and Validation 
It is clear from the example recalls studied here that some residual faults/errors can escape even 

the most rigorous risk analysis, design, and validation processes and manifest as failures and 

unforeseeable hazards during the device's operation. For example, consider a defect in the 

integrated circuit board that might lead to injection of hot fluid into patient's body (shown in 

Table 2.3). Such catastrophic failures are probably caused by hard to test corner cases and could 

be prevented by fault-injection based validation and formal modeling of key failure modes of 

system. In [26] symbolic fault-injection is shown to be successful in detecting corner cases that 

might evade error detection in safety-critical air traffic control software.  

Alternatively, the failures can be detected at runtime before leading to hazardous situations 

using techniques such as runtime assertions, watchdog timers, self-test mechanisms and periodic 
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system checks (e.g., for critical parts such as batteries, sensors, processor, and memory). The study 

reported in [27] demonstrates use of static program analysis for design of application-specific 

runtime assertions to detect data errors leading to failures with high coverage at very low cost. 

 Fail-Safe Mechanisms 
Full device removal may not be an acceptable option to address device failures because of the 

high cost for manufacturers, user facilities, and patients. There are many well understood fail-safe 

mechanisms and failure-recovery techniques used in modern computing systems that can be 

brought into medical devices in order to manage the failures at lower cost. For example, battery or 

hardware failures leading to power loss and unexpected shutdowns (such as examples in Table 2.5) 

could be managed by turning off power to unused components of the system and maintaining 

power for the critical parts to avoid sudden power outages (e.g., sleep modes are used in modern 

embedded systems such as cell phones).  

Also techniques such as fault containment (used in aerospace and commercial systems) can be 

used for isolating the faulty units or components (e.g., damaged batteries) and moving the system 

into a fail-safe mode without presenting harm to patients/users. Intelligent reconfiguration 

strategies for switching to backup batteries or redundant hardware units in case of failure can be 

employed. For example, the uncontrolled movement of device (in second recall of Table 2.3) was 

not stoppable even by manual disconnection of power, because the device automatically switched 

to a backup battery. In this case, identifying the type of failure and the reason for power loss 

(whether intentional or accidental) before deciding to switch to a backup battery could stop the 

unintentional movement and potential patient injury. 

 Recalls and Adverse Events Reporting  
FDA mechanisms for reporting recalls and adverse events by manufacturers can assist in 

preventing future adverse events through lessons learned from the earlier problems. However, 

current FDA databases for reporting recalls and adverse events suffer from underreporting, 

inaccuracies, and inconsistencies that make it difficult in many cases to identify the causes of 

failures and their impact on patients to determine how the design of future devices could be 

improved. The following are recommendations based on our study on how the reporting 

mechanisms could be improved:  
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• Providing robust and systematic interfaces for reporting recalls and adverse events so that: 

o More accurate and complete information (e.g., Device Name, Product Code, and 

Product Problem) is entered in the reports.  

o List of keywords representing different Product Problems in the MAUDE database [1] 

more precisely reflects causes of device failures, especially computer-related failures. 
 

• Creating integrated databases of recalls and adverse events such that: 

o Product Name and Reason for Recall fields of each recall record correspond to standard 

device names, product codes, and device categories defined by the FDA. 

o Recall records can be cross-referenced with related adverse event reports in MAUDE 

database. 

 FDA's Role in Device Regulation and Approval 
FDA guidelines and safety recommendations (e.g., 2010 FDA initiative for external defibrillator 

improvement [28], 2010 industry guidance for infusion pumps [21], and 2013 guidance for pulse 

oximeters [29]) to harden life-critical devices recommend the introduction of formal mechanisms 

for improving the pre-market review and approval of devices. One FDA study [30] introduced the 

idea of developing usage models for different classes of devices to provide generic safety features 

and test cases that can be used by manufactures.  A more recent idea has involved the use of 

assurance cases for formal communication of claims, arguments, and evidences about devices from 

companies to the FDA. In the FDA guidance document for infusion pumps [21], manufacturers 

are specifically recommended to submit assurance case reports for the approval of devices. 

2.3.5. Summary 

This study helped us to characterize the causes for computer failures and their impact on patients 

and to identify the most common types of safety-critical computer-based medical devices which 

were involved in life-critical incidents. Although a significant part of our analysis involved manual 

reviewing of the recalls and adverse events data, the extracted computer-related recalls can be used 

as a training set to automate the analysis of new data submitted to the FDA databases. In 

Section 2.4, we present our approach for automating the analysis of medical device recalls. 
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 Automated Classification of Computer-Related Recalls 
To address the challenges in analysis of the recalls data (discussed in the Section 2.2.1), 

MedSafe employs techniques from natural language processing and information retrieval [31] 

(including the vector-space models for feature extraction, similarity measures from information 

theory, and machine learning), to automate the (i) collection of recall records, (ii) extraction of 

unique recall events, and (iii) identification of computer-related recalls, as described next.  

We evaluated MedSafe on the recalls data (over 16K records) submitted to the FDA between 

years 2006–2013. The analysis steps and evaluation results for each step are described next. 

2.4.1. Recalls Data Collection 

MedSafe first downloads all the recall records submitted for a desired period of time from the 

FDA online database. The missing information in the records (e.g., the Main Prodcut Name, 

Quantity in Commerce, and Action fields) are obtained by querying the online database using 

unique Recall Number of each recall record and parsing the corresponding HTML file of the record 

in the FDA website. Then the number of devices (Device Quantity) affected by each recall record 

is extracted by parsing the Quantity in Commerce field, using regular expressions and heuristic 

rules.  

Evaluation: The results of this step were evaluated by manually reviewing recalls submitted to 

the FDA between years 2007–2013. MedSafe achieved 97.3% accuracy in calculating the total 

number of devices affected by the recalls. We found that during the study period, a total of 16,881 

recall records were reported to the FDA, from which 6,864 (40.7%) were unique recall events.  

2.4.2. Recall Events Extraction 

As mentioned before, many of the records in the FDA recalls database represent the same failure 

event reported for different devices manufactured by the same manufacturer. So we extracted the 

unique recall events related to the same failures through identifying and coalescing duplicate recall 

records. The duplicate records are identified by measuring the similarity between natural language 

descriptions provided in the Manufacturer, Reason for Recall, and Action fields.  

Figure 2.6 depicts the steps taken by MedSafe for identifying the similar (duplicate) recall 

records. We first modeled the Reason for Recall text of each recall record as a vector 𝑟𝑟𝑖𝑖 of 
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weights 𝑤𝑤𝑘𝑘, representing the importance of each keyword in the Reason for Recall text of that 

recall. Then the set 𝑑𝑑𝑖𝑖 of recall records with the most similar Reason for Recall fields to the recall 

record 𝑟𝑟𝑖𝑖, was obtained by calculating the cosine similarity between all the Reason for Recall 

vectors 𝑟𝑟𝑗𝑗 and 𝑟𝑟𝑖𝑖 and filtering those records that had a similarity of more than a pre-defined 

threshold (e.g., 𝑡𝑡ℎ1 = 0.8, denoting a similarity of more than 80%): 

 𝑑𝑑𝑖𝑖 = {𝑗𝑗�〈𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗〉 ≥ 𝑡𝑡ℎ1} (2.1) 

The final list 𝐷𝐷𝑖𝑖 of candidate duplicate records was then determined by using a Levenshtein 

(edit) distance measure 𝑒𝑒 to compare the Manufacturer (denoted by 𝑚𝑚𝑖𝑖) and Action (denoted by 

vector 𝑎𝑎𝑖𝑖) fields of the similar records and filtering those that were initiated by the same 

manufacturer and were addressed using very similar recovery actions, as follows: 

 𝐷𝐷𝑖𝑖 = {𝑗𝑗 ∈ 𝑑𝑑𝑖𝑖�𝑒𝑒�𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑗𝑗� + 𝑒𝑒(𝑚𝑚𝑖𝑖 + 𝑚𝑚𝑗𝑗) ≥ 𝑡𝑡ℎ2} (2.2) 

We used an edit distance of less than 20% (𝑡𝑡ℎ2 = 0.2, denoting a similarity of more than 80%) 

to identify similar Manufacturer and Action fields of candidate and the current records. Finally, all 

the similar recall records were coalesced into one recall event (denoted by 𝑅𝑅𝑖𝑖) and the total number 

of devices affected by the event was calculated by summing up the numeric Device Quantity values 

extracted for each record.  

Evaluation: The results of this step were evaluated using subsets of recalls submitted to the 

FDA between Janaury 2006 and November 2013 (100 records from each year), which were 

coalesced by manual reviewing of the reports. MedSafe achieved an accuracy of close to 100% in 

coalescing similar records and calculating the total number of devices. However, the MedSafe 

speed at this step can be severely affected by scaling to larger number of recalls.  

 
Figure 2.6. Analysis steps for identifying unique recall events. 
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After the publication of this work, the FDA online database has started to provide a unique 

Event ID for each recall record (only for those recalls submitted after 2007), which can also be 

used as an alternative faster way for identification of the duplicate records. 

2.4.3. Recall Classification  

At this step, MedSafe uses natural languge parsing in conjunction with statistical learning to 

automatically identify the computer-related recalls. In Section 2.3, we defined a computer-related 

recall as an event causing a computer-based medical device to function improperly or present harm 

to patients or users due to failures in device’s software, hardware, I/O, or battery. Figure 2.7 depicts 

the steps taken by MedSafe for identifying the computer-related recalls.  

First, the Reason for Recall (or Action) field of each recall event is normalized by removing the 

punctuations and English stop words and converting the text into lowercase. MedSafe then 

transforms the filtered text in the Reason for Recall (or Action) field into a term vector of features. 

Then it uses the set of manually classified computer-related recalls from the study presented in 

Section 2.3, as a training set to create a binary classifier that distinguishes the computer-related 

recalls from non-computer-related recalls.  

Using a bad-of-words model [31], MedSafe transforms each recall record to a sparse vector 

representing the occurrence counts of keywords (from a pre-defined dictionary) in the field. We 

define this vector (or dictionary of keywords) by extracting N-gram words or N-gram characters 

(of different lengths) from the Reason for Recall field and further filter the dictionary using part-

of-speech (POS) tagging (e.g., to only keep nouns, adjectives, and verbs) or mutual information 

metrics to only keep the highly relevant features.  

 
Figure 2.7. Analysis steps for identifying computer-related recalls. 
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Using a mutual information (MI) metric [31] we measure how much the presence or absence of 

a keyword in the Reason for Recall field of a recall event contributes to the classification of that 

recall into the computer-related class. For each keyword k, the MI metric is calculated using the 

following equation: 

 𝑀𝑀𝑀𝑀(𝑅𝑅𝑘𝑘 ,𝐶𝐶𝑟𝑟) = � 𝑃𝑃(𝑅𝑅𝑘𝑘 = 𝑖𝑖,𝐶𝐶𝑟𝑟 = 𝑗𝑗) log2
𝑃𝑃(𝑅𝑅𝑘𝑘 = 𝑖𝑖,𝐶𝐶𝑟𝑟 = 𝑗𝑗)

𝑃𝑃(𝑅𝑅𝑘𝑘 = 𝑖𝑖).𝑃𝑃(𝐶𝐶𝑟𝑟 = 𝑗𝑗)
  

𝑖𝑖,𝑗𝑗∈(0,1)

 (2.3) 

where the 𝑅𝑅𝑘𝑘 and 𝐶𝐶𝑟𝑟 are binary indicator random variables,  respectively representing whether the 

recall event R contains the keyword k (𝑅𝑅𝑘𝑘 = 1), and whether the recall event R is in the computer-

related class (𝐶𝐶𝑟𝑟 = 1). If we let 𝑁𝑁(𝑅𝑅) be the total number of recalls in the training set, 𝑁𝑁(𝑅𝑅𝑘𝑘 = 𝑖𝑖) 

the number of recalls in the training set that contain (𝑁𝑁(𝑅𝑅𝑘𝑘 = 1)) or do not contain (𝑁𝑁(𝑅𝑅𝑘𝑘 = 0)) 

keyword k; 𝑁𝑁(𝐶𝐶𝑟𝑟 = 𝑗𝑗) the number of recalls in the training set that that are computer-related 

(𝑁𝑁(𝐶𝐶𝑟𝑟 = 1)) or not computer-related (𝑁𝑁(𝐶𝐶𝑟𝑟 = 0)); and 𝑁𝑁(𝑅𝑅𝑘𝑘 = 𝑖𝑖,𝐶𝐶𝑟𝑟 = 𝑗𝑗) the number of recalls 

that are at the intersections of these sets, then each of the probabilities in Equation (2.3) can be 

calculated using the maximum likelihood estimates (MLE). For example: 

 𝑃𝑃(𝑅𝑅𝑘𝑘 = 𝑖𝑖,𝐶𝐶𝑟𝑟 = 𝑗𝑗) =  
𝑁𝑁(𝑅𝑅𝑘𝑘 = 𝑖𝑖,𝐶𝐶𝑟𝑟 = 𝑗𝑗)

𝑁𝑁(𝑅𝑅)
    (2.4) 

The keywords are then sorted according to their MI scores and the top half of the list is used as 

the dictionary for feature extraction.  

For the classification of recalls, we used multinomial Naïve Bayes and linear Support Vector 

Machine (SVM) [31] algorithms. The Naïve Bayes classifier calculates the probability of a recall 

R being a computer-related recall versus probability of R being a non-computer-related recall and 

assigns R to the class with the higher probability, as follows: 

 𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶(𝑅𝑅) ∝ 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎
𝑐𝑐 ∈{0,1}

�𝐶𝐶𝑙𝑙𝑎𝑎 𝑃𝑃(𝑐𝑐) + � 𝐶𝐶𝑙𝑙𝑎𝑎𝑃𝑃(𝑘𝑘𝑖𝑖|𝑐𝑐)
1≤𝑖𝑖≤𝑀𝑀

�    (2.5) 

where 𝑃𝑃(𝑐𝑐) is the prior probability of a recall being in computer- (c = 1) or non-computer-related 

(c = 0) class, and is calculated based on the training data. 𝑃𝑃(𝑘𝑘𝑖𝑖|𝑐𝑐) is the conditional probability of 

keyword 𝑘𝑘𝑖𝑖 appearing in a computer-related recall and M is the total number of keywords in the 

vocabulary (extracted in the feature selection phase).  

The SVM classifier calculates the dot product between a recall feature vector (occurrence counts 

of keywords in the recall) and a weights vector (that is learned based on the training data) and if 
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the sign of the result is positive, declares a computer-related recall. The dot product combination 

defines a decision boundary with the maximum distance to the two classes. The SVM model 

parameters (weights vector) are learned using a stochastic gradient descent (SGD) optimization 

method that minimizes the training error calculated based on a hinge loss function [32].  

Evaluation: We evaluated different combinations of feature sets and classification methods as 

shown in Table 2.6. We used Python NLTK library [19] and MeTA (an open-source toolkit for 

Modern Text Analysis) [32], [33] to implement and test the Naïve Bayes and SVM classifiers. 

 In order to assess the performance of each classifiers, we performed a ten-fold cross-validation, 

using 4,398 recall events from 2007–2011, which were manually labeled in our previous study 

(Section 2.3). Each subset of 439 recalls was used as the test data, and the remaining (3,959) recalls 

were used for feature selection and training. The standard metrics, including sensitivity, specificity, 

and F-Score (considers both precision and recall metrics with a value of 100% indicating perfect 

results) were used for evaluation of the results and were averaged over the ten runs of experiments. 

MedSafe achieved an average sensitivity and specificity of 88.2% and F-Score of 77.9% using 

Naïve Bayes classifier and both POS and MI filters on unigram words. As shown in Table 2.6, the 

F1-score only improved by 1% using the SVM classifier. However, when we added both the 

Reason for Recall and Action fields to the feature set, the F1-socre of the SVM classifier improved 

by 5%. These results show that potentially there is important information in the Action fields of 

the recalls that distinguishes the computer-related recalls from non-computer-related recalls.  

Table 2.6. Performance of different classifiers in identifying computer-related recalls.  

Feature Set Classifier Precision Recall F1-Score 

“Reason for recall” 
Unigram words  
Part of speech filter (NN, ADJ, V) 
Mutual information filter 

Naïve Bayes 0.69 0.87 0.77 

“Reason for recall” 
Unigram words 

SVM 

0.69 0.85 0.76 

“Reason for recall” 
N-gram words (N = 1, 2, or 6) 0.73 0.84 0.78 

“Reason for recall” + “Action” 
Unigrams, Bi-grams, 6-gram chars 0.79 0.85 0.82 
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We also evaluated the recall classification using basic Naïve Bayes on the new (unseen) data. 

We used the manually labeled data from 2007–2011 as a training set to classify the recalls 

submitted for the years 2012 and 2013. Our experiments showed that of 5,011 recall records 

submitted during 2012–2013, 2,466 (49.2%) were unique recall events, from which 634 (25.7%) 

were computer-related. By manual review of these results, we found that MedSafe identified the 

computer-related recalls with a sensitivity of 93.8% and a specificity of 95.8% (Precision: 88.7%, 

Recall: 93.8%, and F1-Score: 91.1%).  

2.4.4. Device Category Classification 

MedSafe integrates the device category information, including the Medical Specialty, Product 

Code, Device Name, and Submission Type with the information in the recall records. It first extracts 

device classification data from the FDA website and then for each Product Code (or device 

category) opens the corresponding online TPLC record and parses its HTML file to get the list of 

all related recall records in that device category. For about 16% of the recalls, the device 

classification information was not available through TPLC database. For the computer-related 

recalls that could not be classified using Recall Number, MedSafe identifies the device category 

information from the recalls with the most similar Product Name and Manufacturer information, 

which also have the device category information are available.  

After the publication of this work, the FDA online database has started to provide a link to the 

TPLC records of recalled devices in their recall records, which can be used as a more efficient way 

 
Figure 2.8. Computer-related recalls across different device categories. 
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for extraction of the device category information. Figure 2.8 shows the medical device categories 

with the highest number of computer-related recalls reported during 2007–2013. About 58% of 

the computer recalls were related to Radiology and Cardiovascular devices, such as automated 

external defibrillators and linear accelerators. 

 

 Related Work 
Although many previous works from dependability community focus on failure data analysis 

of different computing systems such as high-performance computing systems [34], Windows NT- 

based computers [35], mobile phones [36], telephony systems [37], [38], and bluetooth personal 

area networks [39], no attention had been paid to the analysis of failures in medical devices that 

are built using computers. The only available data on failures and safety issues of medical devices 

are the reports collected by the Food and Drug Administration (FDA) databases.  

In the biomedical and clinical engineering community there are several works on the failure 

analysis of medical devices based on the studying adverse events reports and recalls. However, 

most of these works are only focused on small subsets of recalls and adverse events data to derive 

statistics on the number of software- [4] – [7], computer- [40] – [42], and security- [6], [9] related 

reports. Among these works, only [4] presented an extensive analysis on the root causes of failures 

and their symptoms in software medical devices. There are also several studies on recalls and 

adverse events reported for specific types of devices such as cardiac pacemakers and implantable 

defibrillators (ICDs) [8], [43] – [46].  Most of these works used either keyword search or manual 

reviewing of the recalls and adverse event descriptions, which requires a significant amount of 

human effort and still may not produce accurate results due to human mistakes or inadequate list 

of keywords.   

To the best of our knowledge, the approach presented in this dissertation is the first effort toward 

identifying different kinds of failures in computer-operated devices and studying the relation 

between the recalls and adverse events reports by making associations among the causes of 

failures, their symptoms, and measuring the impact of failures on patients and manufacturers in 

terms of severity of events, number of devices on the market that were affected by the recalls, and 

the cost of device repairs and removals. 
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 Conclusions 
By learning from past incidents we can better identify the potential hazards, safety requirements, 

and required risk mitigations for designing the next generation of devices and prevent reoccurrence 

of similar adverse events in the future. Medical device incidents are typically reported to the FDA 

by the users, manufacturers, and investigators. A major component of these reports are human-

written narratives describing adverse events, reasons for recalling a device, or corrective actions 

taken by the manufacturers. Automated analysis of these reports is a challenging task, requiring 

semantic interpretation of natural language text. We developed MedSafe, a toolset for large-scale 

analysis of recalls and adverse event reports from the public FDA databases [3]. By using 

techniques from natural language processing, information retrieval, and machine learning, 

MedSafe enables deeper understanding of causes of device failures and statistically confident 

measures on their impacts.  
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SYSTEM-THEORETIC ANALYSIS OF INCIDENTS 

  

 Overview 
Analysis of adverse events data provides valuable insights on possible system hazards and can 

be used to assist enhancement of system safety in order to prevent future incidents caused by 

malfunctioning medical devices. However, traditional accident modeling and analysis techniques 

(e.g., root cause analysis commonly used in medicine) tend to focus on direct causal relationships 

between events leading to an accident (based on chains of events or Swiss cheese models [51]) 

and often conclude with subjective emphasis on a single (root) cause, such as physical device 

failures or human errors. Other causal and contextual factors and underlying conditions, that 

indirectly contribute to adverse events, are not thoroughly considered in such analyses; e.g., unsafe 

interactions among system components and human operators; inaccurate operators' mental models 

of the system; or the circumstances (system states) under which the actions are taken or decisions 

are made [12]. Therefore, those approaches are often insufficient for understanding all the causes 

contributing to accidents in today’s complex medical systems [52] – [54] and recommendations 

made based on such analyses often fail to enhance safety and similar accidents recur.  

System-theoretic accident causality models such as STAMP (Systems-Theoretic Accident 

Model and Processes) [12], overcome this limitation by modeling accidents as complex dynamic 

processes resulting from inadequate control mechanisms that violate safety constraints. Driven by 

concepts in systems and control theories, STAMP provides a modeling framework for hazard 

analysis and accident investigation and is applied in several safety-critical domains such as 

aviation [55], medical devices [56], [57], automotive [58], [59], and transportation [60], [61].  

We apply the STAMP modeling framework to analysis of adverse events in safety-critical 

medical devices. To facilitate the system-theoretic analysis of large sets of adverse event reports, 

we propose a new ontology model based on human-in-the-loop control structures to guide the 

                                                 
 This chapter contains material from the published works [47] – [50], coauthored with Z. Kalbarczyk, R. K. Iyer, J. 
Raman, N. Leveson, T. Kesavadas, and S. Small. 
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automated semantic analysis of the adverse events. Specifically, the ontology model defines the 

device-specific entities and relations that correspond to the key safety-related information (e.g., 

contextual factors, unsafe operator actions, device malfunctions, and patient status) needed in 

causality analysis based on STAMP and should be extracted from the unstructured narratives of 

the reports.  

We demonstrate the effectiveness of this approach in a case study of adverse events reported 

for robotic systems used in minimally invasive surgery. We analyzed the FDA data on deaths, 

injuries, and malfunctions that occurred during robotic procedures and characterized:  

• System hazards and potential causal factors that led to unsafe control actions during the 

procedures and caused accidents.   

• Potentially inadequate safety mechanisms in both system design and operational practices 

in robotic surgery that led to health-threatening events, including patient injuries and death. 

Section 3.2 provides an overview on the common challenges faced in analysis of reports from 

the FDA MAUDE database, Section 3.3 presents background on system-theoretic accident 

modeling and analysis using STAMP, exemplified by our analysis of sample adverse events in 

robotic surgery. In Section 3.4, we describe our proposed ontology model for system-theoretic 

semantic analysis of adverse event reports. Finally, Section 3.5 presents our case study of 

analyzing the adverse events related to da Vinci surgical system [13], the only FDA approved 

robotic device for minimally invasive surgery. 

 Challenges in Analysis of FDA Adverse Event Reports 
Figure 3.1 shows an example MAUDE report on an adverse event occurred during a robotic 

cardiothoracic procedure [62] (for more detailed description on the structure of adverse event 

reports, refer to Section 2.2.2). There are several challenges (even for the FDA analysts [63]) in 

analyzing the FDA adverse event reports:  

(i) According to the FDA [64] and several studies in the literature [9], [65], [66], the MAUDE 

database may not provide an accurate representation of true rates and severity of adverse 

events due to underreporting as well as inaccuracy, inconsistency, and duplication in the 

reports that are submitted by the volunteer reporters.  
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(ii) The fields such as Device Name, Product Code, are often inconsistent across multiple 

reports related to the same device, and Device Problem fields are either missing or 

represent incorrect information about the actual problems encountered by device operators. 

(iii) The Event Description and Narrative fields of the reports, which provide the most 

important information on the event and patient impacts, are written in free-form natural 

language text and are often very abstract, ambiguous, conflicting to each other, and difficult 

to analyze without considering the information provided in the other fields and 

understanding the underlying factors involved in the incidents.  

 

However, the reported deaths, injuries, and device malfunctions provided by the MAUDE are 

valuable data if treated as a sample set to estimate the prevalence of adverse events and identify 

examples of their major causes and patient impacts (see Appendix A for more details on the 

problem of underreporting). Although an external retrospective review of these reports cannot 

determine all the causes involved in incidents, it can help to identify example hazards that were 

not detected and mitigated during hazard analysis and design processes and to facilitate design of 

safety controls that can mitigate those hazards and prevent similar incidents in the future.  

 
Figure 3.1. A sample adverse event report from the FDA MAUDE database, available at [62]. 
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 System–Theoretic Analysis of Adverse Events 
In STAMP the systems are modeled as hierarchical control structures, where the components at 

each level of the hierarchy impose safety constraints on the activity of the levels below, and 

communicate their conditions and behavior to the upper levels. The layers of the control structure 

could span from the physical components to human operators, up to higher levels in 

manufacturing, management, and regulation. Accidents are considered as complex dynamic 

processes resulting from violation of safety constraints at different layers of control structure [12].  

Figure 3.2(a) shows the typical system setup in a robotic procedure, including human operators 

(surgeon, surgical assistant, nurse, and anesthesiologist), surgical robot (surgeon console, vision 

cart, and patient cart), and the patient. We modeled the hierarchical control structure of a surgical 

robot as shown in Figure 3.2(b), based on our review of publicly available documents on 

commercial and open-source robotic surgical platforms including da Vinci Surgical System [13].  

 
(a) (b) 

Figure 3.2. (a) A typical setup of robotic surgical systems for minimally invasive surgery (Adapted from 
the Intuitive Surgical, Inc. [13]), (b) Hierarchical control structure of the robotic surgical system. 
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In STAMP, the interactions among system components and operators are modeled as control 

loops (e.g., loop 3) composed of the actions or commands (e.g., hand and foot movements) that a 

controller (e.g., main surgeon) takes/sends to a controlled process (e.g., robot control) and the 

response or feedback (e.g., images/status messages on surgeon's console) that the controller 

receives from the controlled process.  

Every controller in the system uses an algorithm to generate the control actions based on a 

model of the current state of the process that it is controlling. For example, control loops 3 and 6 

(outlined by dashed lines in Figure 3.2(b)) are further refined in Figure 3.3 to illustrate details on 

the interactions among the main surgeon, robot control, and robotic arms/instruments. The control 

action generation, process model, examples of control action, and components that enable the 

action and feedback between the main surgeon and the robot are highlighted here.  

In every control loop, the control actions taken (e.g., clutch an instrument) by the controller 

(e.g., surgeon) change the state of the controlled process (e.g., the instrument will be engaged). 

The feedback (e.g., messages on the console) sent back from the controlled process (e.g., robot 

 
Figure 3.3. Control actions and process models for control loops 3 and 6 (highlighted in Figure 3.2(b)), 
Example causal factors are marked with . 
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control) updates the process model used (e.g., surgeon’s mental model) by the controller (e.g., 

surgeon observes on the console that the instrument is registered). Any accidental or malicious 

flaws or inadequacies in the algorithm, process model, or feedback used by a controller could 

possibly lead to unsafe control actions and hazardous states in the system.  

Causal analysis of accidents using STAMP (called CAST) [12], starts with identifying the 

system hazards and violated safety constraints involved in the accident. Then the operation of 

components and their interactions in each control loop of the control structure are examined to 

identify potential causal factors for the safety hazards, including improper operations of 

components, inadequate interactions (control actions or feedbacks) among them, inaccurate 

models used by the controllers, and any contextual factors that may have contributed to safety 

hazards (marked with  in Figure 3.3).  

Based on the manual review of almost 1,500 adverse event reports and knowledge of robotic 

surgical systems functionality, we classified the robotic surgery accidents into the following four 

types: patient deaths (A-1), patient injuries during the procedure or serious complications 

experienced after the procedure (A-2), surgical personnel injuries caused by the system (A-3), and 

costly damage to the surgical system or instruments (A-4). We also identified three main types of 

hazards or set of unsafe system states that could lead to those accidents (see Table 3.1).   

We then reviewed the textual description of more than 1,500 injury and death events (A-1 and 

A-2 accident types) and selected a subset of reports that included relatively more detailed event 

descriptions. Then based on the description of each report, we examined the characteristics and 

Table 3.1. Accidents and system hazards in robotic surgery. 
Accidents 
A-1. Patient expires during or after the procedure.  
A-2. Patient is injured during procedure or experiences serious complications after the procedure. 
A-3. Surgical personnel are injured by the surgical system. 
A-4. Surgical system or instruments are damaged or lost. 
System Hazards (Possible accidents) 
H-1. Robot arms/instruments move or cut or apply energy to an unintended location, of an unintended 
amount, or at an unintended time. 
          H1-1. Right location, right amount, wrong time 
          H1-2. Right location, wrong amount, right time 
          H1-3. Right location, wrong amount, wrong time 
          H1-4. Wrong location 
H-2. Robotic system, arms, or instruments are subjected to collision or unintended stress. 
H-3. Robotic system becomes unavailable or unresponsive during procedure.  
 



44 

responsibilities of each of the controllers in the safety control structure (Figure 3.2(b)), extracted 

the information related to flawed control actions and unsafe interactions in the system that 

contributed to the adverse events, and identified examples of potential causes and underlying 

context for them. The majority of the injury and death reports provided little or no detailed 

information about the possible causes of the adverse events or only reported on the single causal 

factors (such as inherent risks of surgery, human errors, and device malfunctions) involved. 

However, a careful review of injury and death reports helped us to identify several reports that 

included information on multiple causal and contextual factors contributing to the adverse events.  

For example, Table 3.2 shows the description of an adverse event reported in 2008 (MAUDE 

report no. 2240665, also shown in Figure 3.1), where an electronic component failure, a non-

recoverable system error, inadequate troubleshooting of technical problems, and possibly 

ineffective decisions made by the human operators, each played a role in a very long procedure 

time and consequently, a patient injury. According to the manufacturer narrative, a chain-of-

events-based analysis concluded that the root cause of the event was an electronic component 

failure and the recovery actions taken based on such conclusion were to repair the faulty 

components of the system. But a systematic CAST analysis provides us with a different view on 

other multidimensional causal factors that were also involved in the event.  

As shown in Table 3.2, we identified the system hazards (e.g., robotic arms/instruments 

move/cut/apply energy to an unintended location), the potentially unsafe control actions taken in 

each control loop (e.g., surgeon deciding to manually operate the endoscopic camera for a long 

period of time, in control loop 3), possible causes for those unsafe actions (e.g., electronic 

component failure preventing the automatic manipulation of camera or lack of detailed 

troubleshooting procedures), and the context in which those decisions were made (e.g., the type of 

procedure and the time spent before deciding to convert the procedure). The important pieces of 

information used in the analysis are underlined in the textual description of event and the 

potentially flawed controls and feedbacks in different loops of control structure are highlighted in 

Table 3.2.  Table 3.3 shows example events from the MAUDE database in which similar kinds of 

control flaws in different control loops of the control structure led to hazards and patient injuries. 

Examples of common flaws included limited training of surgical team (loop 1), inadequate 

troubleshooting of technical problems (loop 3), inadequate interactions between surgeon and robot 

at the console (loop 3), and device and instrument malfunctions (loops 6 and 7).  
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Table 3.2. Causal analysis of an example adverse event report (report no. 2240665) using STAMP. 
Event Date: 07/17/2008 Event Type: Injury Patient Outcome: Required Intervention, Life Threatening 
Event Description: It was reported that during da vinci s bilateral internal mammary arteries revascularization 
procedure, the customer experienced a system error code #23. With the assistance of the company representative 
the site powered down the system to clear the fault. The site continued with the procedure, however, the system 
error reoccurred. The site disabled the endoscopic camera manipulator (ecm) to continue the case. The site then 
elected to manually manipulate the camera and endoscope for approximately 5 to 6 hours when a loss of carbon 
dioxide insufflation occurred resulting in the heart pushing up into the endoscope two times causing lacerations to 
the patient's right ventricle. The procedure was converted to a thoracotomy to perform a non robotic repair of the 
damaged ventricle with several stitches and to complete the planned procedure. After the 14 hour procedure, the 
patient could not be extubated necessitating a tracheostomy.  
Manufacturer Narrative: The investigation concluded that the system error code #23 experienced by the customer 
was associated with a configured embedded sterilizer setup joint (cfg, essj) and remote arm controller (rac). The 
embedded sterilizer for setup-joint is the printed circuit assembly (pca) inside a system arm that monitors the 
potentiometer for each of four joints and their associated backup potentiometers. The rac consists of five printed 
circuit assembly boards which operate together to provide control of the system arms. The system was repaired by 
replacing the affected cfg, essj and rac. System error code #23 is reported by software to denote that the hardware 
wheel "wdog" has tripped on one of the digital communication links in the system. This means that the system 
cannot reliably communicate over the digital link and therefore cannot continue normal operation. Communication 
faults occasionally occur due to typically either faulty electronics or poor connections in the communication link. 
The error 23 fault indicated by the system in this case pointed to a communication error involving the ecm's rac and 
essj modules. The system was repaired as the electronics that could have experienced an intermittent failure were 
removed and all of the connections involved were re-secured.  
Causal Analysis using STAMP 

Safety Hazards: 
H-1. Robot arms/instruments move/cut/apply energy to 
an unintended location: 
– Heart pushed up to the endoscope two times. 
H-3. Robotic system becomes unavailable or unresponsive 
during procedure: 
– System error was not cleared after system reset. 
Unsafe Control and Causal Factors: 
Loop 1: 
– Further support on resolving the system error not 

provided by company representative. 
– Inadequate consulting with the company about manual 

manipulation of endoscopic camera. 
Loop 3: 
– Unsafe decision made by surgeon to manually operate 

the endoscopic camera for long period of time. 
– Unsafe action taken by surgeon to continue the 

procedure with low level of carbon dioxide insufflation. 
– Lack of detailed feedback from robotic system on the 

error and best troubleshooting/recovery actions. 
Loop 4: 
– Inadequate feedback/information provided by assistant 

to surgeon on the patient insufflation status. 
Loop 6: 
– Electronic component failure prevented the robotic 

manipulation of the endoscopic camera 
Contextual Factors: 
Cardiothoracic surgery, long procedure time (> 6 hours) 

 

 
 



46 

 

The manual causal analysis of thousands of adverse event reports needs significant human effort 

and still cannot provide a comprehensive understanding on all the causal factors and statistically 

significant measures of their importance. In Section 3.4, we present an approach that leverages the 

STAMP accident causality model to structure the unstructured data on adverse events and 

facilitates the system-theoretic accident causality analysis process. 

 Semantic Parsing of Adverse Event Reports  
We propose a novel ontology model based on the hierarchical control structures used for 

modeling human-in-the-loop systems in the STAMP causality framework (as shown in Figure 3.4). 

The proposed ontology is specified based on the control structure of the target medical device 

during the design or validation phase. The entities and relations in the ontology model correspond 

to the components and interactions between them in the system control structure and define the 

Table 3.3.  Accidents, system hazards, and potential control flaws involved in example adverse events 
(The full description of the adverse event reports shown here is available in Appendix B). 

MAUDE 
Report  

No. 
(Year) 

Potential Control Flaws 
(Unsafe Control Actions, Feedbacks, Processes) Co

nt
ro

l 
Lo

op
s Contextual 

Factors 

Ha
za

rd
s 

Ac
ci

de
nt

 

2567858 
(2012) 

- Inadequate training of surgeon or surgical staff by company 
- Inadequate action (instrument change) by surgeon assistant  
- Lack of feedback from system or instrument to assistant          

(1) 
(5) 
(5) 

45 minutes into procedure, 
Converted to open surgery, 
Patient stable for one day 

H1 A1 
A2 

1891889 
(2010) - Inadequate feedback (vision) from robot to surgeon 

- Unsafe decision/action by surgeon to continue surgery in 2D 
- Loss of feedback (signal) from robot camera (broken cable) 

(3) 
(3) 
(8) 

Hysterectomy procedure, 
Ureteral injury H3 A2 

1760256 
(2010) 

Prostatectomy procedure, 
Procedure lasted 8 hours, 
Leg injury after procedure 

H3 A2 

2494890* 
(2012) - Unsafe action by surgeon (used incorrect electro-cautery)  

- Inadequate feedback on electro-cautery connection/status 
- Incorrect action by assistant (wrong instrument connection) 
–Inadequate interface or design of electro-cautery device 

(3) 
(3) 
(5) 
(4) 

Cardiac (CABG) procedure, 
Small diaphragm burn 

H1 A2 2476271* 
(2012) 

Hysterectomy procedure, 
Bowel damage 

3024317* 
(2013) 

Prostatectomy 
Bowel injury 

2632716 
(2012) 

- Lack of status of tip cover accessory to surgical team 
- Faulty instrument (arcing due to insulation failure) 
- Inadequate training or procedures for handling instruments 

(6) 
(7) 
(1) 

Hysterectomy procedure, 
Vascular injury, 
Converted to open surgery 

H2 A2 

3473388 
(2013) 

- Unsafe action by surgeon (incorrect port placement)  
- Inadequate feedback (instrument status) to surgeon 
- Inadequate training of surgeon or surgical staff  
- Unsafe action (over-rotation) of the (mtm) instrument 

(3) 
(6) 
(1) 
(7) 

Hysterectomy procedure, 
Artery nicked, 
Converted to open surgery 

H1 
H2 

A2 
A4 
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safety information that should be extracted from the reports. More specifically, the device-specific 

ontology model is populated with pre-defined sets of dictionaries and syntactic rules that can be 

used to identify appearance of ontology entities and relations in the natural language text. This 

ontology model can be used by semantic parsing tools to annotate the entities and relations in the 

adverse event descriptions.  

Table 3.4 shows different classes in the generic ontology model (Figure 3.4(b)), which are 

defined based on the entities in the system control structure (controllers and controlled processes), 

their interactions (control action and feedback), and the contextual factors and control flaws 

considered in the causal analysis using STAMP, including: (i) improper operation of any 

components in the control loops, (ii) inadequate, ineffective, or missing control actions provided 

by the controllers, and (iii) inaccurate or missing feedbacks sent from the controlled processes. 

Each class is further divided into subclasses, specific to the medical device under investigation, 

which here is a robotic surgical system (shown in Figure 3.4(b)).  

The last two columns of Table 3.4 show the example tags and relevant keywords as well as the 

syntactic rules for extracting and annotating the entities of each sub-class in the text. Here the 

dictionaries are created based on the domain knowledge and the online documents describing the 

target system functionality and parts. The syntactic rules are extracted through an iterative process, 

wherein we manually reviewed random subsets of the reports, looked for the patterns in keywords, 

and continually updated the relevant keywords by assessing the searching results.  

Ontology Model for Accident Analysis

Controllers

Controlled Process

Control 
ActionControl

Flaws
Feedback

Takes Impacts

on Generates

Occurs on

Occurs on

Contextual Factors

Impacts

Device Specific Ontology Model
Example: Surgical Robot

Surgeon

Robotic 
Arms and 

Instruments

Robot 
Control

Control
Flaws

Commands
Device
Status

Contextual Factors: 
Surgery Type, Surgery Length, Training Level

Actions Patient/Device
Status

Surgical 
Staff

Patient

Image 
Processing

Status

Status

2D images

3D
Images

Comm.

 
(a) (b) 

Figure 3.4. Control-structure based ontology model for causal analysis of accidents: (a) Generic 
ontology model, (b) Device-specific ontology model for a robotic surgical system. 
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As discussed in Section 3.5, after extracting the data, filtering non-relevant reports, and 

coalescing duplicate reports, MedSafe uses part-of-speech and negation taggers along with the 

semantic dictionaries and syntactic rules provided in Table 3.4 to mark up different patterns related 

to the concepts in the ontology model. Table 3.5 shows snippets of three example reports along 

with the semantic annotations by the MedSafe. The first example shows a device malfunction 

(instrument breakage) occurred during a hysterectomy procedure, which was addressed by a 

control action. The second example shows an display malfunction (image in the stereo viewer 

going back) which occurred 30 minutes into the procedure. Here, a patient injury was identified 

Table 3.4. Classes and sub-classes in the ontology model for accident analysis of surgical robots. 
Class Sub-Classes Related Tags and Keywords Example Syntactic Rules 

Contextual 
Factor 

Surgery Class CLASS: gynecologic, urologic, cardiothoracic, colorectal 
TYPE: hysterectomy, prostatectomy, mitral valve repair  

Temporal 
Information 

TEMPORAL: during, before, after, into, prior, for, past 
NUM: one, two, three, four, half, an, few, several, 1, 10, 20 
TIME_UNIT: hour*, hr*, minute*, min* 

Any TEMPORAL terms 
Preceded or succeeded by 
NUM - TIME_UNIT pattern 

Controller 
Surgical Staff STAFF: surgeon, staff, site, nurse, physician, anesthesiologist 

 
Robot Control DEVICE: console, pedal, system, device, robot, controller 

Controlled 
Process 

Robot Control DEVICE: console, pedal, system, device, robot, controller 
Any DEVICE or INST  
(as object)  

Robotic Arms/ 
Instruments 

INST_GENERAL: arm, instrument, object, component, part   
INST_NAMES: endoscope, cannula, manipulator, camera 

Patient PT: patient, pt, subject 

Control 
Action 

Decision chose, select, decide 

Any STAFF (as subject) 
succeeded by a VERB 

Troubleshoot troubleshoot, convert, reschedule, abort, reset, reboot, 
restart, shut off/down, power off/down, turn off  

Actuation move, manipulate, cut, retrieve, remove 
Communication call, ask, contact   

Feedback 
Display VIDEO: surgeon console, assistant monitor, touch screen, 

vision, video, image, camera Any STAFF (as subject) 
succeeded by a VERB 

Other FEED: observe, notice, seen, found, experienced, saw 

Control 
Flaw 

Controller ERR: mistake, error, incorrect, non-intuitive, wrong, sudden, 
unintended, unexpected. erratic, uncontrolled,  
PART: pieces, fragments, shredding, burn, hole 
NEG: not, stopped  
OP: work, recognize, rotate, move, open, close, grasp, 
manner, etc. 
COND: arc, charr, spark, fell, broke, drop, snap 
[into/in/off/inside] 

-DEVICE/STAFF succeeded 
by ERR 
-INST_GENERAL/NAMES 
preceded by PART, 
succeeded by POST 
-INST_GENERAL/NAMES 
succeeded by NEG/ERR-OP 
or COND 

Controlled 
Process 

Control Action 

Feedback 
ERR: no, loss, lost, inaccurate, incorrect, error, problem, 
issue 
COND: double, black, blurry, foggy, not aligned 

VIDEO or FEED preceded or 
succeeded by ERR of COND 
or PRE 

Accident 
Type 

Staff/Patient 
Injury 

INJ: injury, tear, burn, puncture, perforation, laceration, 
organ damage, bleeding, avulsion, rupture, necrosis, harm 

-INJ terms preceded or 
succeeded by PT or STAFF 
-INJ terms preceded by PT Patient Death death, expire 
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by the semantic tagger, but the negation tagger detected the negative sentiment of the sentence and 

this markup was invalidated. The third example shows an instance of a system error that is 

propagated as a flawed feedback to the surgical team (site). The troubleshooting control actions 

taken by the team such as communication with the company, powering off, and restarting the 

system are highlighted by the semantic tagger. 
 

Table 3.5. Example reports annotated by the semantic tags (highlights in bold) and extracted patterns 
(highlighted by arcs). 
The patient was undergoing a robotic total laparoscopic hysterectomy\SurgeryType with bilateral salpingectomy. 
The wires on the instrument\INST broke\COND.The fragments\INST were retrieved\ControlAction from the 
patient's abdomen. 

It was reported that approximately 30 minutes into\Temporal_Information a partial nephrectomy\SurgeryType 
procedure, the right eye image\VIDEO in the high resolution stereo viewer went black\COND. 
 
 
Unable to resolve the issue, the surgeon\STAFF decided to convert\ControlAction to traditional open surgical 
techniques to complete the planned procedure. No\NEGATION patient\PT harm\INJ was reported. 
 

During a surgical procedure, the site experienced\Feedback multiple instances of system\DEVICE error\ERR code  
23021. 
 
The site\Staff contacted\ControlAction isi for technical support engineering (tse) assistance. 
 
 
With the assistance of the tse the site\STAFF performed an emergency power off\ControlAction the surgeon 
side cart (ssc)\INST and the patient side cart (psc)\INSTand restarted\ControlAction the system; however, the 
issue persisted. 

 

The semantic labeling of the reports can be done more systematically by employing formal 

language models and automatic semantic role labeling techniques [67], [68] as well as more 

advanced natural language processing and knowledge discovery techniques (e.g., para-

phrasing [69], topic modeling [70], and unsupervised learning methods [71]) to automatically infer 

and extend the set of dictionary keywords and syntactic rules based on the seed examples which 

are created manually. 

The initial implementation of the proposed technique was done for labeling the contextual 

factors (e.g., surgery classes and types, temporal information), accident types (e.g., patient injuries 

and complications), and a subset of control flaws (including device and instrument malfunctions 

and troubleshooting control actions) as part of analysis of adverse events for robotic surgical 

systems (shaded sub-classes in Table 3.4). The accuracy of annotations was evaluated by manual 

Flawed Controlled Process (Device malfunction) 

Flawed Feedback (Display) 

Accident Type (Patient Injury) Invalidates the markup 

Troubleshooting (convert) 

Communication Troubleshooting (restart) 

Troubleshooting (restart) 

Flawed Controlled Process 
(Device malfunction) 
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review of the reports. The implementation of the rules for labeling all the classes in the ontology 

model and design of experiments for more comprehensive evaluation of the results is the subject 

of future work. 

 Analysis of Adverse Events in Robotic Surgery 
Use of robotic systems for minimally invasive surgery has rapidly increased during the last 

decade. Between 2000 and 2013, over 1.75 million robotic procedures were performed in the 

United States across various surgical specialties [72]. Surgical robots enable conducting complex 

minimally invasive procedures with better visualization, increased precision, and enhanced 

dexterity compared to laparoscopy. Robotic devices provide 3D magnified views of the surgical 

field and translate the surgeon’s hand, wrist, and finger movements into precisely engineered 

movements of miniaturized surgical instruments inside patient’s body. The Intuitive Surgical’s da 

Vinci robot [13] is currently the only surgical robot approved by the U.S. Food and Drug 

Administration (FDA), for performing various types of procedures in urologic, gynecologic, 

general, cardiothoracic, and head and neck surgery. There are also other robotic systems designed 

for minimally invasive surgery in areas such as neurosurgery and orthopedic surgery (e.g., MAKO 

Surgical’s RIO Robotic Arm Interactive System for orthopedic surgery [73]) or for research in 

teleoperated robotic surgery (e.g., the da Vinci research kit [74] and the RAVEN II surgical 

robot [14], [15]). 

This study focuses on assessing the safety and effectiveness of robotic surgical systems used in 

minimally invasive surgery, by analyzing safety incidents experienced during robotic procedures. 

We retrieved all the nationwide adverse event reports collected by the publicly available FDA 

MAUDE database [64] over the 14-year period of 2000–2013. Our analysis included estimating 

the prevalence of incidents (deaths, injuries, and device malfunctions) through the years and across 

six major surgical specialties of gynecology, urology, general, colorectal, cardiothoracic, and head 

and neck surgery. We characterized the potential causes for incidents and measure their impact on 

patients and on the progress of surgery.  

There have been previous studies on safety and effectiveness of robotic surgery based on the 

experience of different surgical institutions as well as analyses of the FDA MAUDE data. 

However, an important question that is unanswered is whether the evolution of the robotic systems 
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with new technologies and safety features over the years has improved the safety of robotic systems 

and their effectiveness across different surgical specialties.  

Most of the previous work only focused on two common surgical specialties of gynecology and 

urology, analyzed small number of failures experienced by specific surgical teams or small subsets 

of the MAUDE data, or studied specific types of device failures, e.g., electro-cautery failures, 

injuries caused by electrosurgical units, or individual instrument failures (see Section 3.5.5 for 

more details).  

We used MedSafe to automatically retrieve all the reported events on robotic surgical systems 

from the MAUDE database and extract important safety information from the reports, including 

patient complications, surgical specialties and types of robotic procedures, most common types of 

system malfunctions, and the actions taken by the surgical teams to recover from failures. We 

found that: (i) the overall numbers of injury and death events per procedure have stayed relatively 

constant over the years, (ii) the probability of events in complex surgical specialties of 

cardiothoracic and head and neck surgery has been higher than other specialties, and (iii) device 

and instrument malfunctions have affected thousands of patients and surgical teams by causing 

complications and prolonged procedure times.  

MedSafe enables large-scale analysis of nationwide incidents reported to the FDA over any 

timing period and, thus, facilitates more accurate estimation of the prevalence of incidents over 

the years and more effective evaluation of robotic surgical systems across different surgical 

specialties. Our goal is to use the knowledge gained from the analysis of past incidents to provide 

insights on design of future robotic surgical systems that by taking advantage of advanced safety 

mechanisms, improved human machine interfaces, and enhanced safety training and operational 

practices can minimize the adverse impact on both the patients and surgical teams. 

3.5.1. Methods 

We extracted the reports related to the systems and instruments used in minimally invasive 

robotic surgery by searching for related keywords (e.g., device and manufacturer names) in the 

Device Name and Manufacturer Name fields of over 2.9 million MAUDE records posted between 

January 2000 and December 2013. That led us to an initial list of adverse event reports, from which 

we filtered out those with duplicate database keys (reporting the same adverse event for multiple 

devices). In addition to the structured information that was directly available from the reports, we 
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extracted further information from the unstructured human-written descriptions of events by 

natural language parsing of the Event Description and Manufacturer Narrative fields. As shown 

in Figure 3.5, the MedSafe adverse event analysis tool combines domain knowledge with linguistic 

rules to interpret the semantics of the event descriptions. This is done by creating several domain-

specific dictionaries (e.g., for patient complications, surgery types [75], surgical instruments [76], 

and malfunction types) as well as syntactic rules, parts-of-speech (POS) taggers, and negation 

detectors [31]. The results generated by each step of our automated analysis were manually 

reviewed for accuracy and validity.  

 
Figure 3.5. Data extraction and analysis flow from the FDA MAUDE database. 
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More specifically, we extracted the following information from the unstructured text in the 

reports: 

• Patient injury (such as burns, cuts, or damage to organs) and death events that were 

reported under another Event Type, such as “Malfunction” or “Other”. 

• Surgical specialty and type of robotic procedure during which the adverse events 

occurred. 

• Major types of device or instrument malfunctions (e.g., falling of burnt/broken pieces of 

instruments into patients’ bodies or electrical arcing of instruments). 

• Adverse events that caused an interruption in the progress of surgery, by leading the 

surgical team to troubleshoot technical problems (e.g., restarting the system), convert the 

procedure to non-robotic surgical approaches (e.g., laparoscopy or open surgery), or abort 

the procedure and reschedule it to a later time.  

The dictionaries of keywords for surgery types/specialties and surgical instruments were 

constructed based on the online information available on the da Vinci surgeries [75] and 

instruments catalog [76] from the manufacturer.  

We compared the number of adverse events (in general) and injury/death events and procedure 

conversions (in particular) per 100,000 procedures across different surgical specialties. The rate of 

events was estimated by dividing the number of adverse events that occurred in each year (based 

on the Event Date) by the annual number of robotic procedures performed in the United States. 

The total number of procedures per year was extracted from the device manufacturer’s 

reports [72],  [77] for 2004–2013, as shown in Figure 3.6. For 2010–2013, the annual numbers of 

procedures performed in the United States were extracted directly from the annual reports of the 

manufacturer [72]. For 2004–2009, we estimated the numbers of procedures by measuring the 

graphs in the company’s investor presentations [77]. Whenever the estimated numbers from two 

different sources did not match or the data was available only for the total worldwide procedures, 

we chose the maximum number of procedures for that year in order to achieve a lower bound on 

the likelihood of events. We further estimated the number of procedures per week from annual 

number of procedures by fitting a 4-degree polynomial curve (R2 = 0.999) to the bar graph of 

annual procedures and calculating the area under the fitted curve for every week (see Figure 3.6). 

The annual number of procedures per surgical specialty was available only for gynecology, 

urology, and general surgery after 2007. So we estimated a combined annual number of procedures 
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for cardiothoracic and head and neck surgery by assuming that the majority of the remaining 

procedures (other than genecology, urology, and general) were related to these specialties, as, 

according to the manufacturer reports, they are the only other specialties for which the robot has 

been used [72]. 

We assumed that the rate of underreporting for injury and death events are low and are 

independent from the type of surgery, because the device manufacturers are required and 

monitored by the FDA to report serious injury and death events to the MAUDE database. However, 

due to possible changes in the reporting rates during the years, the total number of events per 

procedure in the whole study period was compared across different surgical specialties. The two-

sided P values (< 0.05) and 95% confidence intervals were used to determine the statistical 

significance of the results. The cumulative number of malfunctions per procedure was used to 

evaluate the trends in malfunction rates over 2004–2013.  

To characterize the major causes to which injury and death events were attributed by the 

reporters, we performed a manual review of event descriptions for all the reports made before 

2013.  

3.5.2. Results  

We identified a total of 10,624 events related to the robotic systems and instruments, reported 

over 2000–2013. About 98% of the events were reported by device manufacturers and distributors, 

 
Figure 3.6. Estimated numbers of procedures performed during 2004–2013. 
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and the rest (2%) were voluntary reports. In the same period, over 1,745,000 robotic procedures 

were performed in the United States, so the estimated number of adverse events per procedure was 

less than 0.6% (95% confidence interval (CI), 0.6–0.62).  

Data included 1,535 (14.4%) adverse events with significant negative patient impacts, including 

injuries (1,391 cases) and deaths (144 cases), and over 8,061 (75.9%) device malfunctions. For the 

rest of the events (1,028 cases), the Event Type information either was not available or was 

indicated as “Other.” We identified 160 adverse events (1.5%) that included some kind of patient 

injuries but were reported as a “Malfunction” or “Other.”  

 Trends in Adverse Event Reports 
Figure 3.7 shows the overall trends in the annual numbers of reports and the estimated rates of 

events per 100,000 procedures over 2004–2013. The left Y-axis corresponds to the bars showing 

the absolute numbers of adverse events (based on the years that reports were received by the FDA). 

The right Y-axis corresponds to the trend lines showing (in logarithmic scale) the annual number 

of adverse events per 100,000 procedures (based on the year the events occurred). Numbers on the 

bars indicate number of deaths reported per year. Error bars represent 95% confidence intervals 

for the proportion estimates. Because of the small number of injury and death events reported for 

2004 and 2005, a combined rate was calculated for 2004–2006. Of all the reported events, 40 were 

related to the published articles or the legal disputes received by the manufacturer. 

 
Figure 3.7. Annual numbers of adverse event reports and rates of events per procedure. 
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We made the following observations based on these results: 

• The absolute number of reports made per year has significantly increased (about 32 times) 

since 2006, reaching 58 deaths, 938 patient injuries, and 4,124 malfunctions in 2013. The 

number of robotic procedures performed per year has increased 10-fold in the same 

period [77].  

• While the annual average number of adverse events was about 550 per 100,000 procedures 

(95% confidence interval (CI), 410–700) between 2004 and 2011, in 2013 it peaked at about 

1,000 events per 100,000 procedures (one event reported in every 100 procedures).  

• The numbers of injury and death events per procedure have stayed relatively constant since 

2007 (mean = 83.4 per 100,000 procedures, 95% CI, 74.2–92.7). 

 Adverse Events across Different Surgical Specialties  
Table 3.6 shows the numbers of adverse events reported in different surgical specialties and 

their impact on patients (injuries or deaths) and progress of surgery (procedure conversion or 

rescheduling). The last row shows examples of the most common types of procedures reported in 

each specialty.  

• The majority of reports were related to gynecology (30.1%), urology (14.7%), and 

cardiothoracic (3.7%) surgeries, such as hysterectomy (2,331), prostatectomy (1,291), and 

thoracic (110) procedures, respectively. The higher percentage of adverse events in 

gynecologic and urologic surgeries could be explained by the higher number of these 

procedures performed (86% of all the robotic procedures performed in the United States) 

compared to other surgical specialties (less than 14.2% of all procedures) [77].  

• Cardiothoracic and head and neck surgeries involved a higher number of deaths per adverse 

event report (6.4% and 19.7%) than gynecology and urology (1.4 and 1.9%).  

• The highest number of procedure conversions per adverse event was for cardiothoracic 

(16.8%) and urology (13.5%), and the highest rates of procedure rescheduling were for 

urology (9.5%), general (3.0%), and cardiothoracic (2.8%) surgeries. 

Of all the reports, only 5,721 (53.8%) indicated the class and type of surgery involved. 

However, the majority of reports with missing information on the type of surgery were related to 

device malfunctions and “Other” events (97.6%). In order to compare the rate of adverse events 

across different specialties, we focused only on reports related to injuries, deaths, and procedure 
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conversions. For the majority of these events (92.2% of injury reports, 95.1% of deaths, and 72.2% 

of procedure conversions), the surgery type information was available and the rest (with “N/A” 

surgical specialty) were removed from our analysis. In order to estimate the rate of events per 

procedure, we regrouped the events into four major categories of “Gynecology,” “Urology,” 

Table 3.6. Adverse events in different surgical specialties:  
Deaths, injuries, malfunctions, procedure conversion or rescheduling, common types of surgery. 

 No. (%) [95% Confidence Interval]   

 Gynecology Urology Cardio- 
thoracic Head & Neck Colorectal General N/A 

Overall a 
3,194 
(30.1) 

[29.2–31.0] 

1,565 
(14.7) 

[14.0–15.4] 

393 
(3.7) 

[3.3–4.1] 

71 
(0.7) 

[0.5–0.9] 

301 
(2.8) 

[2.5–3.1] 

197 
(1.9) 

[1.6–2.2] 

4,903 
(46.2) 

[45.3–47.1] 
Event Type b        

 Death 
46 

(1.4) 
[1.0–1.8] 

30 
(1.9) 

[1.2–2.6] 

25 
(6.4) 

[4.0–8.8] 

14 
(19.7) 

[10.4–29.0] 

11 
(3.7) 

[1.6–5.8] 

11 
(5.6) 

[2.4–8.8] 

7 
(0.1) 

[0.0–0.2] 

 Injury 
818 

(25.6) 
[24.1–27.1] 

272 
(17.4) 

[15.5–19.3] 

64 
(16.3) 

[12.6–20.0] 

14 
(19.7) 

[10.4–29.0] 

58 
(19.3) 

[14.8–23.8] 

56 
(28.4) 

[22.1–34.7] 

109 
(2.2) 

[1.8–2.6] 

 Malfunction 
2,103 
(65.8) 

[64.2–67.4] 

902 
(57.6) 

[55.2–60.0] 

226 
(57.5) 

[52.6–62.4]  

35 
(49.3) 

[37.7–60.9] 

209 
(69.4) 

[64.2–74.6] 

110 
(57.8) 

[48.9–62.7] 

4,476 
(91.3) 

[90.5–92.1] 

 Other 
227 
(7.1) 

[6.2–8.0] 

361 
(23.1) 

[21.0–25.2] 

78 
(19.8) 

[15.9–23.8] 

8 
(11.3) 

[3.9–18.7] 

23 
(7.6) 

[4.6–10.6] 

20 
(10.2) 

[6.0–14.4] 

311 
(6.3) 

[5.6–7.0] 

Conversion 
236 
(7.4) 

[6.5–8.3] 

212 
(13.5) 

[11.8–15.2] 

66 
(16.8) 

[13.1–20.5] 

6 
(8.5) 

[2.0–15.0] 

29 
(9.6) 

[6.3–12.9] 

14 
(7.1) 

[3.5–10.7] 

217 
(4.4) 

[3.8–5.0] 

Rescheduling 
26 

(0.8) 
[0.5–1.1] 

148 
(9.5) 

[8.1–10.9] 

11 
(2.8) 

[1.2–4.4] 

1 
(1.4) 

[0–4.1] 

1 
(0.3) 

[0–1.0] 

6 
(3.0) 

[0.6–5.4] 

77 
(1.6) 

[1.3–1.9] 

Common 
Surgery  
Types 

Hysterectomy 
(2,331) 

Prostatectomy 
(1,291) 

Thoracic 
(110) 

Thyroidectomy 
(19) 

Cholecyst- 
ectomy 

(118) 

Hernia repair 
(37) 

 

Myomectomy 
(328) 

Nephrectomy 
(138) 

Lobectomy 
(67) 

Tongue base 
resection (19) 

Colectomy 
(61) 

Nissen 
fundoplication 

(34) 

Sacrocolpopexy 
(170) 

Pyeloplasty 
(31) 

Mitral valve 
repair (54) 

Transoral 
robotic (18) 

Low 
anterior 

resection(44) 

Gastric bypass 
(28) 

Oophorectomy 
(120) 

Cystectomy 
(48) 

Coronary 
artery 

bypass (23) 
 Colon 

resection(25) 
Gastrectomy 

(15) 

a Percentages are over all the adverse event reports (n = 10,624). 
b Percentages are over the total adverse events reported for a surgical specialty. 
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“General,” and “Cardiothoracic and Head and Neck,” according to the manufacturer’s reports [77]. 

The “General” category includes both colorectal and general specialties. 

As shown in Table 3.7, for cardiothoracic and head and neck surgery, the rates of injuries, 

deaths, and procedure conversions have been significantly higher than other specialties. During 

2007–2013, the estimated rate of deaths have been 52.2 per 100,000 procedures for cardiothoracic 

and head and neck specialties vs. 5.7 in gynecology, urology, and general surgeries (RR = 9.23, 

95% CI, 6.35–13.40, P < 0.0001). Also, the rate of injuries and procedure conversions in these 

specialties have been 91.0 and 89.7 per 100,000 procedures vs. 71.5 (RR = 1.27, 95% CI, 0.99–

1.63, P < 0.052) and 29.2 (RR = 3.07, 95% CI, 2.38–3.97, P < 0.0001) in the other surgical 

categories.    

 Device and Instrument Malfunctions  
We identified five major categories of device and instrument malfunctions that impacted the 

patients, either by causing injuries and complications or by interrupting the progress of surgery 

and/or prolonging procedure times. Table 3.8 shows the numbers of events in each category, the 

event types as indicated by reporters (including Malfunction (M), Injury (IN), Death (D), and Other 

(O)), and the actions taken by the surgical team to resolve the problems. The malfunction 

categories and actions taken by the surgical teams are not mutually exclusive, and in many cases 

two or three different malfunctions or two actions were reported in a single event. Figure 3.8 uses 

Table 3.7. Comparsion of adverse events rates in different surgical specialities (2007 - 2013). 

 No. (rate per 100,000 procedures) a 
[95% CI]   

 
 
 

Gynecology, 
Urology, 
General  

Cardiothoracic, 
Head and Neck, 

Other 

Cardiothoracic and Head and Neck 
vs. 

Gynecology, Urology, and General 
Total Procedures 
Total Adverse Events 

1,661,891 
5,209 

74,709 
447 Relative Risk  (95% Cl)b P Value 

Event Type      
Death 94   (5.7) 39     (52.2)  9.23 (6.35–13.40) < 0.0001 
Injury 1188    (71.5) 68   (91.0) 1.27  (0.99–1.63) < 0.052 

Conversion 485   (29.2) 67   (89.7) 3.07 (2.38–3.97) < 0.0001 
Rescheduling 180   (10.8) 12   (16.1) 1.48 (0.83–2.66) < 0.19 c 

a Percentages are over total number of procedures in each column. 
b Assuming that the level of underreporting across different surgical specialties is similar. 
c Not statistically significant because of the small number of samples (12) in the cardiothoracic and head and 
neck surgery.   
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Venn diagrams to depict the intersections among different malfunction categories and actions 

taken by the surgical team.  

• System errors and video/imaging problems contributed to 787 (7.4%) of the adverse 

events and were the major contributors to procedure interruptions, including system resets 

Table 3.8. Major categories of malfunctions and surgical team actions. 

Malfunction 
Category  Description 

No. of Reports 
(% of all) 

Surgical Team Actions 
(% of malfunction category) 

Total 
Event Type a System 

Reset 
Procedure 
Converted 

Procedure 
Rescheduled M IN D O 

System 
Errors 

- System error codes/faults 
- System transferred into a 

recoverable or non-
recoverable safety state 

536 
(5.0%) 44 23 1 468 231 

(43.1%) 
330 

(61.6%) 
133 

(24.8%) 

Video/ 
Imaging 

Problems 

- Loss of video feed 
- Display of blurry images at 

surgeon’s console or 
assistant’s touchscreen 

275 
(2.6%) 21 18 0 236 53 

(19.3%) 
145 

(52.7%) 
94 

(34.2%) 

Broken  
Pieces 

Falling Into 
Patients 

- Burnt or broken parts, 
instruments, components 

- Fell into surgical field or 
patient body cavity 

- Additional procedure time 
was spent to find/remove 
pieces from patient body 

1,557 
(14.7%) 1,396 119 1 41 3 

(0.2%) 
38 

(2.4%) 
5 

(0.3%) 

Broken 
Tip Covers/ 
Elec. Arcing 

- Tears, burns, holes on tip 
covers (insulation failure) 

- Electrical arcing, sparking, 
charring of instruments 

1,111 
(10.5%) 900 193 0 18 2 

(0.2%) 
18 

(1.6%) 
0 

(0.0%) 

Unintended 
Instrument 
Operation 

- Unintended or unstoppable 
movements without 
surgeon’s command 

- Instruments not working,  
opening/closing 

- Instruments not recognized 
by system 

1,078 
(10.1%) 919 52 2 105 31 

(2.9%) 
93 

(8.6%) 
21 

(1.9%) 

Other 

- Cable, wire, tube, or 
instrument damages and 
breakages  

- Issues with electrosurgical 
units, power supplies/cords, 
patient-side manipulators 

- Other “Malfunction” events 

5,092 
(47.9%) 4,962 55 1 74 20 

(0.4%) 
62 

(1.2%) 
13 

(0.3%) 

Total 
(% of all) - All malfunctions 9,377 

(88.3%) 8,061 443 5 868 305 
(3.3%) 

630 
(6.7%) 

246 
(2.6%) 

 All Adverse 
Events 

10,624 
(100%) 8,061 1,391 144 1,028 334 

(3.1%) 
780 

(7.3%) 
270 

(2.5%) 
 



60 

(274 cases, 82% of all system resets), conversion of the procedures to a non-robotic 

approach (462 cases, 59.2% of all conversions), and aborting/rescheduling of the procedures 

(221 cases, 81.8% of all cases). System errors are raised upon detection of device problems 

that cannot be autonomously recovered from and either require manual system reset 

(recoverable errors) or stopping the procedure (non-recoverable errors). Table 3.9 lists the 

descriptions and frequencies of the most common error codes extracted from the reports. 

• Falling of the broken/burnt pieces into the patient’s body constituted about 1,557 

(14.7%) of the adverse events. In almost all these cases, the procedure was interrupted, and 

the surgical team spent some time searching for the missing pieces and retrieving them from 

the patient (in 119 cases, a patient injury, and in one case a death, was reported). 

• Electrical arcing, sparking, or charring of instruments and burns or holes developed in 

the tip cover accessories constituted 1,111 reports (10.5% of the events), leading to nearly 

193 injuries, such as burning of tissues.  

• Unintended operation of instruments, such as uncontrolled movements and spontaneous 

powering on/off, happened in 1,078 of the adverse events (10.1%), including 52 injuries and 

two deaths. 

 
(a) (b) 

Figure 3.8. Intersections among different (a) Malfunction categories and (b) Surgical team actions. 
A total of 3,067 adverse event reports were not classified by MedSafe in any of the malfunction categories. For 9,520 
adverse events, no system resets, conversions, or rescheduling were reported. 
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The Other category represents the malfunctions that could not be classified in any of the classes, 

including cable and instrument breakages that did not lead to other types of malfunctions, 

electrosurgical unit and power supply problems, and patient-side manipulator issues. 

In total, 9,377 reports were about technical problems, including 1,104 cases (10.4% of all the 

adverse events) in which the procedure was interrupted and additional time was spent on 

troubleshooting the errors, resetting the system, and/or converting the procedure to a traditional 

technique, or rescheduling the procedure to a later time.  In 1,019 of cases (10.9% of all the 

malfunctions), the device or instrument malfunction was detected prior to start of the procedure, 

of which in 20 cases the procedure was rescheduled to a later time and in two cases it was converted 

to a non-robotic approach. 

Figure 3.9 shows the cumulative rates of malfunctions per procedure over 2004–2013. Overall, 

the malfunction rates decreased after 2006, but the rate of cases with arcing instruments and broken 

instruments followed a relatively constant trend. The sudden increase in the rate of broken 

instruments after the middle of 2012 could be related to changes made to the adverse event 

reporting practices by the manufacturer in 2012 (mostly related to instrument cable breaks) [78], 

as well as increased reporting of adverse events after concerns about the safety of robotic surgery 

were raised by the FDA [79], [80] and public media in early 2013 [81] – [83].  

 
Figure 3.9. Cumulative rates of malfunctions per procedure. 

The rates of malfunctions per procedure were obtained for each week (see Figure 3.6 for more details on the 
estimation of the number of procedures). 
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Table 3.9. Most frequent system error codes raised by the surgical system. 

System 
Error 
Code 

Description 

Type of  
Safe State 

that System 
Transits To 

No. of 
Adverse 
Events 

#20008 

The angular position of one or more robotic joint’s on the specified manipulator, 
as measured by the joint’s primary control sensor (encoder) and the secondary 
sensor (potentiometer), were out of specified tolerance for agreement. 

Recoverable 

62 
#23008 42 
#20013 34 
#23013 20 
#21008 18 
#21013 17 
#23002 8 
#20009 7 
#22003 5 

#212 
A voltage-tracking fault reported by the digital signal processor (dsp) when the 
actual voltage to drive current through the motors deviates from the expected 
voltage by a specified amount. 

Non-recoverable 31 

#23 

Hardware wheel "wdog" has tripped on one of the digital communication links 
in the system (due to an excessive number of retries on hardware message 
packets). This means that the system cannot reliably communicate over that 
digital link and therefore cannot continue normal operation. 
Communication faults in the low-voltage differential signal carrying information 
about the patient side manipulator. 
Communication faults between two system components. 

N/A 28 

#1 A power supply voltage was out of range. Non-recoverable 19 

#3 A redundant switch was missing its ground sense, or the contacts did not report 
as expected at startup. N/A 15 

#23017 A motor did not respond as expected, and the measured motion did not match 
the internal stimulation of the motor. Recoverable 14 

#2 A reference voltage was out of range. N/A 14 

#31030 One of the camera controller units in the doco has failed to power on after 
multiple attempts or has shut down after initially powering up. N/A 14 

#5 One or more fans are not moving as desired N/A 10 
#297 An electronic component was reporting an incorrect configuration. Non-recoverable 9 

#252 Master supervisory controller did not receive an expected message within a 
specified time. Recoverable 8 

#23020 One of the switches in a specific manipulator is showing inconsistent signals on 
its two switch leads. Recoverable 7 

#25589 During the power up self-test, the remote arm controller board (rac) brakes failed 
the brake voltage test. Recoverable 6 

#25588 A sympathetic error and occurs during the self-test upon system power-up when 
a loop response test fails. Recoverable 6 

#23007 On startup, one or more robotic joints on the manipulator did not make the 
prescribed test motion to within the specified tolerance. Recoverable 6 

#21003 The arm did not perform the commanded motions during startup within a 
specified tolerance. N/A 5 

#281 A processor did not complete a step during system startup within the allotted 
time. Non-recoverable 5 

#23034 After a specified amount of time, a valid event was not seen for one of the remote 
compute engine switches. Recoverable 5 

#45049 A communication timeout with the software running the da Vinci onsite 
application. Recoverable 4 
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 Injury and Death Causes  
A manual review of a sample set of injury and death reports (from 2000–2012) allowed us to 

classify the causes indicated by reporters into three main categories: inherent risks associated with 

surgery, technical issues with the robot, and mistakes made by the surgical team. For the majority 

of death events, little or no information was provided in the reports. About 50% of the death events 

were indicated by the reporters to be related to inherent risks or complications of surgery, 11.6% 

due to patient’s history or health state, and 7% were attributed to surgeon/staff mistakes (e.g., 

incorrect instrument change or accidental cuts of artery). Of all the reported deaths in different 

classes of surgery, at least 75.3% (64 of 86) happened after the procedure (mainly due to patient 

history, infection/sepsis, or uncontrollable and heavy bleeding) and 17.4% (15 of 86) happened 

during the procedure. Of the deaths that occurred during the procedures, five were due to 

inadvertent cuts or punctures of organs and the others were related to complications such as 

uncontrolled bleeding, pulmonary embolism, and cardiac arrest.  

As Table 3.10 shows, about 62% of the injury events involved device malfunctions and the rest 

involved operator errors (7.1%), improper positioning of patient or port incisions (6.3%), inherent 

risks of surgery (3.9%), or problems with grounding the equipment (1.5%).  

 

Table 3.10. Summary of death and injury reports (2000–2012). 
 Death Reports (Total = 86) 

Example Causes Num. of Reports (%) 
 Surgeon/staff mistake 6 (7.0%) 
 Patient’s history 10 (11.6%) 
 Inherent risks and complications 43 (50.0%) 
 N/A 27 (31.4%) 
During Procedure Punctures, bleeding, pulmonary embolism, cardiac arrest 64 (75.3%) 
After Procedure Infection/sepsis, heavy bleeding 15 (17.4%) 
Injury Reports (Total = 410) 
Example Causes Num. of Reports (%) 

Device malfunctionsa  254 (62.0%) 
Surgeon/staff mistake 29 (7.1%) 
Improper positioning of patient led to post-operation complications such as nerve damage 17 (4.1%) 
Inherent risks of surgery and patient history 16 (3.9%) 
Burning of tissues near port incisions 9 (2.2%) 
Possible passing of electrosurgical unit currents through instruments to the patient body 6 (1.5%) 
Surgeon felt shocking at the surgeon-side console 2 (0.5%) 
N/A 77 (18.8%) 
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The following are the most common flawed operational practices used by the surgical team that 

contributed to catastrophic events during surgery: 
 

• Inadequate experience with handling emergency situations 

• Lack of training with specific system features  

• Inadequate troubleshooting of technical problems 

• Inadequate system/instrument checks before procedure  

• Incorrect port placements  

• Incorrect electro-cautery settings  

• Incorrect cable connections  

• Inadequate manipulation of robot master controls 

• Inadequate coordination between hand & foot movements 

• Incorrect manipulation or exchange of instruments 

 

A more comprehensive analysis of multidimensional causes of incidents is the topic of the 

future research. 
 

3.5.3. Reasons for Recalls and Recovery Actions  
We also extracted 19 recalls of the da Vinci surgical system and instruments reported to the 

FDA from January 2000 to December 2012. While only a small number of recalls were issued by 

the company over the years, they impacted a large number of devices (109,709 devices and 

instruments) on the market. After the concerns raised by the FDA and the public about increase in 

the number of adverse event reports, the manufacturer issued 13 new recalls in the 8-month period 

of April-November 2013 alone. Table 3.11 and Table 3.12 list examples recalls of the da Vinci (S) 

Control System and Instruments; we further classified the recalls, based on their reasons, into four 

categories of software, electrical, computer control, and mechanical problems.  

Important insights into the safety issues of the robot can be extracted from the recalls, because 

the data includes the actual technical problems confirmed by the manufacturer that may present 

potential harm to patients, as well as the recovery actions taken to address the failures.   
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The following are our findings: 

• Of all the recalls, ten were reported for the robot’s control system, affecting about 3,741 

systems on the market, while the rest (nine out of 19) were related to accessories and 

instruments used with the robot, affecting about 105,968 devices.   

• The majority (seven out of 10) of control system recalls (Table 3.11) were due to computer- 

and electrical-related malfunctions (affecting 1568 devices), but the recalls due to 

mechanical malfunctions (three out of 10) affected a larger number of devices (2173) on the 

market.  

• The problems with the robot control system were often handled at a very high cost to both 

the manufacturer and the hospitals. 

• Software and mechanical issues were addressed by sending field system engineers to all the 

locations to update or repair the systems (in about 1,500 devices).  

• Hospitals were advised to have backup equipment and instrumentation available and to be 

prepared to convert to alternative surgical techniques (mentioned in [84] and in the system’s 

user manual, according to [85]), costing about $2 million per back-up device and 

instruments. 

 

The manufacturer's recommendations that healthcare providers continue to use the device until 

the corrective system updates or service visits are made (e.g., for recall numbers Z-2204-2008 and 

Z-2930-2011 in Table 3.11) and that they use the backup systems in the case of failures, do not 

reflect advisable practices. Many of the reported failures might be repeatable and in the time until 

the service visit, there is potential for system downtime, prolonged procedures, or patient injuries 

in all devices that are affected by the same defect (259 devices in these two examples). 

Additionally, some of the problems such as a software defect that can lock up the system cannot 

be resolved even by having redundant backup devices. It is well-understood in software 

engineering that two versions of the same software may well experience the same technical 

problems [86].  
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Table 3.11. Recalls of da Vinci (S) endoscopic instrument control system (2000–2012). 

Recall 
Record 

Numbers 

Device Name 
(Model 

Number) 
Date Malfunction 

Type Reason for Recall 
Company 
Recovery 

Action N
um

. o
f 

De
vi

ce
s 

Z-1244-2007 
da Vinci S 
A4.3 SW 

(Model IS1200) 

Sep 
26 

2007 

Computer 
Software 

Under certain conditions, the 
product's software may crash and 
require a manual override or restart 
before functioning again. 

Service Visit 
+ 

Software 
Upgrade 

405 

Z-0079-2008 da Vinci S 
(Model IS2000) 

Feb 
21 

2008 

System lock-up: Software anomalies 
could cause product failure during 
use; or on start-up.  System transitions 
to a safe “soft-lock” state. 

Software 
Upgrade 159 

Z-2204-2008 da Vinci S 
(Model IS2000) 

Sep 
16 

2008 

Defective software chip may cause the 
system to fail and lock up. 

Urgent Letter 
+  

Replace 
Chip 

112 

Z-1245-2007 

da Vinci S 
(Model IS2000) 
(Auxiliary power 

board (APB)) 

Feb 
22 

2008 

Electrical 

Product may malfunction and fail to 
start up on AC power. Service Visit 38 

Z-0151-2008 
Z-0152-2008 

da Vinci S 
(Model IS2000) 

 
(Vision Cart 

Model VS2000) 

Feb 
22 

2008 

Under-rated fuses may be installed 
which will result in fuse failure and a 
loss of power to the vision cart and 
any ancillary equipment connected to 
it. 

Notification 
Letter 

+ 
Correction 

63 

Z-1180-2008 

da Vinci S 
(Model IS2000) 

(Revision 
A51_P5) 

June 
12 

2008 

Computer 
Control 

Delay in responding: In certain 
circumstances, the device may not 
respond immediately to a user’s 
command, such as master clutch or 
camera control. 

Notification 
Letter 

+ 
Correction 

9 

Z-1161-2010 

da Vinci S 
(Model IS2000) 

(Revision 
A51_P7) 

Apr 
05 

2010 

Gripper or scissor jaws may close 
inadvertently, and will not open on 
command, and various other reported 
modes of failure. Control by surgeon 
may fail, and this failure may be 
difficult to detect. 

Notification 
Letter 

+ 
Service 

Engineer Visit 

782 

Z-0670-2007 
da Vinci S 

4 Arm 
(Model IS2000) 

Mar 
29 

2007 

Mechanical 

Spinal pin could limit mechanical 
motion of the arm and make system 
unavailable for surgery. 

Rework as 
Part of 
Routine 

Service Visit 

24 

Z-2930-2011 da Vinci Si 
(Model IS3000) 

Aug 
03 

2011 

Potential failure of the retention 
component of the Master Tool 
Manipulator (MTM) could cause 
uncontrolled movement. 

Urgent 
Correction 

Letter  
+ 

Component 
Retrofit 

183 

Z-1202-2012 
da Vinci S, 
da Vinci Si, 

da Vinci Si-e 

Mar 
13 

2012 

The holding brake may allow passive 
uncontrolled motion due to gravity 
during specific power-off conditions. 

Urgent 
Correction 

Letter + 
Instructions 

196
6 
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Table 3.12. Example recalls of da Vinci accessories (2000–2012). 

Recall 
Record 

Numbers 

Device Name 
(Model 

Number) 
Date Malfunction 

Type Reason for Recall 
Company 
Recovery 

Action N
um

. o
f 

De
vi

ce
s 

Z-0660-2007 
8mm EndoWrist 
Bipolar Maryland 

Instrument 

Mar 
28 

2007 

Computer 
Software 

The product was incorrectly 
programmed as training instruments, 
allowing it to be used for 30 surgical 
procedures instead of 10. 

Urgent 
Letter 

+ 
Return 

8 

Z-1811-2008 

da Vinci S 
Cardiac Probe 

Gasper 
Instrument 
(For model 

IS2000) 

Sep 
17 

2008 

There is a software interface problem 
that will not allow the IS2000 system 
to recognize the instrument, which 
causes the loss of operability of the 
instrument; delay in surgery; and loss 
of dexterity. 

Urgent 
Letter 

+ 
Return 

11 

Z-0723-05 
da Vinci 

8 mm EndoWrist 
Curved Scissors 

Apr 
22 

2005 

Mechanical 

Blades on the scissor may break and 
separate from the main unit as a 
result of corrosion damage. 

Notification 
Letter 278 

Z-0669-2008 
da Vinci S 

5 mm 
Instrument 

Cannula 

Jan 
31 

2008 

5mm Cannula may have  sharp edges 
on the inner diameter that may cause 
particulate shavings to be skive 
(scraping) from the instrument shafts 
during surgery. 

Urgent 
Notification 

Letter 
+ 

Instructions 

89 

Z-0657-2008 
Z-0658-2008 
Z-0659-2008 

Jan 
31 

2008 

There may be a ridge on the side of 
the cannula which has the potential 
to abrade instrument shafts and 
generate black particulate matter. 

Urgent 
Notification 

Letter 
+ 

Replace 

896 

Z-1348-2008 

da Vinci S 
8mm 

Instrument 
Cannula  

(model IS2000) 

Aug 
06 

2008 

(1) Incorrect dimension on Luer on 
smoke evacuation cannulae not 
allowing for secure attachment 
function. (2) Incorrect labeling. 

Urgent 
Letter 

+ 
Remove 

39 

Z-2104-2012 
Z-2103-2012 
Z-2101-2012 
Z-2102-2012 
Z-2105-2012 
Z-2106-2012 

da Vinci S 
4 Arm 

Disposable 
Accessory Kit 

(model IS3000) 

Jul 
27 

2012 

Specific lots of the Instrument Arm 
Drapes were manufactured with a 
sterile adaptor that may have 
difficulty engaging an instrument. 

Urgent 
Recall Letter 

+ 
Return 

92,390 

Z-0258-2008 

da Vinci 
8 mm  

EndoWrist 
PK Dissecting 

Forceps 

Jan 
24 

2008 Labeling 
and 

Sterilization 

Mislabeling-electrical isolation 
requirements: devices were 
incorrectly labeled with a CF symbol 
(suitable for direct cardiac 
application), not their proper BF 
Symbol on the instrument housing.  

Urgent 
Letter 

+ 
Instructions 

+ 
Update 
Labeling 

1,136 

Z-2339-2012 

Tip Cover for 
8m Monopolar 
Curved Scissors 

(Disposable) 

Sep 
10 

2012 

There is potential for the sterility of 
the product to be compromised. 

Notification 
Letter 

+ 
Instructions 

11,121 
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Notwithstanding the fact that existing da Vinci robotic systems already have built-in safety and 

recovery mechanisms, the reported failures are identifiable single points of failures that could be 

prevented or recovered from at much lower costs and in a more timely fashion. The software 

lockups can be resolved by using a technique called rollback recovery (or check-pointing), a 

standard technique that have been shown to be effective in tolerating 70–90% of hardware and 

software faults [87], [88]. Other examples include the use of redundant components in the system 

design, real-time error detection and reconfiguration strategies for automatic replacement of 

defective system components, and timely software updates. 

3.5.4. Limitations  

The results of our study come with the caveats that inherent risks exist in all surgical procedures 

(more so in complex procedures) and that the MAUDE database suffers from underreporting and 

inconsistencies. Thus, the estimated number of adverse events per procedure are likely to be lower 

than the actual numbers in robotic surgery. The sensitivity of adverse event trends to changes in 

reporting mechanisms, surgical team expertise, and inherent risks of surgery could not be assessed 

based on this data.  

Further, the lack of detailed information in the reports makes it difficult to determine the exact 

causes and circumstances underlying the events. The example causality analysis results presented 

here are limited to our knowledge of the system and the information provided in the MAUDE 

reports. There might be other system hazards and causal factors involved in the adverse events that 

could be determined using STAMP, but were missed in our analysis.  

3.5.5. Related Work 

In this section we provide a summary of the related work on safety and effectiveness of 

minimally invasive robotic surgery and its comparison to non-robotic minimally invasive surgical 

methods (laparoscopy), as well as an overview on the FDA MAUDE database and previous 

analyses of adverse events in robotic surgery. 

 Robotic versus Non-Robotic Surgical Methods 
Previous studies on the effectiveness of robotic surgery and comparison of the outcomes to non-

robotic minimally invasive methods fall into one of the following categories: (1) case-controlled 
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studies that performed retrospective comparison of outcomes from robotic and non-robotic 

minimally invasive procedures done by specific surgical teams and institutes, and (2) meta-

analysis studies that systematically reviewed and combined the results from multiple studies. There 

are only a few small-sized randomized controlled trial studies that compared robotic and 

laparoscopic minimally invasive methods (e.g., one study compared robot-assisted laparoscopic 

radical prostatectomy (RALP) and retropubic radical prostatectomy (RRP) [89]). The case-

controlled studies may suffer from selection bias in choosing the surgery methods for individual 

patients. Usually the less difficult cases are chosen early in the learning curve of a new procedure 

method, potentially leading to an unfair comparison of procedures. In addition, retrospective 

studies based on analysis of medical records may underreport actual rates of complications due to 

missing information in the records. Further, the unfavorable outcomes experienced during learning 

curve may not get published at all, leading to biased analysis of outcomes by meta-analysis 

studies [90].  

Table 3.13 provides a summary of the previous studies across different surgical specialties [90] 

– [106]. For each specialty, we selected a sample of studies on the most common type of procedure 

performed in that specialty (e.g., hysterectomy in gynecology, prostatectomy in urology, and mitral 

valve repair in cardiology). We picked the case-controlled and meta-analysis studies that covered 

a large population of patients (n > 100 when possible) as well as randomized control trials, from 

the high impact journals published between 2007 and 2014. 

As Table 3.13 shows, most of the studies especially in gynecology and urology, for which the 

robots are extensively used, show better outcomes compared to other minimally invasive methods 

in terms of amount of blood loss during surgery, length of hospital stay, and mortality rates.  

However, the case-controlled studies report contradictory results on the mean operative time 

and complication rates in robotic versus laparoscopic hysterectomy and prostatectomy. This is 

because those factors are highly dependent on the expertise level of surgeon and the number of 

cases required to overcome the learning curve in robotic surgery [107]. Further, comparisons of 

outcomes for more complex procedures in cardiothoracic and head and neck surgery have rarely 

been done, and the existing studies often show that robotic approach is no more effective than non-

robotic minimally invasive methods. 
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 Table 3.13. Related work on comparison of robotic vs. non-robotic minimally invasive surgical methods. 
Sp

ec
ia

lty
 

Study Study Type 
Surgical  

Procedure 
Patients 

(n) 

Mortality 
Rate 
(%) 

Complication 
Rate 
(%) 

Conversion/ 
Reoperation 

Rate (%) 

Mean 
Operative 
Time(min) 

G
yn

ec
ol

og
y 

Boggess et al. 
2008 [91]  Cohort 

Hysterectomy 
LAP 81 -- 13.6 4.9 213.4 

ROB 103 -- 5.8 2.9 191.2 
Gaia et al. 
2010 [90] 

Systematic  
Review 

LAP 424 -- 3.8 9.9 209 
ROB 396 -- 2.0 4.9 219 

Wright et al.  
2012 [92] Database 

Analysis 

LAP 2,464 0.2 9.8 -- -- 
ROB 1,437 0.1 8.1 -- -- 

Wright et al. 
2013 [93] 

LAP 4,971 0 5.3 0.1 -- 
ROB 4,971 0 5.5 0.1 -- 

U
ro

lo
gy

 

Rozet et al. 
2007 [94] 

Multiple 
Surgeons 

Prostatectomy 
LRP 133 0 9.1 0 160 
RRP 133 0 19.4 3.0 166 

Berryhill et al. 
2008 [95] 

Meta  
Analysis 

LRP 5,411 0 15.6 1.5 227 
RRP 5,472 1 death 6.6 0.5 164 

Porpiglia et al. 
2013 [96] 

Randomized Control 
Trial 

LRP 60 -- 11.6 -- 138.1 
RRP 60 -- 16.6 -- 147.6 

Robertson et al. 
2013 [97] 

Systematic 
Review 

LRP 4,952 0 0.76 0.3 238 
(*Predicted Prob.) RRP 6,768 0.2* 0.06 0.9* 225 

G
en

er
al

 

Rawlings et al. 
2007 [98] 

Single Surgeon 
Colectomy 

LAP 27 -- 14.8 7.4 199.4 

ROB 30 -- 20.0 6.6 225.2 

Müller-Stich et al. 
2007 [99] 

Randomized 
Controlled Trial 

Fundoplication 
LAP 20 -- 10.0 0 102 

ROB 20 -- 15.0 0 88 

Breitenstein et al.  
2008 [100] 

Prospective  
Case-matched 

Cholecystectomy 
LAP 50 -- 2.0 0 50 

ROB 50 -- 2.0 0 55 

Edelson et al. 
2011 [101] 

Retrospective 
Database 
Analysis 

Gastric banding 
LAP 120 -- 16.6 2.5 30.9 

ROB 287 -- 17.1 3.1 91.5 

Ca
rd

io
th

or
ac

ic
 

Mihaljevic et al. 
2011 [102] Single Institute 

Mitral valve repair 
PST 270 0 9.9 2.6 277 

ANT 114 0 2.7 2.6 327 
ROB 261 0 11-12 9.1 387 

Swanson et al. 
2014 [103] 

National  
Database 
Analysis 

Lobectomy 
VATS 295 -- 18.98 -- 253.8 

  (*Major events) ROB 295 -- 16.95* -- 269.4 
Wedge resection 

VATS 325 -- 15.69 -- 171.6 
 (*Major events) ROB 325 -- 21.58* -- 195.6 

Kent et al. 
2014 [104] 

National  
Database Analysis 

(Propensity-matched) 

Lobectomy 
VATS 1,233 1.1 45.3 -- -- 
ROB 411 0.2 43.8 -- -- 

H
ea

d 
&

 N
ec

k Lee et al. 
2011 [105] 

Retrospective Single 
Institute 

Thyroidectomy 
END 96 -- 10.4 0 142.7  
ROB 163 -- 11.0 0 110.1 

Yoo et al. 
2012 [106] 

Retrospective Single 
Institute 

END 165 -- 11.5 0 145.2 

ROB 45 -- 12.9 0 118.3 
ROB: robotic, LAP: laparoscopy, LAPT: laparotomy LRP: laparoscopic radial prostatectomy, RRP: robot-assisted radial 
prostatectomy, PST: Partial sternotomy, ANT: Mini-anterolateral thoracotomy, VATS: Video-assisted thoracic surgery 
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 Failures of Robotic Surgical Systems 
There have been several reports by individual surgical institutions on the various software-

related, mechanical, and electrical failures experienced before or during robotic procedures [108] 

– [121]. Table 3.14 summarizes these reports by providing the number and types of procedures 

performed at each center as well as the failure rates and number of cases in which failures led to 

conversion or rescheduling of procedures. The rates of device malfunctions and failure-related 

conversions reported by these studies varied between 0.4-8.0% and 0.1-2.7%, with an average of 

3% (95% confidence interval (CI), 1.9–4.2) and 0.9% (95% confidence interval (CI), 0.4–1.4), 

respectively.  

 

 Surgical Adverse Events Reports from the MAUDE Database 
Table 3.15 shows summary of related work ([122] – [128]) on analysis of the FDA adverse 

event reports on robotic surgical systems. All these studies were performed by manual extraction 

and review of subsets of the MAUDE data. Almost half of the studies only focused on specific 

types of device failures (e.g., electro-cautery failures [122], electrosurgical injuries [123], and 

instrument failures [124]) and only considered the gynecology and urology specialties in their 

analysis. None of the previous studies considered the total volume of procedures performed in 

their analysis period and none of them assessed the risk of adverse events across different surgical 

specialties and their impact on the progress of surgery.   
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Table 3.14. Summary of related work on failures of robotic surgical systems. 
Study 
(Year) 

Surgery 
Types Medical Institute  

No.  
Cases 

Total Number of Failures (Failure Rate) 
Types of Malfunctions Converted  Rescheduled 

Eichel [108] 
(2005) Urologic UC Irvine 200  

Total = 5 (2.5%) 
Software (4), Mechanical (1) 

Laparoscopic (1) 
(0.5%) N/A 

Kozlowski 
[109] 

(2006) 

Radical  
Prostatectomy 

(RLRP) 

Virginia Mason  
Medical Center 

(VMMC) 
130 

Total = 6 (4.6%) 
Setup joint (2), Software incompatible (1), 
Robotic arm malfunction (1), Power-off error 
(1), Monitor loss (1) 

Laparoscopic (1)  
Open (1) 
(1.5%) 

4 
(3.1%) 

Borden  
[110] 

(2007) 

Laparoscopic 
Prostatectomy 

Virginia Mason  
Medical Center 

(VMMC) 
350 

Total = 9 (2.6%) 
Setup joint (2), Robotic arm (2), Camera (1), 
Power error (1), Console metal break (1), 
Software incompatible (1), Monitor loss (1) 

Laparoscopic (1) 
Open (2) 
(0.9%) 

6 
(1.7%) 

Zorn 
[111] 

(2007) 

Radical  
Prostatectomy  

(RLRP) 

University of 
Chicago, School 

of Medicine 
(2003–2006) 

725 

Total = 7 (0.96%) 
(Recover. = 0.21%, Non-Recover. = .05%) 
Power-up failure (1), Optical malfunction (3), 
Robotic arm (1), Camera (2) 

Surgeon 
handicap (3) 

4 
(0.5%) 

Fischer[112] 
(2008) 

Radical  
Prostatectomy 

Klinik Hirslanden, 
Switzerland 210 

Total = 2 (1%) 
Robotic arm (2) 

Laparoscopic (2) 
(1.0%) N/A 

Lavery  
[113] 

(2008) 

Radical  
Laparoscopic 

Prostatectomy  
(RALP) 

11 Institutions 
700 Surgeons 8,240 

Total = 34 (0.4%) 
Robotic arm (14), Optical system (14), 
Master malfunctions (4), Power 
supply/circuit (6), Unknown error (3) 

Laparoscopic (2) 
Open (8) 
(0.1%) 

24 
(0.3%) 

Ham [114] 
(2009) 

Radical Laparoscopic 
Prostatectomy 

Yonsei 
University, Korea 1 Case report of Surgeon’s console failure Delayed 15 min  

Kim 
[115] 

(2009) 

Urology, 
General, 

Obstetrics and 
Gynecology, 
Thoracic and  

Cardiac 
Otorhinolaryngology 

Yonsei  
University 
College of 
Medicine,  

Korea 
(2005–2008) 

1,797 

Total = 43 (2.4%) 
Robot failures (24): On/off failure (1), Console 
malfunction (5), Robotic arm (6), Optic 
system (2), System error (10) 
Instrument failures (19): Shaft injuries (9), 
Wire cutting (2), Unnatural motion (2), 
Instrument tip (2), Limitation in motion (1) 

Laparoscopic (2) 
Open (1) 
(0.2%) 

N/A 

Kaushik 
[116] 

(2010) 

Robot-assisted  
Radical  

Prostatectomy 
(RARP) 

Survey of 
176 Surgeons 

from  
4 Countries 

 

N/A 

Total failures = 260 (before or after surgery) 
Robotic arm (38%), Camera (17.6%), 
Setup joint (13.8%), Power error (8.8%), 
Ocular monitor loss (8%), Instruments (7.6%), 
Console handpiece break (3%), Software 
(1.9%), Backup battery (0.3%), Instrument 
identification (0.3%) 

Open (18.8%), 
Laparoscopic 
(15%), 
Another robot, 
with one fewer 
robotic arm 
(8.7%) 

46 
(57.5%) 

Finan 
[117] 

(2010) 

Gynecologic  
Oncology 

University of 
South Alabama 

(2006–2008) 
137 

Total = 11 (8%) 
Robotic arm (2), Light or camera cord (2), 
Maylard bipolar (1), Power failure (1), Port 
problem (1), Others (3) 

Delayed 25 min. 
 

N/A 

Mues 
[118] 

(2011) 

Urology, 
Gynecology, 

Cardiothoracic,  
General surgery,  
Otolaryngology, 
Neurosurgery 

Ohio State 
University 

Medical Center 
 (2008–2009) 

454 Tip cover failures = 12 (2.6%) 
Significant patient complications (25%) 

 
Repaired at the 
time of surgery 

N/A 

Agcaoglu 
[119] 

(2012) 

General  
Surgery Cleveland Clinic 223 

Total = 10 (4.5%) 
Robotic instrument (4), Optical system (3), 
Robotic arms (2), Robotic console (1) 

Open surgery (6) 
(2.7%) N/A 

Chen 
[120] 

(2012) 

Urological 
Surgery 

Veterans General 
Hospital, Taiwan 

(2005–2011) 
400 

Total = 14 (3.5%) 
Robotic arm/joint (11), Optical system (1), 
Power system/connector (1), Endoscopic 
instrument (1), Software incomp. (1) 

Recoverable(10) 
Laparoscopy (3) 
(0.8%) 

1 

Buchs 
[121] 

(2014) 
General Surgery 

A Teaching 
Institution 

(2006–2012) 
526 

Total = 18 (3.4%) 
Robotic instruments (9), Robotic arms (4), 
Surgical console (3), Optical system (2) 

Laparoscopic (1) 
(0.2%) N/A 
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3.5.6. Discussion 

Our analysis shows an increasing number of adverse events related to the robotic surgical 

systems being reported. As cautioned by the FDA [64], [79], the number of MAUDE reports may 

not be used to evaluate the changes in rates of events over time, because the increased reporting of 

events may be due to different factors, e.g., the increasing use of surgical systems [77], changes in 

the manufacturers’ reporting practices [78], and/or better awareness and increased publicity 

resulting from product recalls, media coverage, and litigation [79]. Therefore, we measured the 

prevalence of adverse events in each year by estimating the number of events reported per 

procedure. We found that despite a relatively high number of reports, the vast majority of 

Table 3.15. Related work on analysis of the FDA adverse event reports on robotic surgical systems. 

Study No. Reports 
(Years) 

System under 
Study 

Surgical 
Specialties Major Results 

Murphy et al.  
[122] 

38 system failures 
78 adverse events 

(2006 – 2007) 
da Vinci system N/A 

Most of these events were related to 
broken instrument tips or failures of 
electrocautery elements. 

Andonian et al. 
[125] 

189 
(2000 – 2007) 

ZEUS and 
da Vinci systems N/A Estimated failure rate of 0.38% for robotic-

assisted laparoscopic surgeries. 

Lucas et al. 
[126] 

1,914 
(2003 − 2009) 

da Vinci system 
models  

dV and dVs 
N/A 

Both device malfunctions and open 
conversions were reduced by increased 
robotic experience and newer surgical 
systems.  
The number of patient injuries did not 
change and the number of deaths 
increased. 

Fuller et al. 
[123]  

605 
(2001 – 2011) da Vinci system N/A 

24 (3.9%) of reports were related to 
electrosurgical injuries (ESI), of which 37.5% 
resulted in surgical intervention. 

Friedman et al. 
[124]  

565 
(2009 – 2010) 

da Vinci 
Instruments N/A 

The majority of events were related to the 
instrument wrist or tip (285), 174 were 
related to cautery problems, 76 were shaft 
failures, and the rest were cable and control 
housing failures (36). 

Gupta et al. 
[127] 

741 
(2009 – 2010) da Vinci system Urology 

Gynecology 

The events were related to the use of 
energy instruments (43.5%), surgical 
systems (19.3%), and the instruments 
(11.7%).  
The severity of events was correlated with 
the type of surgery and the type of device. 

Manoucheri et al. 
[128] 

26 injuries 
24 deaths 

(2006 – 2012) 
da Vinci system Gynecology 

The majority of injuries (65%) were not 
directly related to use of robot; 21% were 
related to operator error; and 14% were 
due to technical system failures.   
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procedures were successful and did not involve any problems and the number of injuries/death 

events per procedure has stayed relatively constant since 2007. However, total number of 

malfunctions reported per procedure (0.46%, 95% confidence interval (CI), 0.45-0.47%) was 

about six times lower than the average number of malfunctions per procedure (3%, 95% 

confidence interval (CI), 1.9–4.2) published by different surgical institutions (see Table 3.14). Also 

the total number of injuries and deaths reported per procedure (0.08%, 95% confidence interval 

(CI), 0.08-0.09%) was about the same as the predicted complication rates for robotic surgery [97], 

but an order of magnitude less than the lowest rate of complications reported for robotic surgery 

in previous studies (2% [100]) (see Table 3.13). This further confirms the uncertainty in the rates 

of events due to possible underreporting and changes in reporting practices. However, the non-

negligible percentage of system-related incidents that negatively impacted patients (in terms of 

injuries and deaths (14.4%) and procedure interruptions (10.4%)) suggests that a better 

appreciation and understanding of the nature of adverse events is required.  

Our analysis shows that estimated number of events per procedure in complex surgical areas, 

such as cardiothoracic and head and neck surgery were significantly higher than gynecology, 

urology, and general surgeries. Although not all the reported injuries and deaths were due to device 

problems, and the procedure conversions, of themselves, cannot be considered adverse 

events [129], [130], the estimated numbers of injury/death events and conversions per procedure 

can be used as a metric to measure the difficulty experienced in different surgical specialties. The 

best that we can tell from the available data is that the higher number of injury, death, and 

conversion per adverse event, in cardiothoracic and head and neck surgeries, could be indirectly 

explained by the higher complexity of the procedures, less frequent use of robotic devices, and 

less robotic expertise in these fields. Although the use of robotic technology has rapidly grown in 

urology and gynecology for prostatectomy and hysterectomy, it has been slow to percolate into 

more complex areas of cardiothoracic and head and neck surgery. Between 2007 and 2013, over 

1.4 million (86%) robotic procedures in gynecology and urology were performed in the United 

States, while the number of procedures in other surgical specialties altogether was less than 

250,000 (14.2%) [72], [77]. The limitations of the robotic user interface [131], long procedure 

times [132], steep learning curve [133], [134], and higher costs for purchase and maintenance of 

robotic systems and instruments [135] are some factors that may have contributed to the lower 

utilization of the robotic approach in more complex surgical procedures. For example, only a select 
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type of robotic cardiac procedures are reported to have been successfully performed using the 

robots, such as mitral valve repair and internal mammary artery harvest [136] – [138]. The recent 

experiences of highly competent robotic teams that performed multi-vessel coronary artery bypass 

grafting (CABG) showed that the robotic approach may be associated with higher mortality and 

morbidity rates compared to open surgery [139]. 

In practice, the use of the robotic platform involves the interface of a sophisticated machine 

with surgical teams and patients, in an area of patient care that is safety-critical. A recent FDA 

survey on a sample of experienced robotic surgeons highlighted some of the biggest challenges in 

robotic surgery as: hand-eye coordination, use of foot pedals at the console, the system setup 

procedures, learning of platfrom (e.g., port and arm insertion), and training of surgical staff [140].  

There are similar safety-critical considerations in other industries, such as the commercial 

aircraft, in which the interfaces of complex machines and human operators are vital to the well-

being of travelers. While a direct comparison between those two is neither possible nor advisable, 

we can emulate the manner in which the aviation industry, government, academia, and society at 

large have come together in creating standards and procedures to achieve a continuously high-

level of safety and mission-time reliability of better than 10-9 for electronic equipment in 

commercial aircrafts. Some of the factors that have been critical to that success include: 

• Careful analysis of accidents (by airline authorities and the National Transportation Safety 

Board (NTSB)) to ensure that mistakes are not repeated and designs are continually 

improved. 

• Extensive use of hazard analysis and sophisticated safety design techniques and controls. 

• Oversight and certification by government authorities, e.g., Federal Aviation 

Administration (FAA). 

Many safety-related aspects of robotic surgery, such as device and operators' certification, 

accident investigation, and safety hazards, could be compared to aviation industry (see Table 3.16). 

From a technology perspective, employing substantially improved safety practices and controls in 

the design, operation, and validation of robotic surgical systems could prevent some of the reported 

events. Some examples include: 

• New safety engines for monitoring of procedures (including surgeon, patient, and device 

status) and providing comprehensive feedback to surgical team on upcoming events and 

troubleshooting procedures to prevent long procedure interruptions.  
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• Providing real-time feedback to the surgeon on the safe surgical paths that can be taken or 

safety barriers that prevent the robotic tools to enter to certain portions in the surgical 

workspace [141], based on the patient-specific anatomical models, as well as surgeon-

specific modeling and monitoring of robotic surgical motions [142], to minimize the risk of 

approaching dangerous limits and inadvertent patient injuries.   

• Improved human-machine interfaces and surgical simulators that train surgical teams for 

handling technical problems [50], [143] and assess their actions in real-time during the 

surgery. 

• Improved mechanisms for logging and reporting of incidents experienced during procedures 

to enable more accurate validation of safety and effectiveness of surgical systems. 

 Conclusions 
We applied the STAMP modeling framework to system-theoretic causality analysis of adverse 

events in safety-critical medical devices, exemplified by robotic systems in minimally invasive 

surgery. Specifically, we used STAMP to identify examples of unsafe interactions among 

components and human operators at different layers of the system control structure and determined 

Table 3.16. Comparison between two safety-critical industries: aviation vs. robotic surgery. 
 Aviation Robotic Surgery 

Operation: 
Type 
Device 
Targets 

 
Semi-autonomous 
Airplanes 
Passengers 

 
Semi-autonomous 
Robots 
Patients 

Age 80 years (approx. 1934)  < 20 years (approx. 1999) 
Certification: 
Administrated by: 
-Device 
-Operator 
-Others 

 
Federal Aviation Administration (FAA) 
-Aircraft certified under 14 CFR 121 
-Pilots certified by privilege levels 
-Crew certified by airlines 

 
Food and Drug Administration  (FDA) 
-Robot approved by 510K 
-Surgeons trained but not certified 
-Staff trained but not certified  

Training Required by FAA for pilots  Provided by company for surgeons 
Accidents All accidents investigated by NTSB and other 

authorities based on the evidence collected 
from the site of accident 

Reported by the users and company to the 
FDA MAUDE database, on a voluntary basis 

Safety Hazards 
 

-Natural: Weather conditions, fire, etc. 
-Mechanical/Electrical: Engine, 
electromagnetic interference, etc. 
-Humans: Incorrect info by control center, 
pilot/crew errors, passenger misuses, hijacks 

-Natural: Patient history/condition/procedure 
-Mechanical/Electrical: Arm malfunctions, 
system errors, etc. 
-Humans: Incorrect info by the company for 
setup/troubleshooting, pilot/staff mistake,  
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potential flaws in the design and operation of system that led to unsafe system states leading to 

incidents. To exemplify the value of STAMP, we selected three relevant reports (marked with “*” 

in Table 3.3) on accidents that occurred during gynecologic, cardiothoracic, and urologic 

procedures. In these examples, a burning or damage of tissue due to applying incorrect amount of 

electro-cautery occurred. Each of the reports specified that the bipolar cautery was incorrectly 

connected to the monopolar connection of the electrosurgical unit. Our experience is that 

frequently root cause analysis of such an accident ends up in blaming the surgical assistants for 

not performing the robotic setup correctly. STAMP provided us with a detailed view on all the 

potential causal factors involved and identified two unsafe actions that were performed by the 

surgeon and surgical assistant in these three events: (i) the surgical assistant connected the bipolar 

cautery to a monopolar connection on the electro-cautery unit and (ii) the surgeon cauterized the 

tissue using the incorrect electro-cautery. Some of the potential causal and contextual factors that 

led to those actions include: (i) the robot was not designed to provide enough feedback on the 

status of connections and the surgeon had an inaccurate mental model about the connections, (ii) 

the electro-cautery unit was not designed by adequate safety mechanisms to prevent such mistakes 

and the surgical assistant might not have been well-experienced or distracted at the time. This 

analysis shows that design of both the robot and electro-cautery unit as well as the communication 

protocols and training for the surgeons and surgical assistants should be improved in order to 

prevent similar events in the future.   

Our experience with STAMP shows that the systems-theoretic accident analysis techniques do 

not only enable an in-depth understanding of adverse event causes, but can also improve the 

reporting of adverse events by guiding how to investigate and report the important factors involved 

in the accidents. Furthermore, the systems-theoretic causality models can be used by the 

manufacturers and regulatory organizations to identify the possible hazards and causal factors 

leading to accidents early in the design and approval process to mitigate adverse patient impacts 

by design of proper safety monitors and control mechanisms.  

To enable system-theoretic causal analysis of larger sets of adverse event reports, we proposed 

a new ontology model based on human-in-the-loop control structures that guides automated 

extraction of safety-related information from the textual description of events. We used this 

ontology model for automated analysis of adverse events in MedSafe.  
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Our analysis of adverse events in robotic surgery using MedSafe, demonstrated several 

important findings. While the robotic surgical systems have been successfully adopted in many 

different specialties, (i) the overall numbers of injury and death events per procedure have stayed 

relatively constant over the years, (ii) the probability of events in complex surgical specialties of 

cardiothoracic and head and neck surgery has been higher than other specialties, and (iii) device 

and instrument malfunctions have affected thousands of patients and surgical teams by causing 

complications and prolonged procedure times.  

As the surgical systems continue to evolve with the new technology, uniform standards for 

device approval, surgical team certification and training, advanced human machine interfaces, 

improved accident investigation and reporting mechanisms, and safety-based design techniques 

should be developed to reduce incident rates in the future. 
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SAFETY HAZARD SIMULATION FOR 

RESILIENCY ASSESSMENT AND 
SAFETY TRAINING  

  

 Overview 
In our analysis of over 10,000 adverse events related to robotic surgical systems, we found that 

9,377 (88.3%) of the reported events involved device and instrument malfunctions (see 

Section 3.5.2.3). Those events had significant negative patient impacts, occasionally leading to 

deaths and injuries or causing procedure interruptions to troubleshoot system problems. Although 

state-of-the-art robotic surgical systems are designed with safety mechanisms that try to detect 

those failures and put the system into a recoverable or non-recoverable safe state, in practice those 

mechanisms are imperfect. In particular, out of 536 system errors detected during procedures, 488 

(91%) led to interruption in progress of surgery, forcing the surgical teams to manually restart the 

system (43% of 488), convert the procedure (61.5%), or reschedule it to a later date (24.8%). In 

some cases after several system resets, the procedure was converted or rescheduled. This is mainly 

due to two factors: 

(i) The diagnostic mechanisms are not comprehensive enough to correctly identify the causes 

of malfunctions and system errors during surgery. Thus, information on the type of system 

error (e.g., in an error condition of recoverable or non-recoverable) and corresponding 

troubleshooting procedures might be inadequate or are incorrectly communicated to the 

surgical team. The root causes are often determined only after the fact, when further 

investigations by the field service engineers are performed and the failure scenarios are 

replicated. For example, an encoder or sensor malfunction was reported as a recoverable 

system error during a procedure, when it was not recoverable and could only be fixed by 

replacing the component after the procedure (e.g., MAUDE report 3035720 [145]). 

                                                 
 This chapter contains material from the published works [143], [144], coauthored with D. Chen, X. Li, A. Lewis, Z. 
Kalbarczyk, R. K. Iyer, J. Raman, T. Kesavadas, and N. Leveson, copyrighted by ACM and Springer. 
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(ii) System operators (including surgeons, surgical assistants, and field service engineers) are 

often not well trained to correctly interpret reasons for observed system errors and to 

choose efficient troubleshooting actions to recover from emergency situations. For 

example, in one event, it was reported that the surgical team spent a significant amount of 

time troubleshooting a non-recoverable system error while the patient was under anesthesia 

for more than one hour (see report No. 1743065 [146]).  

These results show the importance of designing robust safety features and verifying the 

effectiveness of detection and recovery mechanisms to assist surgical teams in predicting and 

preventing critical events and performing effective troubleshooting procedures. Also, training of 

system operators should be improved to make troubleshooting and handling of adverse events a 

central part of the training experience. In fact, in other safety-critical industries (e.g., commercial 

aviation) great effort is spent on continually improving safety practices by careful investigation of 

accidents, extensive hazard analysis, and advanced safety design, combined with comprehensive 

simulation-based training that includes operation in the presence of safety-critical failures [147]. 

The international safety standards (e.g., ISO 14971 for medical devices [20] and ISO 26262 for 

automobiles [148]) recommend identifying potential safety hazards and defining safety 

requirements to implement mechanisms that can detect and mitigate hazards. The standards (e.g., 

NASA Software Safety Guidebook [149]) also emphasize the importance of fault-injection testing 

as a means to validate the robustness of safety mechanisms in the presence of faults and abnormal 

conditions [150]. 

As discussed in Chapters 1 and 2, traditional hazard analysis techniques used for medical 

devices primarily focus on the failures of individual components or human errors in the system. 

Other potential causal factors, such as complex software errors and unsafe component interactions, 

are often not thoroughly considered during the analysis. Systems-theoretic hazard analysis 

techniques such as STPA (Systems-Theoretic Process Analysis) [12] overcome this limitation by 

modeling accidents as complex dynamic processes resulting from inadequate control mechanisms 

that violate safety constraints. It is shown that STPA can identify additional causes for accidents 

that are not detected by FTA and FMEA techniques [12], [56]. 

Software-implemented fault injection (SWIFI) [151], [152] is a common technique for 

validating the effectiveness of fault-tolerance mechanisms by studying the behavior of the system 

in the presence of faults. The effects of software or hardware faults are emulated by randomly 
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changing code or data at different software locations. However, with the increasing size of software 

in today’s complex systems, it is a challenging task to define specific fault types and locations that 

can effectively emulate realistic fault scenarios. 

In this chapter, we present a systems-theoretic approach to empirically validate the robustness 

of safety mechanisms in medical cyber-physical systems by identifying the critical locations within 

the system to target software fault injection. More specifically, we use the potential causes of safety 

violations identified by STPA to define types and locations of faults to be injected in software in 

order to assess the resiliency of the system under realistic hazard scenarios. This is achieved by 

developing a safety hazard injection framework that can be integrated with the robot control 

software in:  

(i) an actual system, to emulate the control flaws identified using STPA hazard analysis and 

conduct resiliency assessment and validation of the safety mechanisms during the design 

and implementation phases. 

(ii) a simulated environment, to assess the impact of safety hazards without causing adverse 

impacts on the electrical and mechanical components of the actual system. 

In the second scenario, representative safety hazard scenarios extracted from past incident data 

can be simulated in a virtual environment for simulation-based safety training of system operators.  

As a case study, we use the RAVEN II telerobotic surgical system [14], [15] and develop a 

safety hazard simulation platform composed of a surgical simulator integrated with a software-

based fault-injection engine, which automatically inserts faults into different modules of the robot 

control software. We evaluate the feasibility of the proposed framework using examples of real 

adverse events from the FDA MAUDE database. The source code for the surgical simulator based 

on the RAVEN II robot and the hazard injection engine is publicly available at [153]. 

 Background 

4.2.1. RAVEN II Robotic Surgical Platform 

Surgical robots are designed as human-operated robotically controlled systems, consisting of a 

teleoperation console, a robot control system, and a patient-side cart (which hosts the robotic arms, 

holding the surgical endoscope and instruments). The most critical component of the robot control 

is the electronic control system, which is responsible for the following:  
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• Receiving the surgeon’s commands issued using master manipulators and foot pedals on the 

teleoperation console. 

• Translating the surgeon’s commands into the corresponding surgical robot movements. 

• Providing video feedback of the surgical field (inside patient’s body) to the surgeon through 

3D vision on the teleoperation console. 

• Performing safety checks on to ensure the safe operation of the surgical robot.  
 

The RAVEN II robot is an open-source platform for research in teleoperative robotic 

surgery [14], [15]. Figure 4.1 depicts a typical configuration of a robotic telesurgery system, 

composed of a master console, communication channel, and a RAVEN II surgical robot, including 

software and hardware components. The master console provides the means for the surgeon to 

issue commands to the robot using foot pedals and master tool manipulators. The desired position 

and orientation of robotic arms, foot pedal status, and robot control mode are sent from the master 

console to the robot control software over the network using the Interoperable Teleoperation 

Protocol (ITP), a protocol based on the UDP packet protocol [154]. The control software receives 

the user packets, translates them into motor commands, and sends them to the control hardware, 

which enables the movement of robotic arms and surgical instruments. The robot consists of two 

cable-driven surgical manipulators attached with tool interfaces and the instruments. Each surgical 

manipulator is operated by DC motors and has seven degrees of freedom. 

Figure 4.2(a) shows the main hardware and software modules in the RAVEN II control system. 

The control software runs as a node (process) on the Robotic Operating System (ROS) 

middleware [157] on top of a real-time (RT-Preempt) Linux kernel. There are three main threads 

 
Figure 4.1. Robotic telesurgery using RAVEN II surgical platform (modified from [155], [156]). 
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running in parallel in the RAVEN control software: (i) the network layer thread which receives 

the command packets from the master controller over network; (ii) the control thread where the 

robot’s kinematics and control computations are performed; and (iii) the console thread which 

provides an interface for setting the control modes and displaying robot’s status to user.  

The control software communicates with the motor controllers and a Programmable Logic 

Controller (PLC) through two custom 8-channel USB interface boards. The interface boards 

include commodity programmable devices, digital to analog converters, and encoder readers. The 

motor controllers send movement commands (torque values calculated based on the desired joint 

positions) to the DC motors and read back the encoder values from the motors (to estimate the 

current joint positions). The PLC controls the fail-safe brakes on the robotic joints and monitors 

the system state by communicating with the robotic software.  

Figure 4.2(b) shows the computation steps in the software control thread performing the 

kinematic chain of the RAVEN control. The operator commands are sent to the control software 

as incremental motions (desired end-effector positions (pos_d) and orientations (ori_d)). The 

current end-effector’s configurations (pos and ori) are calculated using forward kinematics 

function. The inverse kinematics calculates the joint (jpos_d) and motor (mpos_d) positions that 

are required to obtain the desired end-effector configurations and positions. Finally, the amount of 

torque needed for each motor to reach its new position is obtained from a Proportional-Interal-

 
(a) 

 
(b) 

Figure 4.2. RAVEN II control system: (a) Software and hardware modules [15], [156], (b) Computation 
steps in the control thread (kinematics chain of RAVEN control) and the safety state machine [156] 
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Derivitive (PID) controller. The PID controllers are commonly used in control systems to 

minimize the error between the measured variables (here the current motor positions and 

velocities) and the desired ones (next motor positions and velocities) by adjusting the control 

commands (here the motor torque commands). The motor torques are transferred in the form of 

DAC commands (DAC_value) from the control software to the motor controllers on the USB 

boards, to be executed on the motors [14][156]. 

Both the control software and the PLC operate in a state machine that consists of four states: 

(a) emergency stop (“E-STOP”), (b) initialization (“Init”), (c) foot pedal released (“Pedal Up”), and 

(d) foot pedal pressed (“Pedal Down”), as shown in Figure 4.2(b). The control software’s state is 

synced with the PLC state every one millisecond through the USB interface boards. At power-up, 

both software and PLC are at the Emergency-Stop (“E-STOP”) state, the motor brakes are engaged, 

and motor controllers are stopped. The system goes through the initialization phase before getting 

ready for the operation. During the initialization phase, the mechanical and electronic components 

of the system are tested to detect any faults or problems and each robotic arm moves from its 

resting position into the surgical field. After successful initialization, the robot enters the “Pedal 

Up” state, in which the robot is ready for teleoperation but the brakes are engaged and robot does 

not move. When the foot pedal is pressed by the operator, the robot moves to the “Pedal Down” 

state, where the brakes are released, allowing the teleoperation console to control the robot [14].  

The RAVEN II robot has the following safety mechanisms: 

• A physical start button should be pressed to take the robot out of the “E-STOP” state. At 

any time pressing the emergency stop button will immediately stop the robot by putting the 

PLC and control software into “E-STOP” state. 

• Whenever the human operator lifts their foot from the pedal, the system enters the “Pedal 

Up” state and engages the fail-safe power-off brakes on the motors and disengages the 

master console from manipulating the surgical arms.  

• The control software performs safety checks on the motor controller commands before they 

are sent to the USB I/O boards. These safety checks (Detect Overcurrent block in 

Figure 4.2(b)) compare the electrical current commands sent to the digital to analog 

converters (DACs) with a set of pre-defined thresholds to ensure the motors and arm joints 

do not move beyond their safety limits.  
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• The control software sends a periodic (“I’m alive”) square-wave watchdog signal to the 

PLC through the USB boards. Upon detecting any unsafe motor commands, the control 

software stops sending the watchdog signal. The PLC safety processor monitors the periodic 

watchdog signal from software and in absence of the watchdog signal puts the system into 

the “E-STOP” state. 

4.2.2. Systems-Theoretic Hazard Analysis Using STPA 

STPA is a hazard analysis technique based on the STAMP accident causality model and driven 

by concepts in systems and control theories. As discussed in Chapter 3, STAMP is an accident 

modeling and causality analysis framework that treats safety as a control problem rather than a 

component failure problem. In STAMP, accidents are modeled as dynamic processes resulted from 

inadequate enforcement of safety constraints on the behavior of components at different layers of 

the system control structure [12].  

STPA hazard analysis starts by identifying the potential accidents and system-level hazards 

associated with those accidents, and the safety requirements (constraints) that must be controlled 

 
Figure 4.3. Potential causes for unsafe control in a generic control loop (as defined and depicted in [12]). 
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for the system. Then the unsafe control actions for each component in the control structure that 

can lead to system hazards are identified. There following scenarios are considered for identifying 

the unsafe control actions: (i) a required control action is not performed, (ii) a control action is 

performed in a wrong state, leading to a hazard, (iii) a control action is performed at an incorrect 

time (too late, too early, or in the wrong order), (iv) a control action is performed for an incorrect 

duration (too long or too short), and (v) a control action was provided, but not followed by the 

controlled process. Finally, the potential causes for those hazardous control actions are determined 

by examining the operation of components and their interactions in each loop of the control 

structure. Figure 4.3 shows the common types of control flaws in a generic control loop that can 

be used for identifying the potential casual factors.  

 Systems-Theoretic Safety Validation Using Fault Injection 
We employed systems-theoretic hazard analysis using STPA to identify the safety hazards of a 

typical robotic telesurgical system and the potential causal factors that might lead to safety 

violation in the RAVEN II system. Then we validated the robustness of the safety mechanisms 

of the RAVEN II robot to the safety hazard scenarios identified using STPA by simulating their 

causal factors using software-implemented fault injection. 

4.3.1. Safety Hazards and Unsafe Control Actions 

Figure 4.4(a) shows the high-level control structure of robotic surgical systems (also shown in 

Figure 3.2). Software and hardware control loops (outlined by dashed lines) are further refined in 

Figure 4.4(b) to illustrate the functional details of components (control algorithms, process 

models) and interactions (control actions and feedback) among them in the software and hardware 

controllers of the RAVEN II surgical robot. Every controller uses an algorithm to generate the 

control actions based on the current process model. The control actions taken by each controller 

(e.g., motor commands and status sent by the software controller) changes the state of the 

controlled process (e.g., the motor controllers) and the process model of the other controller (e.g., 

the PLC). The feedback (e.g., motor encoder values) sent back from the controlled process and the 

other controller update the process model used (e.g., current joint status) by the controller. 
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Using STPA, we carefully examined the operation and interactions of components in the 

software and hardware control loops and found the set of system conditions under which the 

control actions could possibly be unsafe and lead to hazardous system states (refer to Table 3.1 for 

the list of potential system hazards and accidents in robotic surgery). For example, in software 

control loop (in Figure 4.4(b)), we considered any flaws (marked with ) in the master console 

inputs, incorrect feedback from the motor controllers or hardware control, flaws in the process 

model of software, or output generated by the control algorithm as a potential causal factor. 

Table 4.1 shows examples of potentially unsafe control actions, safety hazards, and their possible 

causal factors that we identified for the RAVEN II software and hardware controllers.  

As shown in Section 4.3.2, the identified causal factors in combination with the knowledge of 

software structure provide the scope for performing directed fault-injection experiments. They can 

define the location within each software module to inject faults, the variables within each function 

to target, and the conditions to trigger the injections.  

4.3.2. Safety Hazard Injection Framework  

To evaluate the safety mechanisms of robotic surgical systems, we developed a safety hazard 

injection framework, which consists of seven modules for retrieving hazard scenarios, generating 

fault injection campaign, selecting fault injection strategy, conducting fault injection experiment, 

and collecting data, all in an automated fashion. Figure 4.5 shows the overall architecture of these 

 

Figure 4.4. (a) Hierarchical control structure of robotic surgical systems, (b) Software and hardware 
control loops, including control algorithms, process models, control actions, and feedback. 
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modules and how they interface with each other and with the RAVEN II control software and 

hardware. A detailed description of each module is provided next.  

 Injection Controller 
The injection controller is responsible for starting, stopping and automating the fault injection 

campaign. It communicates with other modules in the safety hazard injection framework through 

sockets or by direct invocation. In a normal campaign execution, it first accesses the safety hazard 

scenario library to retrieve the list of hazard scenarios. Second, the controller calls the fault-

injection strategies to generate the fault injection parameters that could cause each hazard scenario. 

Next, it runs the user input generator module and calls the appropriate fault-injector and robotic 

software to conduct a fault injection experiment. At the end of each injection run, the injection 

parameters and data are collected and written to the data collector.  

Table 4.1. Potential unsafe control actions and causal factors for safety hazards in RAVEN II.  
Co
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l 
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op
 Potentially Unsafe Control Actions 

Possible  
Causal Factors 

Control  
Action 
(Type) 

Context 
(System Condition) Sa
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ty

  
Ha
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s 

So
ft

w
ar

e 
Co

nt
ro

l Motor 
command  
(provided) 

User desired joint position does not match 
user desired position H1-1 - Incorrect console inputs 

- Faulty control algorithm 
- Incorrect process model (desired 
positions, joint positions, runlevel) 
- Faulty USB communication 
- Arms/Instruments malfunctions 

User desired joint position is at a large  
distance from the  current joint position  
(unintended jump) 

H1-2 

Left and right arm end-effector positions 
are very close (unintended collision) H2 

Software State = E-STOP or  
Software State = Pedal Up, 
PLC State = Pedal Down  

H1  
H2 

- Missing/incorrect input from PLC 
- Faulty control algorithm 
- Incorrect process model (desired 
positions, joint positions, runlevel) 
- Missing/incorrect watchdog signal 
or output to PLC 
- Faulty USB communication 

Software State = Pedal Down, 
PLC State = Pedal Up or  
PLC State = Init 

H3 

Software State = Not E-STOP, 
PLC State = E-STOP H3 

Motor 
command  

(not followed) 

Software State = Pedal Down or  
Software State = Init H3 

- Faulty USB communication 
- Mechanical malfunctions (e.g., 
broken instruments or cables) 

Ha
rd
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e 
Co

nt
ro

l Brake 
(provided) 

Stop not pressed and 
Software not stopped/pedal up H3 - Missing/incorrect watchdog signal 

or output from software 
- Faulty USB communication Brake 

(not provided) Stop pressed or 
Software is stopped 

H1 
H2 

Brake 
(not followed) 

H1 
H2 

- Mechanical malfunctions (e.g., 
broken instruments or cables) 
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 Safety Hazard Scenario Library 
The safety hazard scenario library contains the safety hazard scenarios identified during the 

hazard analysis using STPA. Each hazard scenario includes a possible unsafe control action that 

might happen in the system and a list of potential causal factors. An example unsafe control action 

would be a motor command is provided by the control software when there is a mismatch between 

the software state and hardware (PLC) state of the robot (rows 4-6 in Table 4.1). Faulty USB 

communication is an example causal factor that might lead to such unsafe control action.   

 Fault-Injection Strategies  
Based on the causal factors involved in each safety hazard scenario, the analysis of the RAVEN 

source code, and software/hardware architecture, the fault-injection strategies module retrieves 

information on software functions which can most likely result in the hazard scenario, as well as 

the key variables in those functions and their normal operating ranges. This information is 

translated to the parameters to be used by the fault-injection engine for simulating potential causal 

factors and validating whether they lead to the unsafe control or the safety hazards in the system. 

The fault injection parameters include the location in the software function, the trigger or condition 

under which the fault should be injected and the target variables to be modified by the injection. 

 
Figure 4.5. Safety hazard injection framework integrated with the RAVEN II surgical platform. 
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 Fault Injectors 
The fault injectors perform the fault injection during robot operation. The faults are injected 

with minimum changes to the RAVEN software and hardware, either by replacing the code at the 

specified location with a mutated version that mimics the intended faulty operation (compile-time 

fault injection) [151] or by setting breakpoints at the specified location and changing the target 

variables at runtime (runtime fault injection) [151].  

Runtime fault injector is implemented by extending the functionality of GDB (GNU Project 

Debugger for Linux). More specifically, we extend the breakpoint feature in GDB to perform fault 

injection when the desired trigger condition is met and then resume the execution of the target 

program. Runtime fault-injector launches the RAVEN ROS node with GDB Server attached to it, 

then the extended GDB is run from a remote process and after connecting to the RAVEN node, 

performs the fault injections. Runtime fault injector has the advantage of performing injections on 

runtime generated data; however the delay introduced by the runtime breakpoints is not acceptable 

for modules that have hard real-time requirements. For example, the RAVEN control thread has 

the hard real-time requirement of one millisecond to perform kinematics calculations and 

communication with the USB boards [156]. Runtime fault-injection to the control thread 

introduces small delays, leading to violation of the real-time constraint and failure of kinematics 

calculations, resulting in unintended robotic instrument vibrations and movements.  

Compile-time fault injector is implemented as a module that modifies and recompiles the fault 

injection conditions into the source code. The main advantage is negligible timing overhead (small 

compile and build times), which is acceptable for modules with hard real-time requirements. We 

use compile-time injector to inject faults into the control thread. 

 User Input Generator 
User input generator emulates the master console functionality by generating user input packets 

based on previously collected trajectories of surgical movements made by a human operator and 

sends them to the RAVEN II control software. It parses the trajectory logs collected from a 

previous run of the robot and extracts the user input data (desired end-effector positions (pos_d), 

orientations (ori_d), mode (surgeon_mode)) to construct ITP packets that are sent through a UDP 

connection to the RAVEN network_layer thread with a frequency of 1000 packets per second.   
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 Start/Stop Controller 
To perform automated fault-injection experiments without manual user intervention, we added 

a hardware mechanism to automatically start and stop the RAVEN system. This mechanism is 

added to eliminate the need for pressing the physical start/stop button (see Section 4.2.1) on each 

run of the robot. We connected the start input of the PLC controller to the output of a relay switch 

controlled by an Arduino microcontroller [158], which receives software start signals from the 

Injection Controller. After each injection, the Injection Controller stops the system by shutting 

down the RAVEN ROS node and user input generator. The next injection gets started by 

automatically launching the software and sending the start signal to the Arduino relay controller 

to start the PLC and the RAVEN initialization (homing) process.   

 Data Collection and Analysis 
For each fault injection run, the fault injection parameters, user input packets, surgical robot’s 

trajectory, and detected errors are collected using the logging mechanisms provided by ROS 

(rostopic) and are sent to a MySQL server on a remote machine (data collector). This data is later 

queried for statistical analysis or graphics simulation. 

4.3.3. Experimental Results 

In our experiments, the identified safety hazard scenarios (unsafe control actions and causal 

factors) from STPA hazard analysis were used in combination with the knowledge of software 

code structure to develop the fault-injection strategies. Specifically, we mapped the identified 

causal factors in each loop of the system control structure to the corresponding software modules 

and functions that should be targeted for fault injection. In order to increase the possibility of 

activating the safety hazards in the system, we manually defined the variables within each software 

function to target, the value to inject, and the conditions to trigger the injections. We performed 

constrained random injections to the variables corresponding to the control action, feedback, 

process model, and algorithms in every control loop. The injected values were sampled from the 

within and outside the possible range of variables.  

We simulated a total of 45 scenarios (corresponding to the causal factors shown in Table 4.1) 

by injecting faults into 25 locations within 13 software functions of the network and control threads 

of the RAVEN II robot, while running a pre-collected trajectory of a surgical movement. Table 4.2 
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shows examples of scenarios where the faults were manifested in the system. We ran a total of 

2,146 fault-injection experiments on the RAVEN robot. However, the majority of the faults (e.g., 

injected values within the range of variables) were not manifested in the system, or their effect was 

not logged completely by the data collection process due to system hangs/crashes (e.g., hardware 

“E-STOP”) caused by the faults. For each scenario, we conducted multiple runs (in total 368 fault 

injections) to get confidence in reproducibility of the manifested/observed system behavior and 

manually collected the results (see Table 4.2).  In each case we analyzed the system behavior both 

during the homing process (which system is being initialized and user manipulation has not started 

yet) and after the homing. The third column in the table shows the number of experiments done 

for each scenario and the last column corresponds to the scenario ID. A complete list of causal 

scenarios is available at [159].  

In this section, we discuss our findings from the conducted fault injection experiments, 

including the causes for undetected hazards and the hazard scenarios that were mitigated by the 

safety mechanisms. Section 4.3.4.1 shows representative incident reports from the MAUDE 

database, which resemble the safety hazard scenarios identified here. 

 Undetected Safety Hazards 
Our fault injection experiments covered all the safety hazards and causal factors identified in 

the STPA process (Table 4.1), but the system safety mechanisms could not detect and mitigate all 

the simulated hazard scenarios. In what follows we describe the scenarios in which the injected 

faults led to hazards and were not detected or mitigated by the safety mechanisms in the system.  

Unintended Robotic Movement (H1). We found a total of six scenarios where the faults in 

the console inputs, control algorithm, or the communication between the control software and 

hardware led to robotic arms/instruments making movements to an unintended position (H1-1) or 

with an unintended velocity (H1-2).  

(i) Out of range values injected permanently into the position, orientation, and foot pedal 

status inputs received from the master console (in network_process function) did not have 

any impact on the system during the homing process. However, after homing and in “Pedal 

Down” state, these injections led to kinematics calculations failures, small jumps, or 

stopping the robot. If the injected values passed the safe limits, movement was stopped by 

the overdrive detector and E-STOP was raised.  
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Table 4.2. Example scenarios simulated by fault injection and the observed system behavior.  

Potential 
Causal 
Factor 

Injected Software Fault 
Target Function: 

Variables  
[Fault Type, Values] 

No. Observed System Behavior 

Ha
za

rd
 

ID 

Incorrect 
console 
inputs 

network_process:  
Position and Orientations 
[Stuck At Out of Range] 

20 
During Homing: No impact.  
After Homing in Pedal Down: IK-failure, small 
jumps, no movements with no E-STOP, E-STOP. H1 

H3 (i) 
network_process:  
Foot Pedal Status 
[Stuck At 0, StuckAt 1] 

20 
During Homing: No impact. 
After Homing: Does not start movement if Stuck 
At 0, No impact if Stuck at 1. 

network_process:  
Position and Orientations 
[Intermittent Out of Range 
every10, 100, 500 packets] 

40 

Homing: No impact. 
After Homing in Pedal Down: IK-failure, No 
movement, small jumps with no E-STOP, or E-
STOP depending on robot configuration. H1 

H3 (ii) 
network_process: 
Foot Pedal Status 
[Intermittent 0/1 Flip every 
30,100,3000 cycles] 

20 
Pedal Down: Movement stops or small jumps 
PLC stops at very high flipping rate (e.g., every 
other cycle). 

Faulty  
control  

algorithm 

TorqueToDAC: 
Joints Current Commands 
[Stuck At -1000] 

1 
Abrupt jump of both robotic arms,  
Cables on both left and right arms broke. 

H1  
H2  
H3 

(iii) 

stateEstimate: Motor 
Velocity 
[Stuck At 0, -1, 1000] 

5 During Homing: Unintended rotation, E-STOP. 
After Homing: No Impact. H2 

(iv) stateEstimate: Motor 
Velocity 
[Intermittent 0 injection 
every 100, 3000 cycles] 

5 
During Homing: Unintended tool movement, hard 
collision of instrument to the floor. 
After Homing in Pedal Down: No impact. 

H1 
H2  
H3 

stateEstimate: Motor 
Position 
[Stuck At or Intermittent] 

10 Detected and mitigated by (overdriveDetect). 
Raised E-STOP Error and Stopped. NA (ix) 

Faulty  
USB  

communic
ation 

getUSBPacket: 
PLC State 
[Stuck At 0] 

12 

Homing: Does not start initialization, software 
assumes hardware is in E-STOP.  
After Homing: E-STOP, software assumes 
hardware is in E-STOP, goes to E-STOP, stops 
sending watchdog, causing hardware to really 
stop. 

H3 (vii) 

getUSBPacket: 
PLC State 
[Intermittent 0 injection] 

10 

Homing: Repeats the homing process over and 
over again due to synchronization failure of two 
arms.  
After Homing: Hardware completely stops or 
brakes are engaged/disengaged repeatedly.   

H2 
H3 (v) 

putUSBPacket:  
Joints Current Commands 
[Stuck At Random Value] 

5 
During Homing: No Impact. 
After Homing: Abrupt jump of robotic arms and 
cable breaks, Software E-STOP. 

H1 
H2 
H3 

(vi) 

Incorrect  
output to 

PLC 

updateAtmelOutputs: 
Output to PLC  
[Stuck At 0, 1, 3] 

16 
Does not start the initialization process or stops 
after homing because hardware goes to E-STOP 
and gets stuck there.  

H3 (viii) 
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(ii) Intermittent injection of out-of-range values into the master console inputs occasionally 

caused small instrument jumps or stopping the PLC when the faults were injected at very 

high frequency (e.g., at every other cycle).  

(iii) Injecting a random constant torque value to the joints current commands sent from the 

control software to the motor controllers (in TorqueToDAC function) caused very abrupt 

jumps of robotic arms, which resulted in the breakage of cables on the arms.  

(iv) Faulty estimation of motor velocities by the control algorithm (in stateEstimate function) 

caused unintended rotation and movement of instruments. In one case, upon intermittent 

injection of zero velocity, the instruments unexpectedly overshot the home position and 

collided with the surgical field floor during homing process. 

(v) Intermittent faulty packets received by the USB interface function (getUSBPacket) from 

the PLC caused the software control to assume that PLC is in “E-STOP” state, while PLC 

was in “Init” state. During homing process, this fault led the software and PLC to switch 

back and forth from “Init” to “E-STOP” state, causing failure of synchronization between 

left and right arms. Therefore, the robotic system got stuck in the initialization process and 

never moved to “Pedal Up”. After homing, depending on the frequency of the intermittent 

faults, either the robot completely stopped or PLC applied brakes repeatedly to the motors. 

(vi) Injecting faults into the packets sent to the motor controllers through the USB interface 

function (putUSBPacket) did not impact the behavior of the system during the homing 

process, but led to abrupt jumps of robotic arms, resulting in cable breaks. A video 

recording of this scenario is available at [159].  

Unintended Collision or Mechanical Stress (H2). The last four scenarios (iii - vi) discussed 

above also involved mechanical stress on the robot due to hanging in the homing process, repeating 

initialization steps, applying brakes over and over again, abrupt jumps of robotic arms, colliding 

with the surgical field floor, or breaking cables. The robotic system also became unresponsive or 

unavailable (H3) for almost an hour while repairing each broken cable. Due to the risk of damage 

to the robot, we repeated these specific injections only a few times. 

Unresponsive Robotic System (H3).  The majority of undetected safety hazards were due to 

faults injected in the USB communication or communication between software and PLC (17 

scenarios [159]), leading the robotic system to not start the homing process, stop movement, 
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become unresponsive to the received console packets, or become unavailable due to mechanical 

issues. Table 4.2 shows examples of these scenarios (vii, viii).  

In case of transient or intermittent faults (e.g., in input console packets or USB packets), 

restarting the system can resolve the E-STOP conditions. However, permanent faults (e.g., a loose 

or disconnected USB cable causing incorrect information sent from PLC to software, or a DAC 

malfunction causing incorrect values sent to the motors, simulated as stuck at software faults here) 

cannot be recovered from even after multiple restarts and by hanging in E-STOP state the robotic 

system becomes unavailable (H3).  

 Mitigated Safety Hazards 
Out of 23 scenarios related to corruption of the console inputs and the control algorithm, only 

six caused the unintended movements (depending on the robot configuration), collision, or cable 

damage. All these cases where related to intermittent faults (out of range absolute values) injected 

into the console inputs (tool positions and orientation or foot pedal) in a periodic manner or to 

applying constant velocity/torque values to the motors. All other scenarios either did not have any 

impact (three cases), were detected by the overdriveDetect function and mitigated by forcing a 

hardware “E-STOP” (nine cases) (see scenario ix in Table 4.2), or only caused the system to hang 

in “Pedal Up” or “E-STOP” with no potential harm (4 cases). 

4.3.4. Discussion 

The presented approach only assesses the resiliency of the system to the simulated hazards and 

causal factors considered/identified in the STPA analysis (e.g., H1, H2, and H3 shown in Table 3.1 

and causal factors related to software and hardware control loops in Table 4.2). Any other possible 

safety scenarios which are missed from the hazard analysis process (e.g., a residual fault that might 

not lead to any unsafe scenarios of Table 4.2 or hazards H1, H2, or H3) will not be created and 

tested in the system. However, the proposed assessment technique can be used in conjunction with 

other validation techniques, such as assessing the resiliency of system to the hazards identified 

from the analysis of real incident data (see Section 4.4) or formal model checking techniques.  
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 Related Safety Incidents from FDA MAUDE Database 
Table 4.3 shows representative incident reports from the FDA MAUDE database, related to the 

da Vinci surgical system. In these examples, similar hazard scenarios identified in our STPA 

analysis (e.g., master console malfunctions and communication failures between the controller and 

robotic parts) occurred during real robotic procedures. These failures led either to non-intuitive 

movement of instruments or system errors that could not be cleared even by multiple system 

restarts. 

In cases of instruments moving of their own accord or getting stuck due to malfunctions, the 

consequences may range from minor, where there are just short delays or system resets for 

troubleshooting the problem, to major, where the instruments may impale or impinge on a bodily 

structure, causing perforation or bleeding. Tearing or perforation of tissues can cause long term 

complications and even death. Conversion of procedure to non-robotic approaches is a recovery 

mechanism to ensure survival of the patients. However, lack of tactile feedback can be a major 

issue in extracting malfunctioning instruments safely from patient’s body.  

Our study demonstrated the value of software-implemented fault injection for simulation of 

safety hazard scenarios, which might help surgeons recognize complications and act promptly to 

prevent similar incidents in the future. 

Table 4.3. Relevant incident reports on da Vinci surgical system from FDA MAUDE database. 

Report No. 
(Year) Summary Event Description from the Report 

Potential 
Causal Factors 

(ID in Table 4.2) 

Observed 
Behavior  
(Hazard) 

Patient 
Impact 

2120175 
(2011) 

During a hysterectomy procedure, the left master 
controller did not have full control of the maryland 
bipolar forceps instrument, resulting in non-intuitive 
motion and causing a small bleed on the patient's 
uterine tube.  

Master console 
calibration issue 

(i) 

Non- 
intuitive 

movement 
(H2) 

Small bleed on 
patient's 

uterine tube 

2663924 
(2012) 

2589307 
(2012) 

Approximately 3.5 hours into a pancreatectomy 
procedure, multiple instances of non-recoverable 
system error code #23 was experienced and the 
surgeon was unable to control the patient side 
manipulator (psm) arms.  

Communication 
failure between 
master console 

and robot 
(i) Non- 

recoverable 
system error  

(H3) 

Converted to 
open 

surgery 
after 3.5 hours 

2721073 
(2012) 

Prior to starting a da vinci si prostatectomy 
procedure, the site experienced system error #22003 
upon system start up. The site attempted to disable a 
patient side manipulator (psm) arm and performed a 
power cycle of the system, but the system error code 
persisted.  

Communication 
failure between 

control processor 
and robot 

(vii)  

Converted to 
open after port 
incision under 

anesthesia 
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 Vulnerabilities in Safety Mechanisms and Mitigation of Safety Hazards 
We discovered the following vulnerabilities in the safety mechanisms of the RAVEN II robot 

which contributed to the simulated safety hazards: 

• Lack of monitoring mechanisms for the initialization (homing) process. 

• No safety mechanisms for monitoring the USB board communications. 

• No hardware detection mechanisms for monitoring unsafe motor commands. 

• No feedback from the motor controllers and brakes to the PLC. 

The initial specifications of the RAVEN robot [14] included the requirements for the PLC to 

monitor the robotic hardware through feedback received from the motors and brakes. However, 

we found that those monitoring mechanisms are not included in the current implementation of the 

robot. Also, separate software and hardware mechanisms for monitoring the activities of USB 

interface boards are needed in the future. 

The following robust safety mechanisms had a major role in mitigating safety hazards in the 

RAVEN II, by preventing unintended movements and possible system damage:  

• Robot movements cannot start without a start signal provided by the user. 

• PLC engages the brakes upon loss of watchdog (“E-STOP”) or foot pedal signals from 

software (“Pedal Up”); and software only sends the pedal signal to the PLC when the foot 

pedal is pressed and it is not in “E-STOP” or “Init” state. 

• Software checks the status of PLC on every cycle (1 millisecond interval) to immediately 

follow the state transitions of the robotic hardware. 

 Future Work 
Future work involves automated mapping of the control actions, feedback, and process models 

in different loops of system control structure to the corresponding software functions and variables 

to target fault injection. This process can be automated by integrating STPA hazard analysis with 

existing toolchains for requirements analysis and software design. This capability would enable 

more accurate estimation of the test coverage. 

Another topic for future work includes design of tools for monitoring and collection of fault 

injection results for more accurate estimation of detection coverage. For example, at the end of a 

fault injection experiment, a system hang or crash (e.g., hardware emergency stops) might occur 

either due to the injected fault or naturally because of other calibration issues of the robotic system. 
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In our experiments we manually observed the behavior of the system in several runs of the same 

experiments and distinguished these two scenarios from each other. A more accurate estimation of 

detection coverage requires developing either higher fidelity simulators that enable emulating the 

whole system behavior in software or tools for automatically distinguishing such scenarios from 

each other.  

 Simulation of Safety Hazards for Safety Training 
Motivated by the idea of including safety-critical events in simulation-based training of system 

operators, we developed a platform for simulation of the safety hazard scenarios extracted from 

the analysis of real FDA adverse events. As shown in Figure 4.6, this simulation platform is built 

by integration of the following components:  

• A robotic surgical simulator based on the control software of the RAVEN II robot that 

enables running of robot control software without the robotic hardware by modeling the 

functionality of the robotic hardware and mechanical components and visualization of robot 

behavior in a 3D environment. 

• Our existing toolset for systems-theoretic causal analysis of adverse events (see 

Section 3.3), which is used to identify commonly observed hazardous system states and 

their causal factors from the FDA MAUDE data to populate a library of safety hazard 

scenarios that define the location and type of faults and the conditions under which they 

should be injected into the software (see Section 4.3.2.2). 

• The safety hazard injection framework (presented in Section 4.3.2) that mimics hazard 

scenarios (involving robotic software and hardware, human operators, and the human-

computer interface) by automatically injecting faults into different modules of the robot 

control software.   

The simulation platform provides the flexibility of either using real human input from a master 

console (e.g., an Omni haptic device) or replaying previously-collected trajectories from real 

surgical tasks using a master console emulator (see Section 4.3.2.5).  

We simulated the RAVEN II hardware by developing a software module that mimics the 

dynamical behavior of the real robotic actuators by modeling the MAXON RE30 and RE40 DC 

motors used by the RAVEN II robot [15] as first-order systems with different time constants. A 
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3D virtual environment based on C++ OpenGL pipeline and CAD models of robot mechanical 

components was created to animate the movements of robotic arms and instruments.  

4.4.1. Library of Safety Hazard Scenarios 

In our proof of concept study, we focused on the safety hazard scenarios involving device and 

instrument malfunctions and inadequate operational practices that contributed to catastrophic 

events or interruptions during robotic procedures (examples shown in Table 4.4 and Table 4.5). 

Table 4.4 shows samples of representative adverse events in which malfunctions of master 

manipulators (the inputs at the master console that the surgeon uses to send control commands to 

the robotic instruments) or motor encoders and potentiometers (the sensors at the patient side that 

collect measurements from robotic arms and instruments as feedback to the master console) or 

other device-related failures led the safety processor to stop the system and raise system errors 

during a procedure. The majority of system errors in Table 4.4 could not be resolved even by 

multiple system restarts and eventually led the surgical team to convert the procedure or abort and 

reschedule it to a later date.  

Table 4.5 shows example events in which inadequate operator actions, due to deficiencies of 

the human-machine interface or lack of training, contributed to unexpected device operation and 

led to adverse impact on patients. None of the events in Table 4.5 resulted in a system error. The 

 
Figure 4.6. RAVEN II surgical simulator integrated with the safety hazard injection framework. 
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full descriptions of example MAUDE reports shown here are accessible through searching the 

report numbers in the online FDA MAUDE database [64].  

Table 4.5. Example adverse event reports that involved improper operational practices. 
Report 

No. 
(Year) 

Summary Description Improper  
Operational Practices 

Procedure 
Outcome 

921167 
(2007) 

- Patient-side manipulator dropped suddenly. 
- Scissors instrument bumped into uterus. 

Surgeon removed 
his/her hands from 
master manipulators 
before removing his/her 
head from console 
viewer 
 
(keeping head in the 
console viewer keeps 
the robot engaged) 

Pierced  
patient’s uterus 

1570678 
(2009) 

- Endoscopic camera manipulator difficult to move. 
- Master tool manipulator drifted when released. 

Punctured  
patient’s uterus 

1961862 
(2010) 

- Instrument moved to guided tool change mode, moved 
slightly forward, and bumped into colon. 

Injury  
to patient’s colon 

2644122 
(2012) - Uncontrolled movement of master manipulators. Damaged  

abdominal wall  
2636117 

(2012) 
- Limited range of motion and drift while master tool 
manipulators were used, even after system restart. 

Aborted  
after 1.75 hours 

2476271 
(2012) - Monopolar energy was released when bipolar 

instrument was used. Improper connection of 
bipolar instrument to 
electrosurgical unit 

Injury  
to patient’s bowel 3024317 

(2013) 
2494890 

(2012) 
- Arcing from bipolar instrument when cautery energy 
was not being applied. 

Small burn  
on diaphragm 

 

 

Table 4.4. Example adverse event reports that involved device and instrument malfunctions. 
Report No. 

(Year) Summary Description Malfunction 
Type 

Procedure 
Outcome 

1006071 
(2008) 

- Recurring system errors #201 and #264, even after multiple restarts. 
- Errors due to voltage tracking faults and put the system in a 
recoverable safe state.  

Master tool 
manipulators 

Converted  
after 2 
hours 

3283230 
(2013) 

- Master tool manipulator arm was sluggish and could not control the 
robotic arms. 
- System error #22580 due to out-of-range hardware voltage level. 
- Multiple system restarts did not resolve the issue. 

Aborted 
post 

anesthesia 

3093014 
(2013) 

- Recurring error #23000, even after emergency power off & restart. 
- System error caused because the angular positions of one or more 
robotic joints on a manipulator as measured by the primary sensor 
(encoder) and secondary sensor (potentiometer) were out of range or in 
disagreement. 

Joint sensors 
(Potentiometer  

or encoder) 

Aborted  
post 

anesthesia 
and port 
incision 

2916352 
(2012) 

- Recurring system error #23008, even after emergency power off & 
restart. 
- Recoverable errors caused because the angular positions of robotic 
joints as measured by the primary sensor (encoder) and secondary 
sensor (potentiometer) were out of range or in disagreement. 

Converted  
after port 
incision 

2014 
(3620041) 

- Non-recoverable error #23013 on patient side manipulator 
- Multiple system restarts to recover from error but unsuccessful 

Converted  
to open 
surgery 
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Table 4.6 summarizes three safety hazard scenarios commonly observed in the MAUDE data 

along with their corresponding unsafe control actions and example possible causal factors. We 

simulated these hazard scenarios in the same way they were reported in the MAUDE database by 

injecting faults into the RAVEN control software. Note that possible causes of hazards may include 

accidental faults in robotic hardware or software, and human operator errors, or potential malicious 

tampering with the system as shown in Figure 3.3. A more detailed discussion on the security 

related causes of safety hazards is the subject of Chapter 5. For each hazard scenario, Table 4.6 

shows the methods for recreating it in the simulation platform as well as its potential impact on 

Table 4.6. Example safety hazard scenarios and corresponding methods to recreate them in the simulator. 
Safety 
Hazard 

 Scenario 
(Outcome) 

Unsafe 
Control Action 

(Control Loop No.) 

Possible  
Causal Factors 

(Accidental Failures  
or Malicious Attacks) 

RAVEN II Simulation Patient Impact 
(Clinical Scenarios  

for Safety Training) 
[MAUDE Report #] 

Target  
Software  
Module 

Target  
Variables 

H-3: 
System 

temporarily 
unavailable 

(Recoverable 
System Error) 

A user command is 
provided but not 
followed by the 
robot (3) 

Improper operator 
actions or 
master manipulator 
malfunctions 
 
Corruption of user 
inputs by Man-in-the-
middle (MITM) attack  

Network-Layer 
Thread 

(network_layer) 

User-desired  
-Position 
-Orientation 
-Grasper angle 
-Foot pedal 

Restart the system 
[3293519] 
 
Troubleshoot error  
Contact 
manufacturer 

H-3: 
System 

permanently 
unavailable 

(Non-
Recoverable 

System Error) 

A motor command 
is provided by the 
robot control, but it 
is not followed by 
the motors. (6) 

Sensor (encoder) 
malfunctions 
 
Corruption of sensor 
data by getting 
unauthorized access 
to the system 

Control 
Thread 

(get_USB_packet) 

USB Board  
-numbers 
-address 
-returned status 

Convert procedure 
[2663924] 
 
Reschedule 
[3275500] 
 
Report to 
manufacturer 

Actuator  
(motor controller) 
malfunctions  
 
Corruption of motor 
commands sent to 
hardware by getting 
unauthorized access 
to the system 

Control 
Thread 

(put_USB_packet) 

USB Board 
-numbers 
-address 
-returned status 

Puncture of artery 
[1590517] 
 
Bleeding of  
uterine tube 
[2120175] 

H-1 and H-2 
Unintended 

movement of 
robotic arms 

(Sudden 
Jump) 

A command is 
provided by the 
robot control to 
motors while the 
calculated next 
position is at large 
distance (big jump) 
from current 
position. (6) 

Commands to 
robotic joints 

Full descriptions of example MAUDE reports shown here are accessible through searching the report numbers in the 
online FDA MAUDE database [64]. 
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patients (based on example incidents reported in the MAUDE database) to represent the clinical 

scenarios on which the robotic surgeons can be trained.  

4.4.2. Experimental Results 

To regenerate the safety hazard scenarios shown in Table 4.6, we injected a total of 5,500 faults 

into the network and control threads on the surgical simulator and 110 faults on the actual RAVEN 

II robot, while running a pre-collected trajectory of a simple surgical movement. The following 

sections describe simulation of each hazard scenario by recreating example of their corresponding 

causal factors.  

 Master Manipulator Malfunctions 
The system errors due to malfunctions of master manipulators (the first scenario in Table 4.6) 

were simulated by injecting random faults into the ITP packets received by the network-layer 

thread in the RAVEN control software. The fault-injection framework targeted the position, 

orientation, grasper angle, and foot pedal variables in the packet data structure by modifying their 

values into random values outside the range of possible values that the variables take. Since the 

ITP packets are sent in an incremental motion scheme, modifying the variables of a few packets 

to values inside the range of possible values did not have any impact, but intermittent injection of 

out-of-range values to the position, orientation, and grasper angle variables for an extended period 

caused the kinematics calculations to fail. The RAVEN II control software detects such failures 

by observing an over-the-limit electrical current command being sent from the software to the 

digital to analog converters (DAC) on the motor controllers and raises an E-STOP software error, 

leading the hardware watchdog timer to move the RAVEN hardware to an E-STOP safe state. The 

E-STOP error can only be resolved by restarting the system, resembling a recoverable system error 

scenario. Depending on the length of the faulty packets (e.g., if the master manipulator malfunction 

is permanent), the E-STOP error cannot be recovered from, even with multiple restarts, which is 

similar to a non-recoverable system error scenario.  

For this hazard scenario, we performed 30 injections into the network-layer thread on the actual 

robot, from which 22 were manifested in the system. Faults injected into the foot pedal variable or 

and those with values within the range of possible values, did not manifest in our experiments.  
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 Sensor Malfunctions 
We simulated non-recoverable system errors due to permanent or intermittent sensor 

malfunctions (the second scenario in Table 4.6) by injecting 64 faults into different locations 

within the USB interface function responsible for communicating packets from motor controllers 

to the control thread through USB interface boards (get_USB_packet). 61/64 of the faults injected 

into get_USB_packet function after the initialization phase were manifested, and the rest (injected 

during the homing process) did not manifest as safety hazards. 

Corruption of the number of available USB boards, indices for accessing USB boards (their 

address), and packets read from the USB boards (returned status) caused the RAVEN watchdog 

processor to detect an error and put the system in a non-recoverable E-STOP state, from which we 

could not recover by simply pressing the physical restart button. Only a complete restart of both 

the RAVEN software and robotic hardware resolved the issue.  

 Improper Human Operation or Actuator Malfunctions 
To simulate unintended instrument movements and sudden jumps of robotic arms due to 

actuator malfunctions or improper human operations (the third scenario in Table 4.6), we injected 

twelve faults into the USB board variables and four faults into the robotic joint command variables 

in the USB interface function (put_USB_packet). Ten out of twelve of the faults injected 

put_USB_packet function after the homing process were manifested as non-recoverable system 

errors (similar to previous hazard scenario). The injections into the robotic joint commands in the 

USB packets sent from the control thread to the interface boards caused abrupt jumps of the robotic 

arms, leading the RAVEN software and hardware to stop. Since abrupt jumps of robotic arms 

 

Figure 4.7. Visualization of a safety hazard scenario in the virtual environment: The left robotic arm 
makes a sudden jump because of a faulty packet sent from control software to the motors. 
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could potentially lead to system damage, we repeated these injections only four times. Figure 4.7 

shows the visualization of this safety hazard scenario in the 3D virtual environment. 

 Related Work 

4.5.1. Fault-Injection for Dependability Evaluation 

Software implemented fault injection (SWIFI) [151], [152] has been used for evaluating the 

dependability of different computing systems, including operating systems [160], [161], smart 

power grids [162], and SaS cloud platforms [163]. International safety standards, such as NASA 

Software Safety Guidebook [149] and functional safety standard for automobiles (ISO 

26262) [148], recommend using fault-injection for validation of safety-critical software [150]. 

However, medical devices safety standard (ISO 14971 [20]) do not consider fault-injection testing 

for validation of medical software [164]. Only one study showed the use of software simulation 

fault injection for testing the UML model of software for a pacemaker device [165]. In our work, 

we showed the feasibility of using software fault-injection for empirical assessment of safety 

mechanisms in surgical robots and validating the safety requirements identified using systems-

theoretic hazard analysis techniques such as STPA. 

4.5.2. Systems-Theoretic Safety Analysis 

STPA has been used for hazard analysis and safety-based design in safety-critical domains such 

as aviation [55], medical devices [57], and automotive systems [58], [59]. Most previous studies 

used STPA only to derive the high-level safety constraints and identify the unsafe interactions that 

should be eliminated or controlled during the design process. In [58], [59] the authors use the 

results of the STPA analysis to manually develop formal specification of the system safety 

requirements using temporal logic (e.g., LTL and CTL) and verify software against the safety 

requirements using model checking tools. The limitation of these works are that (i) manual 

interventions are needed for both mapping the safety properties identified by STPA to temporal 

logic and formally modeling the software code in the input language of target model checker, and 

(ii) they cannot easily scale to the size and complexity of real-world systems due to state explosion 

(a well-known problem in formal software verification [166]). Our approach also involves some 

manual intervention for development of safety hazard library (fault-injection targets) based on the 
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results of the hazard/ accident analysis and mapping the functionality and interactions of the 

components in the system control structure to the corresponding software modules and functions. 

However, this process can be automated by integrating STPA hazard analysis with existing 

toolchains for requirements analysis and software design. For example, [167], [168] recently 

proposed an extension for the UML/SysML modeling tool Sparx Systems Enterprise Architect, 

where the elements of the system control structure and STPA results (unsafe control actions and 

causal factors) are linked to the design models of the system and can later be traced in the software 

code automatically generated from the UML/SysML models.  

4.5.3. Simulation-Based Safety Training 

Multiple studies have shown that simulation can be effectively used in training to improve skill 

levels of robotic surgeons. There are already several surgical simulators, training centers, and 

validated curricula for robotic surgery [169] – [176]. However, the emphasis has been only on 

improving surgical skills and not on handling safety-critical events and responding to technical 

problems. To the best of our knowledge, our work is the first to include the adverse events or 

safety-critical events (including common device failures and operational mistakes) as scenarios in 

safety training of robotic surgeons. 

 Conclusions 
We presented a framework for simulation of safety hazard scenarios identified using systems-

theoretic hazard analysis or constructed based on causal analysis of real adverse events from the 

FDA databases. We demonstrated the feasibility of using this framework for validating the 

robustness of the system safety mechanisms during design and implementation phases and for 

evaluating human operator performance and response to safety hazards in simulation-based 

training.  

The proposed framework was evaluated using the RAVEN II system, an open-source platform 

for research in telerobotic surgery. A software-implemented fault injection framework was 

developed to simulate the hazard scenarios by inserting faults at critical locations within robot 

control software, which were identified based on systems-theoretic hazard analysis using STPA.  
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We also developed a robotic surgical simulator augmented with the fault-injection framework 

to simulate realistic safety hazard scenarios commonly reported for robotic surgical systems in a 

3D virtual environment. The proposed surgical simulator can be used for safety training of robotic 

surgeons to prepare them for handling common types of adverse events experienced during 

procedures.  

More broadly, software-implemented fault injection directed by the systems theoretic hazard 

analysis enabled us to: (i) identify the safety hazard scenarios and determine their potential causes; 

(ii) trace propagation of faults in the system and discover the vulnerabilities in system safety 

mechanisms; (iii) determine strategic placement of new detectors that can mitigate the propagation 

of causal factors into safety hazards; and (iv) provide useful feedback to the system developers on 

how to improve the safety mechanisms in the next-generation devices.  
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SAFETY-CRITICAL CYBER-PHYSICAL ATTACKS: 

PREEMPTIVE DETECTION AND MITIGATION  

  

 Overview 
The increasing complexity and connectivity of medical cyber-physical systems and their rapidly 

growing deployment in hospitals and widespread use in a variety of clinical settings, make their 

resiliency (i.e., their ability to maintain an acceptable level of safe operation) despite both 

accidental faults and malicious attacks a challenging task. Many recent reports indicate the 

existence of vulnerabilities in the configuration of hospital networks [179], [180], the third party 

networks (e.g., laboratories and pharmacies) [181], [182], the devices used by the hospital 

employees (healthcare professionals and technicians) [183], [184], and unpatched medical 

devices [185], that may allow attackers to penetrate into hospital networks and potentially gain 

unauthorized access to the safety-critical medical devices.  

In this chapter, we introduce a family of malicious attacks on medical cyber-physical systems 

that can lead to violation of safety constraints, by significantly disrupting system operations or 

harming patients. We specifically focus on teleoperated surgical robots as an example of the 

safety-critical medical devices that are envisioned to be used in the future for operation in remote 

and extreme environments, such as disaster-stricken areas, battlefields, and outer space [186].  

Past studies have emphasized the importance of security in teleoperated surgical systems [187] 

– [191]. Studies [189] – [191] demonstrated the importance of denial of service (DOS) and man-

in-the-middle (MITM) attacks that compromise the network communication between the 

surgeon’s console and the robot. To the best of our knowledge, no previous work has discussed 

the possibility of compromising the control systems of surgical robots. It is usually assumed that 

getting access to the robot control system is unlikely. 

                                                 
 This chapter contains material from the works [177], [178], coauthored with D. Chen, X. Li, A. Lewis, P. M. Cao, Z. 
Kalbarczyk, R. K. Iyer, and T. Kesavadas, copyrighted by IEEE. 
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We demonstrate that surgical robots are potential targets for malicious software that can be 

carefully installed by the attacker on the robot control system to strategically inject faults into the 

system at a critical operational state during surgery, in order to cause non-deterministic failures, 

and hence endanger the success of the robotic procedure and threaten the lives of patients.  

The attack is deployed via a self-triggered malware with embedded: (i) logging mechanisms for 

collecting and analyzing measurements from the surgical robot in order to identify the critical 

states (triggers for injection) and (ii) fault-injection mechanisms for inserting malicious commands 

into the robot control software. The deployment of the malware presumes that the attacker has 

penetrated the hospital network by exploiting vulnerabilities in the underlying network 

infrastructure and has obtained access to the robot control system through stolen credentials or 

exploiting one of the zero-day remote code execution vulnerabilities (shown in Figure 5.1 and 

discussed later in Section 5.2.4) to install the malware.  

The type of attack we construct here modifies the motor control commands sent from the control 

software to the physical robot, while preserving its legitimate format, making this type of attack 

difficult to detect without understanding the semantics of commands, i.e., dynamics of the robot’s 

control equations. To detect and mitigate such attacks, we have developed a model-based analysis 

framework that can estimate the consequences of control commands through real-time 

computation of the robot’s dynamics and can preemptively determine if a command is unsafe 

 
Figure 5.1. Typical network structure in a hospital, hosting a telerobotic surgical system and possible 

entry points for unauthorized access to the robot. (The images are adapted from [192], [193].) 
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before the actual execution of the command can progress and its adverse consequences manifest 

in the physical system. We experimentally validated the proposed detection scheme using two real 

attack scenarios involving injection of unintended user inputs and unintended control motor torque 

commands to the robot control software. 

We illustrate the attacks by implementing a prototype of the malware targeting the RAVEN II 

robot. We use the RAVEN robot as our experimental platform for several reasons: (i) it contains 

the typical control and safety mechanisms used in state-of-the-art robotic surgical systems, (ii) it 

is a platform indicative of the next-generation of teleoperated surgical robots with both remote 

operability and networking features, and (iii) it is accessible for demonstrating security attacks and 

studying their impact without the need to interrupt real surgical procedures or risk of harming 

patients. 

The cyber-physical attack scenarios presented here have the following important characteristics 

that complicate their detection and diagnosis: 

(i) Attacks exploit the TOCTTOU (Time of Check To Time of Use) vulnerability [194], [195], 

from the time the safety checks on the motor commands are done to the times the 

commands are written to the file system, are sent to the USB boards, and their actual 

execution on the robot. 

(ii) Attacks are initiated in the cyber domain by modifying the control commands while 

preserving the legitimate format and syntax, i.e., no changes are made to the control flow 

(in terms of the sequence of the functional blocks invoked) and to the performance of the 

target program (preserving the real-time constrains of the robot control software). 

(iii) Attacks directly result in catastrophic consequences in the physical domain (e.g, abrupt 

jumps of the robotic arms), causing damage to the robot or harm to the patient. Thus, they 

are hard to distinguish from incidents caused by system malfunctions or human induced 

accidental failures.  

The stealthy nature of these attacks and their resemblance to commonly observed accidental 

failures in surgical robots makes them more favorable to attackers, compared to other attack 

scenarios that simply kill the robot or make it unavailable during surgery. If deployed on wide 

scale, such attacks could cause major disruption and damage to surgical facilities and cause 

financial or legal impacts.  
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We also present two possible scenarios of easier attacks that compromise the availability of the 

robot during the procedure by exploiting the vulnerabilities in open-source Robotic Operating 

System (ROS) and remote diagnostic services used by the commercial surgical robots (da Vinci 

surgical system) in Section 5.4.  

The dynamic-model based analysis framework presented here can be generalized for analysis, 

detection, and mitigation of safety hazards caused by either accidental failures or malicious attacks. 

 Targeted Attacks on the Control System of Surgical Robots 
Our previous study in Section 4.3 revealed several vulnerabilities in the safety mechanisms of 

the RAVEN II robot. In this chapter, we show that malicious parties can exploit such 

vulnerabilities to perform cyber-physical attacks that are difficult to be detected without modeling 

the dynamic equations of the robot’s control equations.  

The attacks exploit the dynamic loading feature for system libraries in the underlying Linux 

operating system and the vulunerabilities in the RAVEN II software-hardware interface to inject 

malicious actions at different layers of the robot control structure (shown in Figure 5.2). These 

attacks can cause a variety of adverse impacts on the robot functionality and the patient and these 

impacts are potentially difficult to distinguish from unexpected failures. Table 5.1 summarizes 

variants of these attacks, categorized by the target layer in the control structure (shown in 

Figure 5.2(a)), the target system library, the type of malicious action, and their anticipated impact 

 
(a) (b) 

Figure 5.2. (a) Control structure and (b) Software and hardware control loops in the RAVEN II robot. 
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on the system. We specifically focus on two attack scenarios that cannot be preemptively detected 

and mitigated by the existing safety mechanisms in the RAVEN II robot:  

A. Injection of unintended user inputs after they are received by the control software from 

master console. These attacks either cause hijacking the control of the robot by performing 

an action that was not initiated by the operator or lead to unintended jumps and unwanted 

halt states.  

B. Injection of unintended motor torque commands after the they have passed the safety 

checks in the control software and before transmission to the USB interface boards and 

motor controllers on the physical robot.  These attacks lead to unintended moves and abrupt 

jumps of the robot or to unwanted halt states. 

We exemplify the attacks by deploying attack scenario B (described above) on the RAVEN II 

robot. We used a desktop computer running the RAVEN II software on top of ROS Indigo and 

Linux Ubuntu 14.04 LTS with SMP Preempt Real-time kernel. The machine contained an Intel 

Core i5 CPU@2.90 GHz and 8GB of RAM. The malicious code was implemented using bash, 

Python scripts, and ROS commands and was executed in the user space (as discussed in 

Section 5.2.1, the attack can be deployed by either by compromising a user or gaining an 

unauthorized root privilege).  

5.2.1. Attack Model 

We focus on the steps taken after the attacker has obtained remote access to a robot control 

system on a hospital’s network. Figure 5.1 shows the structure of a hospital’s network hosting a 

teleoperated surgical robot. Although, the current generation of commercial surgical robots are not 

Table 5.1. Variants of attacks targeting different layers of robot control structure. 
 Target Layer Target System Library Malicious Action Observed Impact 

A Master Console to 
Control Software 

Socket communication  
(bind, received_from) 

Change 
-port number 
-packet content 

 
Hijack trajectory 
Unwanted state (E-STOP) 

 Control Software Math 
(sin, cos) 

Add drift to 
-output 
-input 

 
Unwanted state (IK-fail) 

 Control Software to 
Hardware 

Interface 
(read, write) 

Change 
-robot state in PLC 

 
Homing Failure 

B Control Software to 
Physical Robot 

Change 
-motor commands 
-encoder feedback 

 
Abrupt Jump 
Unwanted state (E-STOP) 
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used for remote or telesurgery applications, based on the evidence presented in the related work 

and publicly-available documents, the typical configuration of a teleoperated robot on the hospital 

network can be envisioned as follows:  

• The surgical robot (including the local master console, the robot controller, and other related 

medical devices in the operating room) are connected to a private VLAN (Virtual LAN) 

within the hospital network. The computer hosting the robot control software is protected 

by an internal firewall, restricting access only to a few ports used for teleoperation and 

remote diagnosis [180], [196].  

• The robotic system can be operated either by surgeons at remote surgical sites by sending 

the surgical commands through the Internet or by the local surgeon through master consoles 

connected to the local network. 

• Both the on-site and remote technicians can have access to the robot control system for 

retrieving diagnostic logs and troubleshooting robot problems through either wireless or 

wired connections. 

• The remote master consoles or technicians can only access the robot control system through 

a secure connection (e.g., VPN connection to the hospital) and after getting access to the 

private VLAN [196].   

As discussed before, the attacker can gain unauthorized access to the hospital by exploiting 

weaknesses such as vulnerable services, unpatched medical devices, stolen credentials, or insider 

attacks to penetrate the hospital network. Once in the hospital network, the attacker can move 

laterally across devices within the hospital, steal additional credentials and discover vulnerabilities 

until the target robot control system is located and penetrated. The attacks discovered by TrapX 

Security, Inc. [185], the Stuxnet attack [197], and the discovered vulnerability in the firewall of a 

commercial robot [180] serve as examples of how these penetration attacks could be performed. 

Table 5.2 shows the common entry points exploited in recent real attacks detected on hospital 

networks. The purpose here is to assert that access to the robot control system in present day 

environments is not only feasible but quite probable.  

After getting access to the robot, the intention of the attacker is to remain on the target system 

without being detected for as long as possible in order to (i) collect data from the system, (ii) 

analyze the collected data to create an operational profile of the robot and determine the best time 

for activating the attack, and (iii) trigger the attack at the desired critical time.   
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We assume the attacker does not have access to the source code or internal design of the robot. 

The attacker gathers information about the system configuration and potential vulnerabilities of 

the robot through publicly available documents (e.g., previous publications on vulnerabilities of 

the RAVEN II robot) or through a vulnerability discovery process consisting of targeted probing 

and fuzzing.  

There are specifically two pieces of information that the attacker must have about the RAVEN 

in order to perform a successful attack:  

(i) the state machine representing robot operations (see Figure 4.2(b)), and  

(ii) a side channel that can be used to extract the current state of the robot in order to determine 

the best time to trigger an attack.  

 Table 5.2. Potential entry points onto a hospital network and examples of real attacks. 
Attack Entry 

Points Description Examples of Real Attacks 
and Detected Vulnerabilities 

Ref 
(Year) 

Third-party 
networks 

Hospital networks are often connected to third 
party laboratories, pharmacies, and vendor 
networks that, if compromised, can let the data 
breaches or penetrations into the hospital 
networks as well. 

Two medical centers and more than 3.9 
million individuals were affected by a 
data breach through a third party 
portal/personal health record platform. 

[181] 
[182] 

(2015) 

Computers 
used by 

physicians, 
nurses, or 

technicians 

Physicians, nurses, and vendor support 
technicians usually have remote access to the 
hospital network. The computers they use to 
access the hospital network could be 
compromised through credential stealing, virus, 
and malware. 

Email phishing attack compromised 
personal information of 3,300 patients. 

[183] 
 

(2014) 

Vulnerable 
office devices 

Office devices such as network attached 
desktops, printers, faxes, scanners, and security 
cameras with default or weak passwords or 
vulnerable firmware could be an easy entry 
point. 

Default username/passwords for the 
multi-function printers and security 
cameras could be used for access to 
other devices on the hospital. 

[184] 
 

(2014) 

Vulnerable or 
incorrectly-
configured 
firewalls, 

access points, 
or gateways 

Incorrect configurations in the Wifi access points 
or gateway machines could expose 
vulnerabilities or leak information, such as 
device ID or hospital network layout, to the 
public. 

Incorrect configuration of a gateway 
computer leaked critical information 
that made it possible for attackers to 
locate vulnerable devices within the 
hospital’s network. 

[179] 
[180] 

(2014) 

Vulnerable 
medical devices 

Medical devices, such as X-ray systems, infusion 
pumps, blood gas analyzers, which are 
connected to the hospital network  often have 
default/weak password or have unpatched 
software/firmware, which can be compromised. 

Three real-world attacks were detected 
by TrapX where a blood gas analyzer, a 
PAC system, and an X-ray machine 
were hijacked to open backdoors  in 
hospital networks. 

[185] 
(2015) 
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5.2.2. Attack Description 

In the attack scenario illustrated in Figure 5.3, an attacker (who penetrated the RAVEN control 

system) first eavesdrops (intercepts) on the USB communication between the RAVEN control 

software and the USB I/O boards. The intercepted packets are analyzed offline to extract the state 

information of the surgical robot, i.e., determine the state of the robot according to the operational 

state machine depicted in Figure 4.2(b). The extracted data is then used to build a malware for 

triggering (injecting) an attack at a critical time during the robot’s operation, i.e., when the robot 

is operating in the “Pedal Down” state.  

Figure 5.3 describes the steps to execute the attack on a RAVEN II robot, which are grouped 

into three phases: Attack Preparation Phase, Analysis Phase, and Attack Deployment Phase. The 

Attack Preparation Phase and the Offline Analysis Phase need to be performed only once to obtain 

the information necessary to design and implement the final malware capable of triggering an 

attack when the robot is most vulnerable. The details of each phase are described next.  

 Attack-Preparation Phase  
The goal of the Attack-Preparation phase is to eavesdrop on the communication between the 

RAVEN control software and the USB I/O boards and send that information to the attacker for 

offline analysis. This is achieved by (i) downloading and installing a malicious shared library on 

 

Figure 5.3. Attack scenario B (injection of unintended motor torque commands) in RAVEN II robot. 
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the RAVEN control system, (ii) forcing processes on the system to link to the malicious shared 

library, and (iii) logging the RAVEN USB communication and forwarding it to the attacker on a 

remote server using UDP packets.  

In a Linux system most programs do not communicate directly with the kernel. Instead, the 

program invokes a function in a runtime library (e.g., libc), which performs the necessary 

preparation of the arguments and then triggers the corresponding system call. When a program 

starts, the runtime linker searches the default path to find the runtime library to be linked. If an 

environment variable LD_PRELOAD or the directory /etc/ld.so.preload is defined in the system, 

then the linking process is forced to first search, load, and link to the library object in the path 

pointed by the LD_PRELOAD or /etc/ld.so.preload [198]. If the alternative library object has a 

function with the same name as function defined in the original runtime library (e.g., read or write), 

the alternative library’s function will be called. This allows the alternative library to “wrap” the 

runtime library function and intercept system calls. The alternative library function can call the 

original system call, not call it, or do some malicious task before calling it. This approach has been 

used by several rootkits to hide their operations, such as Jynx [199] and Azazel [200]. 

In implementing the attack scenario B, we exploited the Linux dynamic linking feature to install 

malicious system call wrappers for the read and write system calls in order to eavesdrop on: (i) 

commands sent to the robot motor controllers and (ii) the feedback received from the motor 

encoders and from the PLC through USB. An attacker with the user privilege, can add the 

LD_PRELOAD environment variable to user’s startup profile (e.g., .bshrc), so all future terminals 

started by this user will have the LD_PRELOAD environment variable set to point to the malicious 

shared library. The attacker with root privilege can add the path to the malicious shared library to 

/etc/ld.so.preload, so that new processes started on the system by any user link with the malicious 

shared library. This means that when any future process makes a read or write system call, the 

system call wrapper in the malicious shared library will be called.  

Figure 5.4(a) shows a sample usb_write function that uses the write system call to write to a 

USB device. Each file descriptor (fd) is associated with a target USB I/O board (on left or right 

robotic arm) and the buf parameter contains the packet containing the motor commands sent to 

that USB board.   

Since the system call wrapper is applied to all programs that are linked to the malicious shared 

library, we need a mechanism to detect when the system call is called by the RAVEN process and 
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the used file descriptor is pointing to the target USB board. Only then should the malicious wrapper 

be activated to log the data exchanged between the control software and the USB I/O boards. To 

do this, for every call of the wrapper we need to compare the calling process’s name and file 

 
(a) 

 
(b) 

 Figure 5.4. (a) The malicious write system call loaded as a wrapper around the original write system call 
on the system. The dashed line shows the original program flow. The solid lines show the program flow 
after LD_PRELOAD is set to point to the malicious wrapper. (b) The modified malicious wrapper after the 
attacker learned which USB field carries the state information and used that to trigger the attack on the 
robot during a surgical operation. 
 

Raven Code

Libc Code

Malicious Wrapper (logging)

Modified Malicious Wrapper (fault-injection)
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descriptor number with the RAVEN process name and the USB board file descriptor. Since the 

attacker knows the RAVEN process name, this can be hard coded in the malicious wrapper. The 

USB board file descriptor can be identified by searching the /proc/self/fd directory. Since the USB 

I/O boards are the only USB devices that RAVEN connects to, the desired file descriptor is the 

one that points to a USB device. Figure 5.4(a) shows the code snippet for the get_target_fd function 

that identifies the file descriptor for one of the USB boards.  

Figure 5.4(a) illustrates the program flow before and after loading the malicious wrapper. The 

dashed line shows the original program flow, which indicates that the write() call in the RAVEN 

code calls the _libc_write() library function. The solid lines show the program flow after the 

malicious wrapper is loaded. The malicious write() wrapper checks if the current process is the 

RAVEN control process and if the file descriptor is for the target USB I/O board; if they are, the 

buf value (USB packet content) is sent through a UDP packet to a remote server where the attacker 

is listening. Otherwise only the original _libc_write() is called. 

 Offline Analysis Phase  
The goal of the Analysis Phase is to discover state information of the surgical robot from the 

logged USB communication. From the publicly available documents on the RAVEN II robot 

(e.g., [14], [15]), the attacker can infer that the state information (the robot can be in one of four 

states depicted by the operational state machine; see Figure 4.2) must be transmitted between the 

RAVEN control software and the USB I/O boards. The attacker performs an offline analysis of 

the USB packets (step 4 in Figure 5.3) collected from several robot runs—from initialization to 

the end of a teleoperation session—to identify fields in the USB packets that carry robot’s state 

information. 

Since the attacker does not know the format of the USB packets, a simple approach to analyzing 

them is to look at the values of the packets byte by byte over time to see whether there are patterns 

indicating a specific byte may contain the state information. Figure 5.5(a) illustrates sample USB 

packets (values of the buf parameter for the write system call) collected in one run of the robot. 

Each subplot shows the value of each of the 18 bytes over the course of a run. During this run, the 

RAVEN robot was teleoperated using the manipulators on a remote console.  



118 

By analyzing multiple runs, attacker can discover that Byte 0 switches among eight different 

values in a surgical run whereas other bytes either stay constant or switch between many values. 

For example, Figure 5.5(b) and Figure 5.5(c) show the enlarged plot of Byte 4 and Byte 0, 

respectively. A more detailed look at the values of Byte 0 reveals that the fifth bit toggles 

periodically between 0 and 1 (e.g., 0X0F toggles to 0X1F). If we take that bit out, then Byte 0 only 

switches among four values. Figure 5.6 shows the patterns of Byte 0 over nine different runs of the 

robot. Our further investigation into the RAVEN II specifications revealed that the fifth bit of Byte 

0 might be the watchdog signal, a square-wave signal toggling periodically between 0 and 1 to 

communicate the healthy status of the robot control software to the PLC safety processor [14].  

Now, the attacker can combine this information with the knowledge that the RAVEN robot state 

machine navigates through four distinct states during a teleoperation. It begins from a stopped state 

(“E-Stop”), then upon hitting the start button, it performs an initialization process (“Init”), then 

moves to a standby state (“Pedal Up”), and during the surgical procedure, moves between the 

standby state (“Pedal Up”), and the operational state (“Pedal Down”) (see Figure 5.5(c)). Putting 

these two pieces of information together, the attacker can conclude, based on several runs of 

collected data, that Byte 0 most likely represents the state of the surgical robot and the values 31 

 
(a) 

 
(b) 

 
(c) 

Figure 5.5. The contents of packets transferred in one run of the RAVEN II robot from the robot to one of 
the USB boards (by calling write systems call). (a) Each subplot corresponds to a byte in the USB packets. 
(b) Byte #4 switches between many different values. (c) Byte #0 switches between 8 different values and if 
the fifth bit is taken out, it switches between 4 values corresponding to the four distinct states of the robot. 

“E-STOP” 

 “Pedal Up” 

“Pedal Down” 

“Homing” 
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(0x1F) or 15 (0x0F) in Byte 0 indicate that the robot is engaged and in operation (in the “Pedal 

Down” state). The red dashed lines in each subplot of Figure 5.6 highlight steps corresponding to 

the different operational states of the robot that can be inferred from this data.  

Similar analysis can be done on the USB data collected for the read system call (see Figure 5.7). 

As shown in Figure 5.6(b), switching behavior of Byte 24 in the packets read from the USB boards 

 
(a) 

 
(b) 

Figure 5.6. (a) The values of the Byte 0 in the packets transferred from the robot to one of the USB boards 
and (b) The values of the Byte 24 in the packets receievd from that USB board, in a sample of nine different 
runs. The robot state (highlighted in red) can be inferred from the change in the values of these bytes. 
 

 
Figure 5.7. The contents of packets transferred in one run of the RAVEN II robot, from one of the USB 
boards to the robot (by calling read system call).  Each subplot corresponds to a byte in the USB packet. 
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follows a very similar pattern to the Byte 0 in the packets written to the USB boards (Figure 5.6(a)). 

A more detailed analysis of the values of this byte over several runs of the robot reveals that bits 

7 and 6 in the Byte 24 represent the state of the robot and their values are identical to the state 

values inferred from the write system call patterns in Figure 5.6(a). This information can further 

be used by the attacker to confirm the state of the robot and use that as a trigger to activate an 

attack.  

 Attack Deployment Phase 
The goal of the Deployment Phase is to install a malicious code that triggers an attack on the 

RAVEN surgical robot when it is engaged in the middle of a surgical operation. Based on the 

offline analysis, the attacker can use Byte 0 as a trigger to determine when to activate an attack on 

the robot. There can be other triggers in addition to Byte 0, but Byte 0 can indicate when the surgical 

robot is in the operational (“Pedal Down”) state. Attacking the robot in other states may not have 

the desired malicious effect, e.g., in the “E-STOP” or “Pedal Up” states, the robot is not engaged 

and the motor brakes are applied, so no commands sent to the motors will be executed. 

The attacker modifies the write system call wrapper in the malicious shared library to perform 

an attack when Byte 0 (in the USB packets) indicates the “Pedal Down” state in the robot’s 

operation. The attack consists of modifying the values of other bytes in the USB packets that 

represent the control commands sent to the USB I/O boards by the control software to drive the 

motors on the robotic arms.  

Previous assessment of the RAVEN control software (in Section 4.3) by fuzzing the USB 

packets transferred between the robotic software and USB I/O boards revealed that although the 

motor commands issued by the control software are checked before being sent to the custom USB 

boards (to make sure they do not exceed safety limits and the desired joint positions are not outside 

of the robot workspace), the integrity of the packets is not checked after the USB boards receive 

them. Since the USB I/O boards do not verify the integrity of the received USB data, a corrupted 

or incorrect motor command can pass to the motors causing the robot arm to move to an undesired 

location and potentially damage the system or harm the patient.  

Figure 5.4(b) shows the modified version of the wrapper. The attacker can deploy the modified 

shared library to any RAVEN machine using steps 1 and 2 in the Attack Preparation Phase (see 

Figure 5.3). Now, with every invocation of the write system call made by the RAVEN control 
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software, instead of logging the USB communication, the malicious wrapper checks Byte 0 of the 

buf parameter and automatically triggers an attack if Byte 0 indicates that the robot is in the “Pedal 

Down” state.  

5.2.3. Attack Evaluation  

To assess the impact of the attack on the progress of the surgery and the health of the patient, 

we simulated the attacks on the write and read system calls using a surgical simulator for the 

RAVEN II robot (presented in Section 4.4) as well as on a real RAVEN II robot. By implementing 

the attacks on the simulator, we were able to verify the impact of the attacks before implementing 

them on the actual robot, which prevents causing damage to the robotic arms and instruments. 

 Impact on the Physical System 
The corruption of packets sent by the control software to the USB I/O boards was achieved 

using malicious wrapper around the write system call to inject a random value (e.g., 0 or 100) to 

one of the bytes (other than Byte 0). This corruption caused abrupt jumps of the robotic arms, 

leading both the RAVEN II software and hardware to go into the “E-STOP” state in only a couple 

of milliseconds. In a few cases, the abrupt jump of robotic arms, caused the breaking of the cables 

on the robot. Figure 4.7 in Section 4.4.2 showed the visualization of this safety hazard scenario in 

the RAVEN simulator. This disturbance of the robot operation may lead to an interruption in the 

surgery (due to the emergency stop), damage to the robotic instruments due to collision, or harm 

to the patient in the form of tearing or perforation of tissues if the instruments were inside the body.  

The corruption of packets sent from the USB boards to the robot control software (using a 

malicious wrapper around read system call) caused the system to stop and raise an E-STOP error. 

If the malicious wrapper is loaded by setting the LD_PRELOAD in the bashrc file of the target 

user, the malware will be reloaded to the system on each run of the robot even after restarting the 

system. Consequently, the “E-STOP” condition would happen on every invocation of the read 

system call and practically make the robot unavailable to the surgical team. This would most likely 

lead the surgical team and the technicians to convert the procedure to a non-robotic approach or to 

reschedule the procedure to a later time, in either case raising the risk of complications for the 

patient.  
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As discussed in the Chapters 3 and 4, several safety incidents reported to the U.S. Food and 

Drug Administration (FDA) indicated that unexpected movement of robotic instruments due to 

mechanical or electrical malfunctions or unintentional human errors (not malicious attacks) led to 

tearing or perforation of patient tissues, bleeding, and minor or severe injuries. The results of this 

analysis show that similar adverse incidents can be caused by malicious tampering with the robotic 

system and potentially harm patients and progress of surgery.  

Thus, an important characteristic of the targeted attack scenarios presented here is that they are 

hard to distinguish from system failures/misbehavior caused by unexpected errors, physical 

malfunctions, or unintentional human mistakes. This makes the forensic investigation of incidents 

more complicated. The detection and mitigation of such security exploits also becomes more 

difficult, requiring the understanding the semantics of robot control and communications as well 

as concurrent monitoring of both cyber and physical system components. 

 Impact on the Cyber Domain  
We also measured the performance overhead of the malicious system call wrappers on the 

normal operation of the robot and other processes running on the system. Table 5.3 shows the 

performance overhead of the malicious wrappers, measured by the execution time of the write 

system call wrapper in the RAVEN control process. In each case, we collected measurements 

before and after installing the malicious library wrapper in 50,000 runs of the system call.  

The average execution time of the baseline write system call in the RAVEN process was around 

1.3 microseconds. The malicious wrapper for logging the USB packets sent by the control software 

(including checking the process name and the file descriptor and sending the UDP packets to the 

remote attacker) on average added 18.7 microseconds to the execution time of the write system 

call in the RAVEN process. The malicious wrapper that injected the malicious bytes to the USB 

Table 5.3. Performance overhead of malicious system call. 
 Time (µs) Min Max Mean Std. 

RAVEN 
Process 

Baseline System Call 0.9 12.7 1.3 0.2 
With Malicious Wrapper 

 Logging 7.9 38.1 20.0 7.5 
Injection 1.5 6.7 3.6 1.1 

Other 
Process 

Baseline System Call 0.0 25.6 0.4 0.3 
 With Malicious Wrapper 0.4 16.7 0.5 0.3 
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packets (including checking for the process name and file descriptor, checking the packet contents 

to determine if the desired robot state is reached, and overwriting the malicious value) added about 

2.3 microseconds to the baseline write system call execution time. These overheads are within the 

timing constraints (1 millisecond) of the real-time process running the robot control software. So 

the malicious wrapper does not have any adverse impact on the performance of robot control and 

its effect would not be noticed by the human operators or users of the system.  

The average execution time of the write system call in another process running on the RAVEN 

machine (a program that writes a string into a text file every one second) was about 0.4 

microseconds before loading the malicious wrapper. The malicious wrapper only added 0.1 

microseconds to the average execution of write system call in the other process. This small 

overhead is due to the initialization of the socket and checking for the process name at the 

beginning of the malicious wrapper code (see Figure 5.4(a)). Since the check for the process name 

always fails for any process other than the RAVEN, the rest of the wrapper code is not executed 

and does not have any impact on the execution time of the system call.  

5.2.4. Attack Detectability 

In the presented attack scenarios, two important vulnerabilities in the RAVEN II control 

software allowed the attacker to identify the critical time during robot operation to inject the 

malicious commands: (i) Linux dynamic loading feature for shared libraries and (ii) leaking of 

robot state information from the packets transferred between the robot control software and the 

USB I/O boards. In this section, we discuss the challenges in the detection and mitigation of the 

attacks in the cyber domain. 

Malicious shared library attacks (dll hijacking or LD_PRELOAD attacks) have been known for 

a while and has been used by rootkits to hide their operations in the system. Jynx [199] and 

Azazel [200] are two examples of sophisticated userland rootkits that similar to the attacks 

presented here exploit the dynamic library loading feature of Linux to hook and hijack the system 

library functions in order to hide their files, processes, network connections, and provide remote 

access capabilities to the attackers.  

Previous studies in the security community have shown that such rootkits cannot be 

detected [201] by commonly used rootkit detection techniques such as Rootkit Hunter 

(rkhunter) [202] and chkrootkit [203], which look for suspicious hidden files, port bindings, 
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modifications to binary files, and known signatures. Forensic analysis tools such as Unhide [204] 

and Volatility [205] are able to detect the hidden processes, TCP/UDP ports, and hooked functions 

created by rootkits such as Jynx. However, these tools are usually used post mortem because of 

their high performance overhead, so they cannot detect the attacks in real-time and still can be 

defeated by more sophisticated attacks. For example, Volatility can detect the presence of 

suspicious loaded libraries within the memory maps of a running process (in /proc/PID /maps). 

However, this is given that (i) the system administrator already knows that the system is 

compromised or Volatility is running all the time in the background (which will cause unacceptable 

performance overhead on a real-time control system such as a surgical robot) and (ii) the related 

filenames or the paths for the malicious libraries are identifiable in the list of system libraries (e.g., 

their names are known such as Jynx and they are not renamed to misrepresent another standard 

library). Another solution is to compile a list of system libraries in an uninfected system and at 

each run of the safety-critical process compare it to the list of loaded libraries (in /proc/self /maps). 

However, this approach can still be defeated by an attacker that hijacks the system calls for listing 

the memory mappings of a process (e.g., readdir). 

The forensic analysis tools are often used only after there are signs of system misbehavior, and 

most likely the catastrophic impact has been already made. Also, since the attack scenarios 

presented here impact the physical system over a very short period of time and in a similar manner 

to unexpected failures or unintentional human errors, the suspicion of malicious cyber attack may 

only be raised when the adverse physical impacts are repeated frequently while using the system. 

There are also the possibilities of  incorrectly blaming the human operators for the physical damage 

to the system or harm to patient.  

Further, the malicious attack scenarios presented here are not easily detectable in the cyber-

domain by the common rootkit and malware detection techniques, because:  

• Their malicious actions are confined to the robot control software, for example:  

(a) no separate process is created to run the malware. 

(b) no system-wide malicious activities are performed. 

(c) the performance of target application is not affected. 

• No changes are made to the control flow of the target process. The functions in the shared 

library are invoked by the target process following its normal execution flow. 

• No anomaly in the syntax of robot control commands are introduced.  
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In addition, the surgical robot puts stringent real-time constrains on the system operation (e.g., 

in the RAVEN II the operational cycle is one millisecond). The robot control loop plus any real-

time detection and mitigation actions must complete within one millisecond to avoid potential 

deviation in system dynamics, leading to robot damage or patient harm. So complex malware 

detection techniques (e.g., signature- or anomaly-based and control flow checking), encryption 

mechanisms (e.g., “bump-in-the-wire” (BITW) solutions [206], [207], and remote software 

attestation [208], [209] may introduce unacceptable overhead in the system operation and still not 

eliminate the possibility of TOCTTOU exploits.  

Finally, another way to prevent the deployment of the attacks is to restrict access to the file 

system on the target machine or remote shell access to the robot control system. However, recent 

reports on attacks to networked safety-critical cyber-physical systems show the existence of many 

vulnerabilities that allow remote malicious access or insider attacks. Table 5.2 shows examples of 

entry points and vulnerabilities exploited by recent attacks on the hospital networks and commonly 

used medical devices. Table 5.4 shows examples of recent zero-day vulnerabilities [210] – [214] 

in different operating systems, allowing remote code execution, which could be used to download 

and set up the right scenarios for malicious shared library attacks.  

In order to address the challenges in detection of attacks in the cyber-domain, in Section 5.3 we 

present a dynamic-model based analysis framework that uses the analysis of physical system state 

to preemptively detect the adverse consequences of malicious commands and mitigate safety 

hazards in real-time. 

Table 5.4. Recent zero-day vulnerabilities allowing remote code execution or privilege escalation. 
Date 
[Ref] CVE Vulnerability Affected 

Systems Impact 

Jul. 2015 
[210] CVE-2015-5123 Flash Player 

Linux, 
Windows, 

OS X 

Gain administrator shell  
on target machine 

Jan. 2015 
[211] CVE-2015-0235 (GHOST) Glibc Linux Remote code execution 

Oct. 2014 
[212] CVE-2014-4113 Privilege 

Escalation Windows Escalate to SYSTEM Privilege 

Sep. 2014 
[213] CVE-2014-6271 (Shellshock) Bash shell 

Linux, 
Unix, 
OS X 

Remote code execution 

Aug. 2015 
[214] CVE-2015-5783 OS X 10.10 Mac Gain root access 

 

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0235
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
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 Dynamic-Model Based Analysis Framework 
In this section we describe the dynamic-model based analysis framework that we developed for 

(i) assessing the impact of attacks on the robot physical system and (ii) preemptive detection of 

attacks and mitigating their impact before they manifest in the physical domain (Figure 5.8). We 

validated the detection mechanisms experimentally using two real attacks involving injection of 

unintended user inputs (scenario A) and unintended control motor torque commands (scenario B).  

The dynamic model allows us to determine future state of robot end-effectors and the motor 

incrementally based on the information on the current state and the real-time input received from 

the RAVEN software. The methods for modeling the dynamic serial robotic manipulators and 

RAVEN II robot are well understood in the literature and we briefly outline them for completeness. 

What is important here is to ensure that the output of the dynamic model closely follows the actual 

robot movements in real-time so that the detection is performed accurately. 

To preemptively detect and mitigate the impact of attacks, the detection mechanisms need to 

dynamically estimate the consequence of executing a command on the physical system to ensure 

the final end-effector movements are within specified safety limits and within the workspace of 

the robot. There are two main challenges for implementing such monitoring mechanisms at lower 

layers of the control structure (e.g., at the interface device or the motor controller): 

(i) The detector needs to estimate: 

a. Next motor (mpos) and joints positions (jpos) that will be achieved upon executing a 

given DAC command. 

b. End-effector positions (pos) and orientations (ori) that will result from those commands 

in the next control loop.  

If the estimated next joint position and end-effector position and orientation values are beyond 

a safety limit (defined by a threshold value) from their current values, the DAC command should 

not be delivered to the motors and the robot should move to an emergency E-STOP state (see 

Figure 5.8(b)). Finding a solution to the above estimation problems requires modeling the 

dynamics of physical robot (motors and joint dynamics) for estimating the next motor and joint 

positions.  

(ii) The robotic control systems often face tight real-time constraints. For example, the 

RAVEN II control loop has a real-time requirement of receiving and processing each 
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packet from the USB boards and sending the next control command to the motor controllers 

every one millisecond.  

Thus, any preemptive detection mechanism implemented at the software or software-physical 

interface layers should perform the dynamic state estimations within the real-time constraints 

imposed by the robot control design.  

5.3.1. Framework Overview 

Figure 5.8 shows the dynamic model based simulation framework that we developed based on 

the baseline RAVEN II control system to assess the impact of the attacks on the physical system 

and validating the detection and mitigation mechanisms. The framework consists of:  

• A master console emulator that mimics the console functionality by generating user input 

packets based on previously collected trajectories of surgical movements made by a human 

operator and sends them to the RAVEN control software. 

• A graphic simulator that animates the robot movements in real time by listening to the 

ROS topic generating the robot state and mapping robotic arms and instruments movements 

to CAD models of robot mechanical components in a 3D virtual environment. 

   
(a) (b) (c) 

Figure 5.8. (a) Baseline RAVEN II control software, (b) Dynamic-model based simulation framework 
for assessing the impact of attacks, (c) Dynamic-model based detection and mitigation mechanisms. 
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• A dynamic model of the RAVEN II physical system, which integrates the motor dynamics 

and robotic manipulator dynamics together to model the physical system behavior in real 

time. 

• An attack injection engine which can create attack scenarios targeting different layers of 

robot control structure by injecting faults into the robot control software modules.  

 Dynamic Model 
We simulate the functionality of the RAVEN II surgical robot by developing a software module 

that mimics the dynamical behavior of the robotic actuators. This is done by modeling the 

MAXON RE40 DC motors used by the robot as well as the robot manipulators (joints).  

As shown in Figure 5.8 this model is integrated with the RAVEN control software and can run 

with or without the physical robot. At each cycle of software control loop (shown in Figure 4.2(b)) 

the model receives the same control commands (DAC values) sent to the physical robot (calculated 

based on the desired joint and motor positions for the next time step) and estimates the next motor 

and joint positions.  

The challenge in developing the model is to be able to perform estimations within the time 

constrains of the robot’s single iteration through the control loop (one millisecond for the RAVEN 

II robot). To reduce computational cost while maintaining the model accuracy as well as  the 

system real-time guarantees, we model the robot manipulator dynamics using the first three (out 

of seven) degrees of freedom only (two rotational joints plus one translational joint). This is 

reasonable because the first three joints are positioning joints which contribute most to the 

instruments’ end-effectors’ positions, while the other four degrees of freedom are instrument 

joints, mainly affecting the orientation of the end-effectors. The model estimates the next states of 

the first three motors and the corresponding joint states, including shoulder joint (rotational), elbow 

joint (rotational), tool insertion/retraction (translational) on one arm. 

Two sets of second-order ordinary differential equations were used to describe the dynamic 

model of the robot, including link (joint) and motor dynamics, similar to [215]:  

Robot link dynamics, which estimate the next joint positions (elbow, shoulder, and insertion), 

as follows: 

 𝑀𝑀𝐿𝐿(𝑞𝑞𝐿𝐿)�̈�𝑞𝐿𝐿 = 𝛤𝛤 − 𝐹𝐹𝐺𝐺(𝑞𝑞𝐿𝐿) − 𝐹𝐹𝐶𝐶(𝑞𝑞𝐿𝐿, �̇�𝑞𝐿𝐿) − 𝑑𝑑𝑖𝑖𝑎𝑎𝑎𝑎�𝐶𝐶𝑖𝑖𝑎𝑎𝑠𝑠(�̇�𝑞𝐿𝐿)�𝐹𝐹𝑐𝑐𝑐𝑐 − 𝑑𝑑𝑖𝑖𝑎𝑎𝑎𝑎(�̇�𝑞𝐿𝐿)𝐹𝐹𝑣𝑣𝑐𝑐

− 𝐽𝐽𝑇𝑇𝐹𝐹𝑒𝑒𝑒𝑒                                                                                                     

(5.1) 
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In Equation (5.1), 𝑞𝑞𝐿𝐿 denotes the joint positions; 𝐽𝐽 is the Jacobian; 𝑀𝑀𝐿𝐿 denotes the inertia tensor; 

𝛤𝛤 is the joint torque vector; 𝐹𝐹𝐺𝐺 is the gravitational force; 𝐹𝐹𝐶𝐶 is the are Coriolis and centrifugal; 𝐹𝐹𝑐𝑐𝑐𝑐 

and 𝐹𝐹𝑣𝑣𝑐𝑐 are coulomb and viscous friction terms; and 𝐹𝐹𝑒𝑒𝑒𝑒 is the external force acting on the end-

effector. 

Motor dynamics, which describe dynamics of each individual motor and the corresponding 

cable tension for the three joints as follows: 

 𝑀𝑀𝑚𝑚�̈�𝑞𝑚𝑚 = 𝜏𝜏 − 𝐶𝐶𝑖𝑖𝑎𝑎𝑠𝑠(�̇�𝑞𝑚𝑚)𝜏𝜏𝑐𝑐𝑚𝑚 − �̇�𝑞𝑚𝑚𝜏𝜏𝑣𝑣𝑚𝑚 − 𝜏𝜏𝑟𝑟𝑒𝑒 (5.2) 

 𝜏𝜏𝑟𝑟𝑒𝑒 = 𝑟𝑟𝑚𝑚𝑐𝑐𝛾𝛾 𝑁𝑁⁄   (5.3) 

 𝛾𝛾 = 𝑘𝑘(𝑒𝑒𝑞𝑞𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚−𝑞𝑞𝑙𝑙𝑟𝑟𝑙𝑙 − 𝑒𝑒𝑞𝑞𝑙𝑙𝑟𝑟𝑙𝑙−𝑞𝑞𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚) + 2𝑏𝑏(�̇�𝑞𝑚𝑚𝑐𝑐𝑟𝑟𝑚𝑚𝑐𝑐 − �̇�𝑞𝑐𝑐𝑟𝑟𝑐𝑐) (5.4) 

 𝛤𝛤𝑖𝑖 = 𝑟𝑟𝑐𝑐𝛾𝛾   (5.5) 

In Equations (5.2) to (5.5), N, Im are the gear ratio and motor inertia; τcm and τvm are the motor 

coulomb and viscous friction coefficients; rmc and rl are the capstan radius for the motor and link; 

qmc is the motor capstan position; k and b are cable stiffness and damping respectively. The robot 

mechanical properties, like link mass, inertia, and center of mass location were obtained from the 

CAD model and the existing literature. The coefficients and parameters of the equations were 

carefully and manually tuned based on [215], so that the model trajectory and the real robot 

trajectory are close.  

Combining Equations (5.1) to (5.5), we obtain the robot dynamics model for the first three 

positioning joints. Since the number of nonlinear terms in each equation reaches to about several 

hundred terms with time-varying coefficients that should be updated on each cycle of control, 

solving this system of second-order ODEs is analytically impossible and requires utilizing 

numerical integration techniques.  Therefore, fourth-order Runge-Kutta and explicit Euler methods 

were used for calculating the solutions for these equations using the numerical integration solver 

(odeint) package in C++. We validated this dynamic model by comparing the operational trajectory 

of the robot (RAVEN II) with the corresponding trace generated by the dynamic model. 

Specifically, we measured the performance of the dynamic model in terms of the average 

estimation error and the required time for performing the estimation at each robot control cycle. 

Figure 5.9(a) shows the average run time and average motor and joint position errors for the fourth-

order Runge Kutta and Euler solvers, by calculating the average of mean absolute errors estimated 
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for each trajectory, over ten different runs of model and robot together. For the specific trajectories 

experimented here, the Euler technique with a step size of one millisecond provides us with the 

best trade-off between execution time and average trajectory error. The average execution time of 

0.011 milliseconds is within the timing constraint of one millisecond of RAVEN control loop, 

which enables running of the model in parallel with the robot control software.  

 Figure 5.9(b) shows the robot trajectories when running the model (blue trajectory) in parallel 

with the physical system (red trajectory) and both receiving the same input calculated based on the 

measurements from real robot encoders. The graphs show the motor position and velocity and joint 

position trajectories for the first three degrees of freedom. As we see in Figure 5.9(a), the model 

closely follows the trajectory of the actual robot.  

 

Integration 
Method 

(Step Size:1 ms) 

Avg. Time/ 
Cycle 
(ms) 

Joint 1 
Avg. Error 
(% deg.) 

Joint 2 
Avg. Error 
(% deg.) 

Joint 3 
Avg. Error (%) 

mpos jpos mpos jpos mpos 
(deg) 

jpos 
(mm) 

Fourth Order 
Runge Kutta 

0.032 
115.0 
(2.4) 

0.9 
(2.4) 

178.1 
(1.5) 

1.8 
(2.0) 

181.9 
(0.3) 

1.4 
(0.4) 

Euler 0.011 136.6 
(2.4) 

1.0 
(2.4) 

132.8 
(1.4) 

1.4 
(1.9) 

180.6 
(0.3) 

1.3 
(0.3) 

(a) 

 
(b) 

Figure 5.9. Validation of dynamic model: (a) Average estimation error and performance, (b) Trajectories 
generated by the actual robot and the dynamic model for motor positions and velocities and joint positions. 
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 Attack Injection Engine 
The core of the attack injection engine is the safety hazard injection framework presented in 

Section 4.3.2 that is modified to install wrappers around different system calls in the control 

software to create a variety of attack scenarios shown in Table 5.1. The attack injector can generate 

malicious inputs/commands with different values and activation periods and inject them to the 

control software at different times during a running trajectory (e.g., a surgical operation). The 

attacks can be injected in the standalone simulated dynamic model without causing any adverse 

impact on the actual robot (Figure 5.8(b)) or on the actual robot when the dynamic model and 

robot run in parallel with each other (Figure 5.8(c)). 

As an example, Figure 5.10 shows the simulation of the attack scenario A (introduced in 

Section 5.2) in the standalone model and the same attack created on the actual robot. In this 

example, the attack was implemented by installing a malicious wrapper around receive_from 

system call to corrupt the desired end-effector values sent from the user to deviate from intended 

user inputs by a distance of two millimeters, for a period of 11 milliseconds (11 packets), starting 

from packet 2000.  

As Figure 5.10(a) shows this attack causes an abrupt jump in all three motor velocities and this 

jump is visible on the standalone simulated model (up), the actual robot (the red trajectory in the 

bottom graph), and the simulated model running in parallel with the robot (the blue trajectory in 

  

  
(a) (b) 

Figure 5.10. Simulation of attack scenario A: (a) Motor position and velocity trajectories on the standalone 
model (up) and the actual robot running in parallel with the dynamic model (bottom), (b) Robot end-effector 
position trajectories (under attack (red) and golden (green) trajectories). 
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the bottom graph). Figure 5.10(b) shows that the this attack causes abrupt jumps of around one 

millimeter on the end-effector positions (all dimensions X, Y, and Z) within only 11 milliseconds. 

As discussed in Section 5.3.2, the robot’s existing safety checks could not detect these jumps and 

the robot continued its operation after the attacks were deactivate (faults were removed at 2011 

milliseconds).  

5.3.2. Assessing the Impact of Attacks 

We used the dynamic-model based simulation framework in Figure 5.8(b) for assessing the 

impact of attack scenarios A and B by injecting a variety of unintended user inputs (malicious 

desired end-effector positions) and malicious motor torque commands to the RAVEN control 

software. The simulation framework enabled us to assess the resiliency of the robot by performing 

thousands of injections without causing damages to the real robot. As shown in Figure 5.10, 

representative fault injection experiments were repeated on the actual robot to validate the 

consistency between the robot and model behavior.  

Figure 5.11 shows the timeline of events upon injection of an attack to the system. Timestamps 

t1 to t3 show the first time when a deviation from expected (golden) trajectory is observed on 

motor velocities, motor positions, and joint positions, respectively. Timestamp t4 corresponds to 

time instances when unsafe jumps of more than one millimeter are observed on (each dimension 

x, y, z of) the end-effector. Finally, t5 and t6 represent the times that the RAVEN software detects 

an error on the calculated DAC commands and takes the system to E-STOP state. We made the 

following observations by simulating these attack scenarios: 

(i) Malicious torque commands that inject small errors to the DAC values do not have any 

impact on the robot state, unless they are activated for periods of larger than 64 

milliseconds. If injected for shorter periods (e.g., two to four milliseconds), they can cause 

abrupt jumps in the motor velocities but the impact do not propagate to the next control 

loop and do not impact motor, joint, and end-effector positions, unless larger values are 

injected for longer periods. This is due to the fact that the PID controller inside the control 

software corrects the errors in motor velocity and motor positions at each cycle of control 

loop. Therefore, to corrupt the physical state of the robot, the attacker needs to keep 

injecting malicious values to the commands over a long enough period of time.  
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(ii) The existing safety checks inside the RAVEN control software cannot detect the abrupt 

jumps resulted from malicious torque commands (injected after the safety checks are done) 

until the physical system state is corrupted to a point where the PID control cannot fix the 

errors anymore. This is because of the following: 

(a) These safety mechanisms only check the DAC commands calculated in software being 

sent to the robot by comparing it to a fixed threshold. They do not take into account the 

semantics of the control commands and their consequences in the physical system, i.e., 

impact of a DAC command on the state of the robot, motor positions and velocities, 

joint positions, and end-effector positions.  

(b) The safety checks are done at the latest computation step in software before executing 

the commands on physical system. Therefore, there is a TOCTTOU gap from the time 

the command is checked to the time it is executed on the physical system, allowing the 

attacker to target the system.    

5.3.3. Anomaly Detection and Attack Mitigation  

In order to preemptively detect the adverse impact of the attacks on the physical robot, we 

integrate the dynamic-model based analysis framework with the robot control system, to estimate 

the consequences of control commands before they are sent to the motor controllers and are 

executed on the physical robot (see Figure 5.8(b)). Our goal is to detect if a given command will 

cause an unsafe jump of more than one millimeter on the robot end-effector position within a short 

period of one to two milliseconds (based on feedback from expert surgeons). 

We design an anomaly detection mechanism that intercepts the DAC commands sent by the 

RAVEN control software and estimates the values for the next motor velocities and positions and 

joint positions using the robot dynamic model in real time. The detector raises an alert whenever 

the estimated instant velocity and acceleration on the first three motors and joints (the difference 

between the estimated values for the next step and current values) are beyond a pre-defined safety 

threshold (defined as one millimeter jump on end-effectors).  

 

Figure 5.11. Timeline of attack impact on the robot physical system. 
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The thresholds used for detecting anomalies are learned through measuring the minimum, 

maximum, and average instant velocities of each of the variables over 600 fault-free runs of the 

model with two different trajectories containing sufficient variability in the movement. To 

eliminate the sensitivity of sample statistics to outliers and possible noise in measurements, we 

chose values between the 99.8–99.9th percentiles of instant velocity as the threshold for each 

variable. In order to reduce false alarms due to model inaccuracies and natural noise in the 

trajectories, the detector fuses the alarms based on the motor acceleration, motor velocity, and joint 

velocity and raises an alert only when all three variables indicate an abnormality.  

Table 5.5 shows the performance of dynamic-model based anomaly detection mechanism 

compared to the existing detection and emergency stop (E-STOP) mechanisms in the RAVEN II 

robot in terms of detection accuracy (ACC), true positive rate (TPR), false positive rate (FPR), and 

F1-score (which is a unified measure of precision or positive predictive value and recall in binary 

classification problems). The results were achieved from 1,925 fault-injection experiments 

simulating the attack scenario A and 1,361 simulation runs of the attack scenario B.  

Figure 5.12 and Figure 5.13 show the impact of attack activation period and injected error values 

on the probability of adverse impact on the robot physical system (abrupt jumps of more than one 

millimeter on end-effector positions, labeled as Golden), the probability of attack detection by the 

dynamic-model based detection (labeled as Dyn-Sim), and the probability of detection and 

mitigation by robot safety mechanisms (labeled as RAVEN-Detect and RAVEN-Estop 

respectively). Each attack scenario with specific distance error and activation period was repeated 

for at least 20 times to achieve confidence in the probability estimates. The conditional probability 

of attacks given each injected error value v and activation period d was estimated by calculating 

marginal conditional probabilities from the measured data. 

Table 5.5. Dynamic-model based detection performance evaluation, compared to RAVEN detector. 

Attack Scenario Technique 
ACC 
(%) 

TPR 
(%) 

FPR 
(%) 

F1 
(%) 

A 
(User inputs) 

Dynamic 
Model 88.0 89.8 12.4 74.8 

RAVEN 84.6 53.3 7.7 57.8 
B 

(Torque 
commands) 

Dynamic 
Model 

92.0 99.8 11.8 89.1 

RAVEN 90.7 81.0 4.6 85.1 
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  The results for simulating attack scenarios A and B are respectively shown in Figure 5.12 and 

Figure 5.13. By injecting larger error values and increasing the activation period, the probability 

of adverse impact on the physical system increases. Our dynamic-model based anomaly detection 

has higher probability of preemptively detecting the attacks before their impact manifests in the 

physical system than the software checks in the robot that detect the impact after it has already 

happened. As shown in Table 5.5, the dynamic-model based detector could detect the simulated 

attacks scenarios with an averaged accuracy of 90% and average F1 score of almost 82%.  

 
 

(a) (b) 
Figure 5.12. Attack A: detection probability vs. (a) Injected error values and (b) Attack activation period. 

  
(a) (b) 

Figure 5.13. Attack B: detection probability vs. (a) Injected error values and (b) Attack activation period. 
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For the attack scenarios A and B, there were respectively 152 and 84 cases where the dynamic–

model detected an abrupt jump on end-effectors while the RAVEN checks did not detect them. 

There were a total of 13 true cases (in scenario A) that our detector missed but the RAVEN safety 

checks detected.  

The probability of the RAVEN safety mechanisms in detecting and mitigating the adverse 

impact is always lower than the probability of adverse impact, i.e., the RAVEN safety checks 

cannot detect all the adverse scenarios. Thus, the attacker has a chance of causing an adverse 

impact on the physical system by carefully engineering injections with values that will not be 

detected by the robot for even short periods of two to sixteen milliseconds (Figure 5.13(b)). But 

this chance is reduced when injecting larger error values for longer periods of more than 64 

milliseconds in attack scenario B (see Figure 5.13(a)). The RAVEN safety mechanisms only 

detected and mitigated the attack scenario A for the injected error values of larger than 3400 and 

activation periods of more than 16 milliseconds (see Figure 5.12).  In the future, we will perform 

more comprehensive analysis on the sensitivity of the performance to the threshold values chosen 

for anomaly detection.  

Upon detection of potential adverse impact on the physical system, the impact of attacks can be 

mitigated by either correcting the malicious control command by forcing the robot to stay in a 

previously safe state (e.g., by sending a default DAC value that keeps the robot in the same 

position) or stopping the commands from execution and put the control software into a safe state 

(E-STOP).  

To minimize the chance of exploiting TOCTTOU from the time the dynamic-model based 

analysis is performed to the time the commands are executed on motor controllers, the ideal 

location for insertion of detection and mitigation mechanisms are at lower layers of control 

structure and just before the commands are going to be executed on the physical robot. In the 

RAVEN II robot, the last computational component before the motor controllers is the 

microcontroller inside the USB interface board, which is responsible for the communication 

between control software and motor controllers. The implementation of the methods for 

calculating a numerical solution for the ODEs of the dynamic-model might incur high 

computational costs in a simple microcontroller (e.g., an 8-bit AVR microcontroller with 128KB 

flash memory in the RAVEN II [15]) inside the USB boards. One possible solution is to implement 



137 

the parallel version of these estimation techniques on a custom trusted hardware module and run 

them concurrently with the robot control system. 

 Discussion 
In this chapter, we demonstrated attacks that directly compromise the control system of a robotic 

surgical system and implemented them on the RAVEN II robot, an open-source platform for 

research in teleoperated robotic surgery. We also discovered that there are other ways to remotely 

compromise the availability of surgical robots in the middle of a procedure without the need to 

gain unauthorized access into the robot control system. Section 5.4.1 and Section 5.4.2 describe 

two such attack scenarios.   

5.4.1. ROS Middleware Attacks 

In this section we describe a targeted attack scenario where the attacker exploits the 

vulnerabilities in the Robot Operating System (ROS) running the RAVEN II control process to 

remotely intercept the data generated by the RAVEN process and determine the operational state 

of the surgical robot (see Figure 5.14). Similar to the attack scenarios demonstrated in Section 5.2, 

the extracted data is then used to trigger an attack that results in the sudden termination of the 

RAVEN process during a surgical procedure.  

This attack can be done without making any modifications or installing any malicious code on 

the RAVEN control system. We assume that the attacker knows the RAVEN control software runs 

as a process on the Robotic Operating System (ROS) and that ROS processes are registered and 

managed by a master node that binds to a TCP port (by default port 11311). The attacker also 

knows the IP address of the target machine running the RAVEN II control software (RAVEN_IP 

in the code snippet of Figure 5.14(b)). 

 ROS Vulnerabilities 
ROS is an open-source robot operating system that provides a collection of tools and libraries 

for robotic software development. These include a message passing interface for asynchronous 

communication between distributed processes (called nodes) running different robotic software, 
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synchronous request/response interactions between processes through remote procedure calls, and 

distributed parameter system to share configuration information among nodes [157], [216].  

In ROS, a process node called rosmaster is responsible for registration and coordination of all 

other nodes. The inter-process communication is done by publishing or subscribing messages 

through channels (called topics). The node communications are initiated with a sequence of XML-

RPC requests for registering nodes with the rosmaster and indicating which topics they will 

publish or subscribe to [217]. The rosmaster has a URI stored in the ROS_MASTER_URI 

environment variable, corresponding to the host:port of the XML-RPC service it is running. The 

rosmaster by default binds to port 11311 [218]. As shown in Figure 5.14, the RAVEN control 

software registers as a node called /r2_control on rosmater and publishes to /ravenstate and /rosout 

topics. The /rosout node subscribes to /rosout topic, but there are no subscribers to /ravenstate. 

Previous work has shown that some of the features provided by ROS make it vulnerable to 

remote security exploits. For example, any node can publish/subscribe to any topic. Also, 

distributed nodes can dynamically join or leave, change the parameters, create new topics, or 

terminate or replace another node on ROS [218]. The plain-text communications, the unprotected 

TCP ports and HTTP connections (open ports with no authentication), and the unencrypted data 

sharing [219] make ROS vulnerable to denial of service and man-in-the-middle attacks.   

 

1. Connect to the ROS master on RAVEN system: 
exportROS_MASTER_URI=http://RAVEN_IP:11311 
2.a. Find the name of RAVEN machine:  
rosnode machine 
2.b. Add the machine name to the  /etc/hosts 
2.c. List all the nodes on the ROS:  
rosnode list 
2.d. Find the name of the process running Raven:  
rosnode list => r2_control 
2.e. Find the topics which RAVEN publishes to: 
rosnode info r2_control 
3. Collect the logs on the RAVEN from topics:  
rostopic list 
rostopic echo -p ravenstate 
4.a. Kill the node running RAVEN control on ROS  
rosnode kill r2_control 
4.b. Inject corrupted gain parameters to  RAVEN 
rosparam list => /gains_gold_ki 
rosparam set /gains_gold_ki 0 

(a) (b) 
Figure 5.14. (a) The ROS middleware attack on RAVEN II surgical robot. (b) ROS commands for remotely 
intercepting the data generated by the RAVEN process and terminating the RAVEN node or injecting 
corrupted gain parameters to the RAVEN process.  
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 Attack Execution 
Figure 5.14(a) shows the main steps taken to attack the RAVEN control system by exploiting 

the unprotected TCP connections on ROS. Snippets of the ROS commands executed by the 

attacker to perform each step are shown in Figure 5.14(b).  

Step 1. The attacker installs ROS on a regular Linux desktop (Attacker Machine in 

Figure 5.14(a)). The attacker then launches a malicious ROS node on their local machine that 

requests to establish a remote connection to the ROS master on the RAVEN II robot control system 

which is installed on another physical machine. This step can be done by changing the 

ROS_MASTER_URI environment variable on the attacker machine to point to the IP address of 

the RAVEN machine and the default master port (11311). Once the attacker’s ROS node is 

connected to the ROS master on the RAVEN machine, the attacker’s node can run the ROS 

commands on the RAVEN II control system and intercept the execution of the RAVEN process. 

Step 2. The attacker waits until the RAVEN process is executed on the RAVEN II control 

system by continuously querying the list of running nodes on ROS (rosnode list). When the 

RAVEN node name (/r2_control) appears in the list of running processes (RAVEN has started 

execution) the attacker gathers more information from the target control system, such as the name 

of the machine, the RAVEN process name and process ID on Linux, and the inter-process 

communications of the RAVEN node (topics that it publishes and subscribes to).  

Step 3. The attacker collects the data published by the RAVEN node to the /ravenstate and 

/rosout topics during several runs of the robot and then performs an offline analysis to determine 

which fields in the data packets carry information on the operational state of the robot (similar to 

the Offline Analysis phase in the attack scenario B, shown in Figure 5.3). For example, Figure 5.15 

shows sample logs collected by intercepting the messages published by the RAVEN node to the 

rosout topic during one teleoperation run of the robot. By analyzing these messages, the attacker 

can identify when the robot is in the “Init” (“Homing sequence is initialized”), “Pedal Up” 

(“Entered runlevel 2”), or “Pedal Down” (“Entered runlevel 3”) state. 

Step 4. The attacker uses the extracted state information to trigger malicious actions when the 

robot is in the “Pedal Down” state. The attacker can exploit the distributed control features of ROS 

either to remotely terminate the RAVEN node/process (/r2_control process in Figure 5.14(a)) or 

to modify the parameters used by the RAVEN node/process (e.g., by overwriting the motor gain 

parameters on the ROS parameters server).  



140 

The sudden termination of the RAVEN node/process in the middle of a surgical procedure stops 

the robot from responding to the surgeon’s console commands. The surgical team needs to restart 

the system and re-execute the RAVEN software on the system. If the remote unprotected 

connection to the ROS master can be preserved after each restart of the robot, this attack practically 

makes the robot unavailable to the surgical team due to multiple halts of the RAVEN process.   

 Fixing ROS Vulnerabilities 
Previous work has discussed possible solutions to address the vulnerabilities in the ROS. 

In [217] a runtime verification framework for ROS, called ROSRV, is proposed to provide safety 

and security for the ROS master and application nodes. ROSRV adds a new node called RVMaster 

in ROS for intercepting all node requests to ROS master and monitoring all the messages sent 

between nodes in order to enforce desirable safety and security policies. For example, access 

control policies can be implemented in ROSRV by allowing only certain nodes to publish messages 

%time,field.header.seq,field.header.stamp,field.header.frame_id,field.level,field.name,field.msg,field.file,field.
function,field.line,field.topics0,field.topics1,field.topics2,field.topics3,field.topics4,field.topics5,field.topics6 
1439666825432555469,16,1439666825432555469,,8,/r2_control,Sat Aug 15 14:27:05 2015 
1439666826430307961,17,1439666826430307961,,2,/r2_control,[[ 'C'  : toggle console messages ]] 
1439666826430338686,18,1439666826430338686,,2,/r2_control,[[ 'T'  : specify joint torque    ]] 
1439666826430364462,19,1439666826430364462,,2,/r2_control,[[ 'M'  : set control mode        ]] 
1439666826430386548,20,1439666826430386548,,2,/r2_control,[[ '^C' : Quit                    ]] 
1439666826432068877,21,1439666826432068877,,2,/r2_control,*** Ready to teleoperate *** 
. . .  
1439666826433024289,27,1439666826433024289,,2,/r2_control,Entered homing mode 
1439666826433067777,28,1439666826433067777,,2,/r2_control,put usb board id --> 48 
39666826433081565,29,1439666826433081565,,2,/r2_control,put usb board id --> 33 
39666826433099352,30,1439666826433099352,,2,/r2_control,USB Board started ->  
. . . 
1439666826588993541,38,1439666826588993541,,2,/r2_control,Entered runlevel 1 
439666826590013865,39,1439666826590013865,,2,/r2_control,    -> sublevel 2 
439666827100040594,40,1439666827100040594,,2,/r2_control,Homing sequence initialized 
. . .  
1439666850089061637,133,1439666850089061637,,2,/r2_control,Joint 10 ready 
1439666850102074039,134,1439666850102074039,,2,/r2_control,Entered runlevel 2 
1439666850102146481,135,1439666850102146481,,2,/r2_control,definitely the right arm -- t2j 
1439666850103034732,136,1439666850103034732,,2,/r2_control,definitely the right arm -- t2j 
_descriptions,/r2_control/parameter_updates 
1439666851862040119,137,1439666851862040119,,2,/r2_control,Entered runlevel 3 
. . .  

Figure 5.15. Sample data collected by logging messages published to the rosout topic. The state of the 
surgical robot (e.g. Homing, runlevel 2 = “Pedal Up”, and runlevel 3 = “Pedal Down”) at each cycle can 
be determined by analyzing the log. 
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only to certain topics or authenticating the nodes when they are requesting to register or connect 

to the ROS master. 

5.4.2. Attacks Compromising Remote Diagnostic Mechanisms 

In this section, we describe the potential vulnerabilities in the servers used for remote service 

diagnostics of commercial surgical robots that, if exploited, can (i) make the remote service 

diagnostics unavailable to all the surgical robots or (ii) compromise the integrity and 

confidentiality of data transferred to/from the robots, causing difficulty in forensic investigation 

of safety and security incidents.  

As discussed before, the da Vinci surgical system is currently the only FDA approved robot for 

general use in minimally invasive surgery [13]. The da Vinci system has a feature called OnSite 

remote diagnostics which is designed for communication of a robot (the client) with a remote 

access server to facilitate status updates, log uploads, and remotely accessing the robot control 

system for pre- and intra-operative troubleshooting [196] (see Figure 5.16). From the publicly 

available information provided for enabling the OnSite feature on robots located in healthcare 

facilities [220], we found that the firewall on the surgical robot is configured to establish a 

SSL/TLS session based on PKI certificate authentication to communicate with the remote access 

servers (e.g., dvms-dv.davinci-onsite.com) using the HTTPS protocol. We performed an SSL 

Server Test using Qualys SSL Labs website [221] on one of the remote access servers (dvms-

dv.davinci-onsite.com). A copy of the test results is available at [222]. Next, we discuss the 

possibility of two attack scenarios based on these test results.    

 Denial of Service Attacks  
We found that the da Vinci remote diagnostic server supports secure client-initiated 

renegotiation in a SSL/TLS session (RFC-5746). This feature can be exploited to launch a Denial 

of Service (DoS) attack and threaten the availability of the server (attack A1 in Figure 5.16). 

Although the remote server requires a client certificate to initiate a secure communication with the 

robot, any client without a valid certificate can initiate multiple requests for renegotiation of a 

client certificate and cryptographic parameters (i.e., a combination of the TLS protocol version, 

PKI key length, and encryption mode during a SSL/TLS session). The remote access server can 

be overloaded when it receives a large number of renegotiation requests to perform 
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computationally-intensive cryptographic functions. This might make the server non-responsive to 

legitimate remote assistance requests from surgical robots during procedure, when an unexpected 

error or emergency stop has occurred, and lead to prolonged procedure times and patient 

complications.  

 Man-In-The-Middle Attacks 
The SSL test results further revealed that the remote diagnostics server (dvms-dv.davinci-

onsite.com) is vulnerable to the Padding Oracle On Downgraded Legacy Encryption (POODLE) 

attack [222]. If an attacker has obtained access to the client certificate, through a man-in-the-

middle (MITM) attack she can potentially force the use of the insecure cryptographic protocol SSL 

3.0, instead of secure protocols such as TLS 1.x, to potentially decrypt the data transferred between 

the robot and the remote access server (attack A2 in Figure 5.16). If the client and the server 

exchange any sensitive information such as authentication cookies, the robot logs (e.g., robot 

operational state and robotic trajectories during a procedure), or status updates, such private 

information can be revealed to the attacker. However, this attack is highly dependent on the 

protocol used for communication between the surgical robot and the remote diagnostic servers.  

 
Figure 5.16.The attack scenarios targeting the remote access server used for performing service 
diagnostics on da Vinci robots during surgical procedures. We specifically simulated DOS attacks and 
man in the middle attacks exploiting the TLS renegotiation and POODLE vulnerabilities on our security 
test bed. Images are adapted and modified from [196]. 

 



143 

 Protection of Remote Diagnostics Mechanisms 
The possible attacks on the remote access servers can be prevented by configuring the web 

server to properly implement protocol downgrades using TLS Fallback Signaling Cipher Suite 

Value (SCSV) [223]. The DDoS attack can be prevented by allowing only server-initiated TLS 

renegotiation to ask for client certificates and cryptographic parameters. Another solution is to 

restrict the maximum number of renegotiation requests in a period of time or the delay between 

two renegotiation requests allowed on the server. 

 Related Work 
This section presents a summary of the previous work on security of teleoperated surgical robots 

and other safety-critical cyber-physical and process control systems as well as the recent studies 

and reports on real attacks to hospital networks. We also discuss the related work on safe path 

planning and navigation in dynamic robot environments.  

5.5.1. Security of Teleoperated Surgical Robots 

Previous work on security of telerobotic surgical systems mainly focused on network and 

communication-based attacks.  

To show the actual risks of attacks to teleoperated surgical robots, Bonaci et al. [191] performed 

an experimental analysis of different cyber-security attacks on the communication between the 

surgeon’s console and the robot on a RAVEN II platform. They evaluated the threats posed by 

attacks that modify or manipulate the intent of the surgeon or hijack control of the robot. 

Specifically, they measured the effect of lost, delayed, or modified packets sent from the surgeon’s 

console on the performance of surgeons. Although these attacks caused jerky motions of the 

robotic arms and difficulties in performing the tasks by human operators, they did not cause unsafe 

operation of the robot control system. The robot’s safety mechanisms detected and effectively 

stopped any possibly unsafe control commands.  

Tozal et al. [187] used a novel information coding approach to design a Secure and Statistically 

Reliable UDP (SSR-UDP) protocol that ensures confidentiality and reliability of telesurgical 

communications in wireless environments. Lee et al. [188] proposed Secure ITP, a security 

enhancement to the Interoperable Telesurgury Protocol (ITP), introducing Transport Layer 
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Security (TLS) and Datagram TLS (DTLS) protocols for authenticating the master and slave 

devices as well as the surgeon and patient.  

Most of the previous studies assumed that compromising a surgeon’s control console or the 

robot control system is less likely because physical access to the system is prohibited through strict 

monitoring [190], [191]. Only Coble et al. [208] studied the possibility of compromising the robot 

software in unattended environments, such as the battlefield. They proposed the remote 

verification of system software and configuration files before execution, using remote software 

attestation.  

Several recent security analysis reports have shown existing vulnerabilities in the hospital 

networks that can be exploited to gain remote elevated access to different medical devices in a 

hospital, including surgical robots (see Section 5.5.3).  In this chapter, we described the anatomy 

of targeted attacks that potentially exploit the vulnerabilities in the hospital networks to get 

unauthorized access to the robot control system. To the best of our knowledge, this is the first 

demonstration of malicious attacks targeting the control systems of surgical robots. 

5.5.2. Attacks on Process Control Systems 

Attacks on the safety-critical cyber-physical or process control systems, such as smart power 

grid [224], [225], water plants [226], chemical plants [227], and automotive embedded 

systems [228], has been the subject of many studies. Most of the previous work focused on attack 

scenarios that directly target the physical system (e.g., smart meters in power grid 

infrastructure [224]) or the sensor measurements received from the physical system to corrupt the 

state of controller and state estimation process in the cyber-domain (false data injection 

attacks) [226], [227]. A few studies focused on control-related attacks that corrupt the control 

commands in industrial control systems [225], [226]. Lin et al. [225] demonstrated a class of 

control-related attacks on the SCADA (Supervisory Control and Data Acquisition) systems in 

power grid where the control fields in the network packets are modified in a legitimate format that 

cannot be detected by existing intrusion detection systems and can lead to catastrophic impact on 

the physical power system.  

Both [225] and [227] use the dynamic models of process control system to estimate the state of 

physical system and consequence of control commands in order to detect safety-critical attacks. 

However, the cyber-physical systems studied in [225] and [227] are not constrained by the tight 
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real-time requirements such as those imposed on robotic surgical systems. For example, in the 

smart power grid the control commands are delivered to destination in several hundred 

milliseconds [225] or in the chemical reactor plants, the time for a human response to an attack 

before reaching to a unsafe state could be a couple of hours [227]. Therefore, the attack detection 

mechanisms can run in parallel with the system and detect malicious commands or measurements 

after their first appearance. The attack scenarios demonstrated in this chapter can impact the 

operation of surgical robot and safety of patient in just a couple of milliseconds, making it difficult 

for both automated mechanisms and human operators to respond in a timely manner. So the 

detection and response mechanisms in real-time cyber-physical systems should be optimized and 

deployed in such a way that can estimate and mitigate the impact of malicious commands before 

they even execute in the physical layer.  

Further, in all previous studies the catastrophic impact of attacks and performance of detection 

mechanisms were evaluated in simulation or using theoretical models. In this work, we evaluated 

the accuracy of our dynamic model by comparing it to the actual robot using both attack-free and 

simulated attack scenarios. Another unique aspect of our work is that we demonstrate the actual 

implementation of malware and the phases for deploying the attacks on a real system. Most of the 

previous work only focused on theoretical representation of attack scenarios and did not discuss 

the practical implications and difficulties in implementing those attacks in the real system.  

5.5.3. Attacks on the Hospital Networks 

In the attack scenarios presented in Section 5.2, we assumed that attackers exploit one of the 

existing vulnerabilities in the hospital networks to get access to the telerobotic surgical systems, 

without being detected by regular security monitoring mechanisms, such as intrusion detection 

systems or remote software attestation techniques. Table 5.2 presents a summary of the recent 

reports on real attacks to hospital networks.  

For example, TrapX Security Inc. recently discovered three targeted attacks on a hospital’s 

network that passed through the protection of antivirus software, intrusion detection systems, and 

firewalls. In one case, the vulnerabilities in a blood gas analyzer was exploited to establish a 

backdoor to the whole hospital network, allowing the attackers to install a malware on the system 

and steal patient data records from the hospital. In another case, the attackers gained unauthorized 



146 

access to a clinic workstation, by stealing credentials of an employee visiting a malicious website 

and installing a malware in that machine [185].  

In another recent study on a wide range of medical devices in several hospitals, researchers 

from Essentia Health discovered that the internal firewalls used for protecting surgical robots from 

external connections (see Figure 5.1) might crash upon running a vulnerability scanner against 

them and enable unauthorized access to the robot [180].  

In addition, there have been several FDA recalls and adverse event reports to the FDA MAUDE 

database on non-targeted attacks on hospital networks in which malware or viruses infected 

medical devices such as imaging systems, causing interruptions in patient therapy [229], [230]. 

5.5.4. Safety and Reliability of Robotic Systems 

In the context of safety and reliability of robotic systems, the works mostly related to ours are 

those on (i) collision avoidance using motion-planning algorithms and external sensors (e.g., 

sensitive skins or on-board vision) or (ii) fast collision detection and reaction mechanisms using 

adaptive control.  

The previous works [231] – [233] used the comparison between nominal estimated robot states 

calculated based on dynamic models against the actual sensor measurements (e.g., joint encoder 

readings or torque commands) from the robot to rapidly detect collisions. In their case the 

estimated states were used as reference points (expected values in absence of collisions) for 

detecting deviations that have already occurred (detection after collision happened). But in our 

approach, we use the previously learned bounds on the nominal robot trajectories as the reference 

points to compare with the estimated states to preemptively detect the upcoming deviations. Our 

anomaly detection technique is similar to [234] where a model of normal execution of the robot is 

learned based on redundant information from multiple sources (e.g., as wheel encoder readings 

and localization algorithm output) to detect anomalies in the behavior of robot at runtime. 

Robust and adaptive algorithms are proposed to control the robot in case of actuator faults [235] 

or react to collisions by safely driving the robot away from the human and collision 

area [231], [236] or regulating the force at the contact point [232]. 

The related works in this domain mainly focus on industrial, autonomous, or mobile robots and 

their safe interaction with the humans. To the best of our knowledge, no previous work addressed 
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the challenges in design of real-time detection and recovery strategies for faults, abrupt jumps, or 

collisions in non-autonomous teleoperated robotic manipulators, such as surgical robots.  

 Conclusions 
In this chapter, we described the anatomy of a family of targeted attacks against the control 

systems of teleported surgical robots. These attacks are deployed by installing a self-triggered 

malware that measures the leaked information on the operational state of the robot to infer a critical 

time during surgery to inject malicious control commands to the motor controllers or to halt the 

robot control process. An important characteristic of these attack scenarios which may make them 

more favorable to malicious parties compared to other random attacks that they are stealthy in 

nature and hard to distinguish from system failures/misbehavior caused by unexpected physical 

malfunctions or unintentional human mistakes. This makes the forensic investigation of incidents 

more complicated. The detection and mitigation of such security exploits also becomes more 

difficult, requiring the understanding the semantics of robot control and communications as well 

as concurrent monitoring of both cyber and physical system components. We demonstrated these 

attacks on the RAVEN II surgical robot and experimentally evaluated the impact of the attacks on 

the operation of the robot control system and safety of patients. 

We presented a model-based analysis framework that can estimate the consequences of control 

commands through real-time computation of the system’s dynamics and detect the unsafe 

commands before they are executed in the physical system. Our experiments demonstrate that: (a) 

injecting malicious commands to the control software can lead to unforeseen and abrupt jumps of 

a few millimeters in the robot manipulators within only a few milliseconds or unavailability of the 

system due to unwanted transition to a halt state, and (b) our dynamic-model based analysis 

framework can detect malicious commands and potentially mitigate their impact before they 

manifest in the physical system, with an average accuracy of 92%. 

Further, the ideal location for insertion of the proposed safety mechanisms is at the lower layers 

of control structure, at the latest computational step before executing the commands on the physical 

system. This scheme reduces the possibility of TOCTTOU exploits at software layer and mitigates 

any exploits that skipped or survived previous layers of safety checks, and prevents any possible 

adverse consequences in the physical system. 
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We also demonstrated other possible ways that the availability of surgical robots can be 

compromised on a wider scale, specifically discussing vulnerabilities in the Robotic Operating 

System and the servers used for remote diagnostic services during surgery. 

This study shows the importance of designing detection and mitigation mechanisms that 

combine understanding the semantics of both software and physical components to detect and 

prevent the attacks and distinguish them from accidental failures in the safety-critical cyber-

physical systems.  
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CONCLUSIONS AND FUTURE WORK 

 

 Conclusions 
This dissertation described a data-driven approach to assessment and design of resilient medical 

cyber-physical systems. The presented approach is based on the analysis of real data on safety 

incidents involving medical devices as a basis for developing tools for (i) gaining deeper 

understanding of the causes of incidents and providing statistically confident measures of their 

impacts, (ii) validating the resiliency of safety mechanisms in the presence of accidental failures 

and malicious attacks, and (iii) detecting safety hazards in real-time and mitigating adverse impacts 

on the physical system and patients. 

To address the challenges in analysis of medical device incidents, we presented MedSafe, a 

toolset for automated analysis of structured and unstructured data on recalls and adverse events 

from the publicly available FDA databases. By combining techniques from natural language 

processing, machine learning, and accident causality modeling, MedSafe enables characterization 

of the safety issues associated with from computer failures in medical devices, in terms of fault 

classes, failure modes, and recovery actions taken by the manufacturers, and measures their cost 

in terms of severity of hazards for patients, numbers of devices affected on the market, and number 

of device repairs or removals. MedSafe adverse event analysis is driven by a novel ontology model 

based on the hierarchical control structures used in system-theoretic accident causality analysis. 

The proposed ontology model formalizes the semantic interpretation of incident descriptions and 

extraction of important safety-related features (e.g., faulty device conditions, unsafe operator 

actions, and interactions among operators and the system) from the adverse event narratives. 

We evaluated MedSafe by performing large-scale studies on more than 18K FDA recall records 

related to a variety of medical devices and over 10K adverse events reported on robotic systems 

used in minimally invasive surgery. These studies were the first large-scale automated analyses 

of the FDA recalls and adverse events data, and MedSafe achieved an average accuracy of over 

90%. Our analysis revealed that although software remains the major cause of failures in computer-



150 

based medical devices, hardware, battery, and I/O failures have much larger impact in terms of 

number of recalled devices and cost of device removal/repairs. We identified several examples of 

safety-critical medical devices that either were designed without proper identification and handling 

of safety hazards or had safety mechanisms that were not validated adequately. By analysis of 

adverse events in robotic surgery, we found that if an adverse event happened during a procedure, 

there was about a 24% chance of negative impact on patients or interruption in progress of the 

surgery (to troubleshoot problems by manual system resets, convert to non-robotic techniques, or 

reschedule the procedure). Our analysis showed the need for developing improved safety 

mechanisms for preemptive detection and mitigation of hazards and safety-training programs that 

prepare surgeons for handling safety-critical scenarios. 

To assess system resiliency in the presence of potential safety hazards and security attacks, we 

developed a safety hazard injection framework that can validate the system’s safety mechanisms 

by emulating potential safety hazards caused by accidental failures or malicious threats targeted at 

different layers of the system control structure. Using this framework, we identified several 

vulnerabilities in the safety mechanisms of the RAVEN II surgical robot. We also applied this 

framework to the simulation of realistic hazard scenarios (identified through causal analysis of 

FDA adverse events) in a virtual environment, which can be used for simulation-based safety 

training of robotic surgeons. 

We further studied the resiliency of surgical robots to safety hazards caused by malicious 

attacks. We introduced a family of cyber-physical attacks that target the control system of 

teleoperated surgical robots and can cause the system to move to an unwanted state, damage the 

physical system, or harm the patient in the middle of surgery. Those attacks were demonstrated by 

development of a self-triggered malware on the control system of the RAVEN II surgical robot. 

Our implementation of attacks exploited the vulnerabilities in the robot control software and 

operating software to inject malicious control commands at a critical time during robot operation. 

We asserted that preemptive detection of those attacks requires continuous monitoring of both 

cyber and physical components and prediction of the consequences of commands executed at 

different layers of the system control structure.  

We presented a dynamic-model based analysis framework that can preemptively detect the 

adverse consequences of malicious control commands (e.g., abrupt jumps of robotic arms) through 

real-time computation of the system’s dynamics and estimation of the next system states. Our 
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experiments on the RAVEN II robot showed that the presented framework can detect and 

potentially stop the malicious commands before they impose adverse impact on the physical robot 

and patient, with an average accuracy of 92%. 

 Future Work 
There remain many opportunities for future work based on the research described in this 

dissertation. The following are a few directions that can be explored in the future: 

• Systems-theoretic data collection: We presented MedSafe for automated analysis of 

publicly available data on medical device adverse events from the FDA MAUDE database. 

However, analysis of the adverse event data is still a challenging task, because of 

underreporting and incomplete, inaccurate, and inconsistent information manually entered 

by the manufacturers and volunteer reporters. The system-theoretic accident causality 

modeling techniques used in this dissertation can be further applied to collection of accurate 

information on medical device adverse events. For example, the STAMP causality model 

can be used to derive the design and strategic placement of data recording (logging) 

mechanisms that automatically collect and process important safety information (e.g., 

human operator actions, system component states, patient status, and the interactions among 

them as modeled by each control loop) from different layers of the system control structure. 

The data (or event) recorders (“black boxes”) have been widely deployed in other safety-

critical systems, such as automobiles and airplanes, and have greatly facilitated the 

investigation of accidents [237], [238]. Real-time collection and fusion of such data can 

further provide opportunities for design of monitors that make quantitative measurements 

of the system’s safety and mitigate impeding hazards in a timely manner.   
• Robust safety engines for timely recovery from safety hazards: Our analysis of the FDA 

data showed that although the medical devices are often designed with safety mechanisms 

that detect system failures and put the system into a safe state, their diagnostic mechanisms 

are not comprehensive enough to correctly identify the causes of safety hazards and perform 

timely and effective recovery actions. The main reasons are the complex nature of incidents, 

the difficulty of accurately modeling the causality relationships, and uncertainties in 

operator actions, effectiveness of safety mechanisms, and patient health status. Future 

research can focus on design of safety monitoring engines that combine real-time 
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measurements of the operator actions, physical system state, and patient status with 

knowledge of the dependencies between the causal factors that lead to safety hazards; the 

goal would be to decide on the most effective action for hazard mitigation based on the 

predicted risks. One possibility is to use time-varying graphical probabilistic models (such 

as Dynamic Bayesian Networks (DBNs) [239]) to construct an inference engine that can 

estimate the likelihood of impending safety hazards by taking into account the uncertainties 

of operator actions, robotic software and hardware state (in the presence of faults), and 

patient status. Previous work has applied time-varying graphical probabilistic models to 

reliability modeling [240], safety decision-making [241], real-time detection and 

prediction [242], [243], and preemptive detection of security attacks [244], [245]. 

Appendix C presents our previous work on design of robust patient monitoring devices by 

using a non-probabilistic approach that combines real-time analysis and fusion of biosignals 

collected from the patient with online monitoring of activity signals from device functional 

units. Our proposed solution enables detection of early signs of health deterioration as well 

as computational failures and dynamic recovery from failures at low performance and 

energy overheads [246] – [249]. 

• Application to other safety-critical cyber-physical systems: The safety and security 

assessment methods presented in this dissertation can potentially be applied to a broader 

class of embedded and cyber-physical systems that involve humans in on-line decision-

making and control, including the electric power grid and transportation systems. We 

discussed several challenges in detection and mitigation of malicious attacks on control 

systems of surgical robots that can be generalized to other safety-critical cyber-physical 

systems [250]. Example challenges that provide opportunities for further research include:  

(i) Existence of the intrinsic TOCTTOU gap between the cyber and physical layers that 

can be exploited to compromise the control commands and feedback.  

(ii) Lack of mechanisms for simultaneous monitoring of both cyber and physical system 

components and states.  

(iii) Real-time constraints in design of control systems that impose restrictions on designing 

comprehensive monitoring and diagnostic mechanisms. 

(iv) Difficulty of diagnosing the causes of safety hazards and distinguishing accidental 

failures from (human-induced) malicious attacks.  
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APPENDIX A  
UNDERREPORTING IN DATA ANALYSIS 

 

The underreporting in data collection and analysis is a fairly common problem in social 

sciences, public health, criminology, and microeconomics. It occurs when the counting of some 

event of interest is for some reason incomplete or there are errors in recording the outcomes. 

Examples are unemployment data, infectious or chronic disease data (e.g., HIV or diabetes), 

crimes with an aspect of shame (e.g., sexuality and domestic violence), error counts in a production 

processes or software engineering, and traffic accidents with minor damage [251]. An estimated 

prevalence of events based on the incomplete counts is likely to be smaller than the true proportion 

of events in the population. Several inference techniques based on binomial, beta-binomial, and 

regression models have been proposed for estimating the actual count values [252]. However, in 

all those techniques the reporting probability (underreporting rate) is assumed to be a constant 

parameter over time that is estimated based on the sample counts.  

A very similar problem exists in preliminary or pilot clinical investigations, epidemiological 

surveys, and longitude studies where the objective is to estimate any possible clinical effect of a 

treatment or prevalence of a particular disease in a population of patients, but the prevalence of 

events can only be estimated by selecting a sample of patients from the population [253].  

In all these situations, the prevalence of the events are estimated based on a random sample of 

events from the population, under the assumption that the sample set contains the same 

characteristics and distributions of the actual population, including those of the underreported and 

missing cases.  

Furthermore, it is often required to perform a sample-size calculation based on confidence 

intervals in order to provide a precise estimate with a large margin of certainty and to make sure 

that the estimated proportion is close to the actual proportion with a high probability [253]. 

Confidence intervals for the proportions estimated based on samples from large populations and 

finite populations can be calculated by using the normal approximation to the binomial distribution 

as follows: 

For large populations: 
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where N is the size of sample, 𝑝𝑝 = 𝑟𝑟
𝑁𝑁

 is the estimate of the proportion of events of interests in the 

sample and 𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑒𝑒  is the size of population in case of finite populations [253].  

In this study, we estimated the prevalence of adverse events by making sure that we have a 

significantly large enough number of samples to provide confident estimates. Our estimations are 

obtained under the assumption that the characteristics and distributions of the observed events are 

not significantly different from those in the actual population and would not significantly change 

after including the underreported cases. We are currently investigating the extension of the 

proposed inference techniques in [250], [252] to estimate the actual number of adverse events by 

considering variable reporting probabilities over time. 
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APPENDIX B  
EXAMPLE ADVERSE EVENT REPORTS 

 
MAUDE Report 2567858 
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/detail.cfm?mdrfoi__id=2567858 

Event Date: 04/09/2012 Event Type: Death Patient Outcome: Death 

Event Description: It was reported that approximately 45 minutes into a da vinci si procedure when the assistant at 
the patient side cart (psc) performed a tool change to switch the instruments in the patient side manipulator (psm) 
arms, the patient's aorta was punctured. The surgeon made the decision to convert to traditional open surgical 
techniques to complete the planned surgical procedure. The patient was reported to be in stable condition right 
after the open surgical procedure, however, the patient expired the following day. The site has been contacted for 
additional information, however, no additional information has been forthcoming. 
Manufacturer Narrative: The isi clinical sales representative followed up with the assistant rn and the rn indicated 
that the patient side assistant had not received training by the site on how to perform a guided tool change. Based 
on the information provided, the puncturing of the patient aorta is the result of an incorrect instrument change. 
The surgeon had requested that instruments located on the patient side manipulators (psm) arms be swapped, such 
that the instrument on psm arm 1 would be switched with the instrument located on psm arm 2. It is not clear 
whether the assistant nurse used a guided tool change to safely change instruments or whether the nurse used the 
arm clutch to insert the instrument manually. It is unclear whether any malfunction of the system occurred and the 
exact mechanism which resulted in puncturing of the aorta. The site has been contacted for additional information 
and once this information has been received, a follow up report will be sent to the fda. The da vinci si instructions 
for use (ifu) specifically states: warning: the instrument may not be immediately visible when being moved from 
the cannula into the patient. Use appropriate caution when manually inserting instruments into the patient. 

 

 

MAUDE Report 1891889 
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/detail.cfm?mdrfoi__id=1891889  

Event Date: 08/26/2010 Event Type: Injury Patient Outcome: Other 

Event Description: It was reported that prior to starting a da vinci si hysterectomy procedure, the site received a 
vision system error. The isi representative on site began to troubleshoot and found the left eye on the surgeon side 
console was not working. The surgeon and or staff were notified of the system status; however, the surgeon decided 
to perform the case with one eye working in 2d vision. During the procedure the patient's ureteral was injured and 
a urologist was called in to perform the repair and place a stent. At this time the case was converted to traditional 
open surgical techniques to repair the patient's ureteral and complete the planned procedure. The patient was 
required to stay in the hospital an additional 24-48 hours due to the open incision as well as the stent removal. On 
(b)(4) 2010, intuitive surgical received maude event report (b)(4) for this event. 
Manufacturer Narrative: The investigation conducted by field service engineering found the camera cable had a 
bad left eye channel. The camera cable connects the camera to the system's vision cart, which then transmits the 
image to the surgeon side console. The system was repaired by replacing the defective camera cable. As of 
november 4, 2010, there have been no reported recurrences of the issue at this hospital. 
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MAUDE Report 1760256 
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/detail.cfm?mdrfoi__id=1760256  

Report Date: 06/17/2010 Event Type: Injury Patient Outcome: Disability 

Event Description: It was reported that during a da vinci s prostatectomy procedure performed on (b)(6) 2008, the 
surgeon experienced interference in the left eye image viewed from the surgeon's console. The surgeon switched 
the image from 3-dimensional (3-d) to 2-dimensional (2-d) to proceed with the procedure. The planned surgical 
procedure was successfully completed and no patient harm, adverse outcome or injury was reported. The 
customer-reported-event does not in itself constitute a reportable event, however, on june 17, 2010, isi received a 
legal summons and complaint filed by the patient, alleging that due to the amount of time added by completing the 
surgery in 2-d (the surgery lasted over 8 hours) the patient sustained a severe and permanent right leg injury, 
specifically right calf compartment syndrome. The complaint further alleges that the patient has undergone 
numerous and extensive medical procedures, including surgery and therapy. 
Manufacturer Narrative: The investigation conducted by the field service engineer concluded that the vision issue 
experienced by the customer was associated with a faulty camera cable. The camera cable connects the camera to 
the system's vision cart, which then transmits the image to the surgeon's console. The system was repaired by 
replacing the affected camera cable. The camera cable was returned to the original equipment manufacturer (oem) 
for evaluation. The oem observed that the left channel of the camera cable had a loose connection, thus causing 
the vision issue experienced by the customer. The da vinci s surgical system user's manual explicitly states that, 
environmental or equipment failures may cause the da vinci s system to become unavailable. The surgical team 
should always have backup equipment and instrumentation available, and be prepared to convert to alternative 
surgical techniques. 

 

 

MAUDE Report 2476271 
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/detail.cfm?mdrfoi__id=2476271  

Report Date: 02/02/2012 Event Type: Injury Patient Outcome: Required Intervention 

Event Description: It was reported that during a da vinci hysterectomy procedure, after the bipolar cord was 
connected to the electrosurgical unit, energy was released from the bipolar instrument. As a result, an injury to the 
patient's bowel occurred. The bowel damage was secured by suture and the planned surgical procedure was 
completed. No additional harm was reported. 
Manufacturer Narrative: The hospital has been contacted multiple times for further details and information 
concerning this incident. To date, no response has been received. As a result, the root cause of the reported event 
cannot be determined. A follow-up medwatch report will be submitted if additional information is received. On 
(b)(6) 2012, the hospital provided intuitive surgical a copy of medwatch uf/importer report (b)(4), which contained 
the following information: clinical engineering analysis: when connecting the bipolar cord to the esu, apparently 
the nurse inadvertently plugged the cord into the monopolar jack instead of the bipolar jack. Since the tips of the 
bipolar forceps were closed, this triggered the monopolar cut mode of the esu and it began delivering energy. Staff 
noticed the esu tone and smoke visible on the video display and immediately shut off the power to the esu. The 
monopolar jack on the esu has three holes. Connecting the two outer holes will activate the cut mode, as this is 
how the normal pencil switch works. The disposable bipolar cord has individual banana plugs on the machine end, 
which makes it possible to plug into the wrong jack. If the machine end had a single molded connector, the spacing 
of bipolar pins would prevent plugging into a monopolar jack. Per the additional information provided above, 
intuitive surgical concluded that the issue experienced by the hospital was due to improper connection of the 
bipolar instrument to the electrosurgical unit (esu). The instruments and accessories user manual specifically states: 
caution: please refer to the individual esu manufacturer's operator's manuals for operating instructions. Set the esu 
to bipolar output. Set the power as low as possible to achieve adequate hemostatis. Warning: do not use bipolar 
instruments with a monopolar source output as this may cause damage to the instrument and harm to the patient 
or medical personnel. 
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MAUDE Report 2494890 
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/detail.cfm?mdrfoi__id=2494890  

Report Date: 02/16/2012 Event Type: Injury Patient Outcome: Other 

Event Description: It was reported that during a da vinci s coronary artery bypass graft (cabg) procedure, arcing 
from the micro bipolar forceps instrument was observed when the surgeon was not applying cautery energy. The 
site contacted isi technical support engineering (tse) for troubleshooting assistance, however, the site declined 
support, as the surgeon did not have time to trouble shoot the issue with the tse. The planned surgical procedure 
was completed and no patient harm adverse outcome or injury was reported. 
Manufacturer Narrative: On (b)(6) 2012, intuitive surgical received uf/importer report (b)(4) from the fda. The 
event details are provided below: event description: patient for a cabg with a da vinci robot. Surgeon attempted to 
use the da vinci bipolar forceps, but they did not work. Circulator checked the electrosurgical unit (esu and noted 
that ground pad (return electrode for esu was not plugged in. Ground pad connected. Surgeon stated there was no 
noise and the foot pedal was not depressed, but as soon as the surgeon touched the diaphragm with the bipolar 
forceps, the machine buzzed and the diaphragm had a small burn. Circulator checked the esu and noted that the 
forceps cable was plugged into two of the three monopolar 2 sockets. Bipolar was plugged into bipolar sockets, 
machine functioned normally throughout the rest of the case. Patient had two (2) ground pads on, unsure which 
was the actual lot number involved in event. Based on the additional information provided in the site's u/f report 
(b)(4) indicating that the patient's diaphram was burned, on (b)(6) 2012, isi contacted risk manager, (b)(6) to advise 
that during isi's initial investigation into the reported event, it was reported by the site's da vinci coordinator, (b)(6) 
initial reporter) that no patient harm, adverse outcome or injury occurred. (b)(6) indicated that contrary to the 
initial information provided, a burn to the patient's diaphram occurred, however, no repair of the affected area was 
required, the planned surgical procedure was completed, and there was no report that the patient experienced any 
post-operative complications. She does not know if the patient has had to return to the hospital due to any post-
operative complications related to the reported event. As indicated in isi's initial medwatch report submitted to the 
fda on (b)(4) 2012, isi's investigation into the reported event found that the issue experienced by the site was due 
to improper connection of the micro bipolar forceps instrument to the electrical surgical unit (esu). The instruments 
and accessories user manual specifically states: general precautions and warnings o please refer to the individual 
esu manufacturer's operator's manual for operating instructions. Set the esu to bipolar output. Set the power as 
low a possible to achieve adequate hemostasis - do not use bipolar instruments with a monopolar source output as 
this may cause damage to the instrument and harm to the patient or medical personnel system functional testing 
performed by the fse found that the system functioned within specification.  
The investigation conducted by field service engineering (fse) found that the issue experienced by the site was due 
to improper connection of the micro bipolar forceps instrument to the electrical surgical unit (esu). The hospital's 
biomedical department indicated to the fse that during the surgical procedure, the micro bipolar forceps instrument 
was found to be incorrectly plugged into the monopolar connection output on the electrical surgical unit (esu). The 
site immediately resolved the issue by connecting the instrument to the bipolar connection site output on the esu 
as indicated in our ifu. The instruments and accessories user manual specifically states: general precautions and 
warnings o please refer to the individual esu manufacturer's operator's manual for operating instructions. Set the 
esu to bipolar output. Set the power as low a possible to achieve adequate hemostatsis o do not use bipolar 
instruments with a monpolar source output as this may cause damage to the instrument and harm to the patient 
or medical personnel system functional testing performed by the fse found that the system functioned within 
specification. On (b)(4) 2012, isi followed up with the initial reporter at university of medical center and he 
confirmed that no patient harm, adverse outcome or injury occurred. The patient tolerated the planned surgical 
procedure well and has not returned to the hospital due to any post operative complications. As of (b)(4) 2012, 
there have been no reported recurrences of the issue at this hospital. 
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MAUDE Report 3024317 
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/detail.cfm?mdrfoi__id=3024317  

Report Date: 02/11/2013 Event Type: Injury Patient Outcome: Other 

Event Description: It was reported that during a da vinci si prostatectomy procedure, when the surgeon activated 
bipolar cautery energy from the footpedal on the surgeon side cart, cautery energy from the monopolar curved 
scissors (mcs) instrument was activated causing a burn to the patient's bowel. 
Manufacturer Narrative: On (b)(4) 2013 an inspection of the site's da vinci si system conducted by an isi field service 
engineer (fse) was unable to replicate the cautery issue experienced by the site. Functional testing performed on 
the site's system by the fse found that the site's da vinci si surgical system functioned within specification. On (b)(4) 
2013 isi contacted the isi clinical sales representative (csr) who reported this event. The csr indicated that she met 
with the operating room director and operating room scrub technician at the site on (b)(4) 2013 and the operating 
room scrub technician indicated to her that automatic activation of cautery energy was due to the surgical staff had 
incorrectly connected the electrical surgical unit (esu) cables into the improper receptacles on the esu. The scrub 
technician indicated that the esu connections were corrected, and the issue was resolved. The planned surgical 
procedure was completed. A general surgeon at the hospital was consulted to access the damage to the patient's 
bowel burn. The general surgeon's assesment of the burn to the patient's bowel determined that no repair of the 
affected area was required. On (b)(4) 2013, isi contacted the surgeon who performed the surgical procedure. The 
surgeon indicated that while he was retracting the patient's bowel using the maryland bipolar forceps instrument, 
he heard the alarm from the esu and immediately stopped using the maryland bipolar forceps instrument. The 
surgeon indicated that he had not touched the footpedal and that the instrument activated when he had not 
pressed the footpedal. The surgeon indicated that the patient sustained a small burn injury to the sigmoid colon 
and that he attempted to consult with a general surgeon concerning the patient's injury; however, there was no 
general surgeon available at that time. The surgeon indicated that he assessed the damage to the patient's bowel 
and he determined that the damage did not require any repair. The surgeon indicated that the patient remained in 
the hospital an additional day for monitoring and that the patient was discharged from the hospital. The surgeon 
indicated that the patient is recovering well and has not returned to the hospital due to experiencing any post-
surgical complications as a result of the reported event. Intuitive surgical's instruments and accessories user manual 
precautions and warnings indicate: caution: please refer to the individual esu manufacturer's user manual for 
operating instructions. Warning: do not use monopolar instruments with a bipolar source output as this may cause 
damage to the instrument and harm to the patient or medical personnel. This report does not admit that the report 
or information submitted under this report constitutes an admission that the device, intuitive surgical or intuitive 
surgical employees, caused or contributed to the reportable event. 
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MAUDE Report 2632716 
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/detail.cfm?mdrfoi__id=2632716  

Event Date: 04/19/2012 Event Type: Injury Patient Outcome: N/A 

Event Description:"pt in operating room for robotic laparoscopic hysterectomy; surgeon documented grossly 
enlarged uterus with multiple fibroids. As surgeon was bivalving the uterus, he saw a flash of blood coming from 
the left side of the pt and immediately recognized vascular injury. The robot was immediately undocked and 
procedure was converted to open procedure. The vascular surgeon responded immediately to repair the pt's left 
external iliac artery, which he described as "charred" due to the cautery injury. Operating room staff reported small 
tear in the plastic that covered the metal end of the monopolar scissor. The pt was stabilized after surgical repair 
and administration of blood products and transferred to the intensive care unit post-operatively. She remains stable 
and was transferred to the surgical unit the following day. The pt was discharged home (b)(6) 2012". 
Manufacturer Narrative: The mcs instrument was returned and evaluated. Per the customer reported complaint 
(with the following clarification) " the defect was a tube extension dislodged from the main tube". The entire tube 
extension wall is circumferentially broken at the base of the axial keys. As a result, the tube extension can be rotated 
360 degrees. The surface of the reinforcement tube extension exhibited burnt molded material, indicating 
unintended arcing may have occurred. Engineering concluded that the dislodged tube at the distal end is likely due 
to overloading at the distal end which led to a path for unintended arching. The mcs tip cover accessory was not 
returned. On (b)(4) 2012, isi contacted risk mgr, (b)(6) at (b)(6) and she indicated that the pt had a large uterus 
which required that the surgeon cut the pt's uterus in half to allow for removal. She indicated that the surgeon did 
not observe arcing from the instrument however; there was an excessive amount of smoke in the surgical area 
when the injury to the pt occurred. Since she stated that a vascular surgeon was immediately called to repair the 
affected vessel and during repair of the vessel, the vascular surgeon noted that it exhibited charring, thus it was 
determined that an arcing event had occurred. Per (b)(6), the surgeon did not observe that the mcs instrument 
broke during the surgical procedure, however, examination of the tip cover accessory by the surgical staff found 
that it had a hole; however, she does not know the status of the tip cover accessory. (b)(6) indicated that the pt is 
recovering well and has not returned to the hospital due to experiencing any post-operative complications. The 
instruments and accessories user manual specifically states: general precautions and warnings: handle instruments 
with care. Avoid mechanical shock or stress that can cause damage to the instruments. Do not use an instrument 
to clean debris from another instrument intraoperatively. This may result in damage to the instruments or other 
unintended consequences, such as disconnection of the instrument tip. This mdr is being submitted for 
retrospective activity performed relating to field action number 2955842-051613-005 to investigate micro-cracks 
on the monopolar curved scissors instrument. These types of micro-cracks will not lead to mechanical failure of the 
instrument; however, there is a potential for insulation failure after reprocessing, resulting in a pathway for 
electrosurgical energy to leak to tissue and potentially cause unintended injuries. The location of theses micro-
cracks is confined to 2 cm of the distal end of the instrument shaft. This instrument was inspected as part of this 
retrospective activity and found to contain cracks on the instrument main tube. 
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MAUDE Report 3473388 
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/detail.cfm?mdrfoi__id=3473388  

Report Date: 10/18/2013 Event Type: Injury Patient Outcome: Required Intervention 

Event Description: On (b)(6) 2013, the user facility contacted an intuitive surgical, inc. (isi) clinical sales 
representative (csr) during a da vinci myomectomy procedure and requested her to come in because multiple 
instruments kept breaking. When the csr arrived, she noted that the port placement was incorrect for the type of 
surgical procedure and the vision was obscured, not allowing the instrument tips to be viewed. The csr stated that 
the surgeon was resistant to her recommendations but finally agreed to move the camera port for a better view of 
the instruments. According to the csr, the surgeon repeatedly over rotated the master tool manipulator (mtm) and 
kept losing view of the instrument's tips. The master tool manipulator refers to the master controllers which provide 
the means for the surgeon to control the instruments and endoscope inside the patient from the surgeon side 
console. The instruments were being pushed against the myoma with enough force that it was causing the 
instruments to break. The csr stated she witnessed the instrument cables breaking on a maryland bipolar 
instrument. The csr observed that the view of the monopolar curved scissors (mcs) instrument tips was lost and the 
surgeon was engaging the mcs instrument as if he was cutting tissue and the patient sustained a possible artery nick 
in the right pelvic side wall. The da vinci procedure was then converted to an open surgical procedure. The csr was 
unable to obtain information regarding the broken instruments that were used prior to her arrival. The following 
day, an isi field service engineer (fse) went onsite and did not find any issues with the da vinci system and verified 
that the da vinci system was ready for use. On (b)(6) 2013, the user facility reported damage to 4 different 
instruments that were used during this reported event. On (b)(6) 2013, isi spoke with the csr. The csr stated that 
the patient's right external iliac vein was transected. She was unable to provide additional information regarding 
the injury and details regarding the reason why the surgeon converted the procedure to an open surgical procedure. 
She also stated that the surgeon had not performed any da vinci surgeries between (b)(6) 2012 and (b)(6) 2013. The 
csr reported that she had offered the surgeon supplemental training sessions prior to the procedure but they were 
not undertaken. On (b)(6) 2013, an isi clinical consultant spoke with the bed-side assistant surgeon to the da vinci 
surgeon performing the case. He confirmed that the patient's right iliac vein was lacerated and the procedure was 
converted to an open surgical procedure to repair the injury. He confirmed that the da vinci surgeon had difficulty 
operating with the da vinci system. He recalled there was over rotation of the master tool manipulator (mtm) and 
some degree of frustration in keeping all instrumentation in view. It was then that injury occurred, although his 
attention at the exact moment of the damage was on a different part of the screen. He did not think that the injury 
happened out of view of the camera. 
Manufacturer Narrative: On (b)(6) 2013, the user facility reported damage to 4 different instruments that were 
used during this reported event. Review of the system log confirmed that the reported instruments were 4 of the 5 
instruments that were used during the reported da vinci procedure. The 4 instruments involved with the reported 
event have been returned to isi and evaluated. Failure analysis investigations noted the following findings: 
instrument 1: monopolar curved scissors (mcs) (part 420179, lot m14130619-891): findings: tube extension was 
found broken and was missing a piece at the distal end. Instrument 2: monopolar curved scissors (part 420179, lot 
m14130619-047): findings: tube extension was found broken and was missing a piece at the distal end. Instrument 
3: permanent cautery spatula (part 420184-06 , lot m10120523-783): findings: broken ceramic sleeve, heavy 
biodebris and black burnt or char marks residing around the spatula, and an uneven piece of the ceramic sleeve was 
missing, exposing the shaft of the spatula. There was also a derailed yaw cable at the instrument's wrist and both 
pitch cables were broken. Please reference mdr with patient identifier (b)(6). Instrument 4: maryland bipolar 
forceps (part 420172-07 , lot m10130819): findings: broken pitch cable at the proximal clevis hub. Please reference 
mdr with patient identifier 700108065. Investigation noted that the damage found on the 2 mcs instruments and 
permanent cautery spatula are likely due to misuse or mishandling. The instruments & accessories instructions for 
use (ifu) specifically states: handle instruments with care. Avoid mechanical shock or stress that can cause damage 
to the instruments. Based on the provided information, isi has not determined the root cause of the intra-surgical 
complications experienced by the patient. If additional information is received a follow up medwatch report will be 
submitted to the fda. This complaint is being reported due to the following conclusion: the patient sustained an 
injury during a da vinci surgical procedure and the procedure was converted to an open surgical procedure. 
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APPENDIX C  
DEVICES FOR RESILIENT PATIENT MONITORING 

  

Driven by our study on the recalls of safety-critical medical devices, we proposed a new patient 

monitoring system that can potentially recover from the common types of computer-related 

failures reported for the patient monitoring systems. 

 Computer Failures in Medical Monitoring Devices 
In on our study on safety-critical failures reported to the FDA over 2006–2013, we specifically 

found ten safety-critical computer-related recalls related to physiological patient monitoring and 

arrhythmia detector devices, which affected around 38,394 devices on the market. Additionally, a 

total number of 359 adverse events, including four deaths, 79 injuries, and 276 malfunctions were 

reported for these devices [2].  

Based on the example of recalls and adverse events reported to the FDA, we identified four 

sources of failures in medical monitoring devices: Data Errors, Algorithmic Inadequacies, 

Hardware Errors, and Software Errors. On one hand, the external environmental changes, physical 

perturbations, and sensor failures could cause the delivery of erroneous data inputs to the device 

and lead to improper functioning and incorrect results. For instance, the measured signals could 

get lost, noisy, or corrupted because of the failure of sensor nodes, their intrinsic noise, or 

electromagnetic interference. The patient’s movements or changes of physical activities may also 

cause motion artifacts or deviated normal bounds of measured signals. On the other hand, internal 

faults that occur within the computational engines of the device, such as algorithm inadequacies 

(due to incorrect specifications), software bugs and hardware (transient or permanent) faults can 

also lead to safety-threatening detection inaccuracy and delay in the results, or even failure of the 

system. Table C.1 shows these failure categories along with their description and example recalls 

or adverse events reported to the FDA.    

                                                 
 This chapter contains material from the works [246] – [249] coauthored with Q. Li, M. U. Saleheen, Z. Jin, C. D. 
Martino, Z. Kalbarczyk, and R. K. Iyer, copyrighted by IEEE. 
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Table C.1. Failure categories and example recalls and adverse events for medical monitoring devices. 

Failure 
Source Description 

Example Recalls and Adverse Events 
Report 

 
Report Summary Failure 

Data 
Error 

Erroneous input data  
streams d u e  t o  
noise,   artifacts,    or   
missing samples 

MAUDE 
2154693 

Philips INTELLIVUE X2 Portable Patient Monitors 
have false asystole alarms at a much more 
frequent rate since the installation of additional 
wireless laptops in CICU, because of possible RF 
interference from increased level of radio 
frequency activity in the CICU 
 

False 
Alarms 

Algorithm 
Inadequacy 

Algorithm not 
effective or 
inapplicable  for a 
specific patient or 
medical condition 

MAUDE 
1614824 

GE Healthcare APEX PRO FH Telemetry Monitoring 
Systems did not recognize a patient's telemetry 
rhythm and did not alarm a series of ventricular 
fibrillation events, leading to patient death. ECG 
(electrocardiogram) signal may have failed to meet 
necessary criteria for the arrhythmia algorithm. 

Missed 
Detectio

n 

Hardware 
Error 

Errors  caused by  
transient or  
permanent hardware 
faults 

Recall 
Z-2030-2009 

Medtronic Physio-Control LIFEPAK CR Plus 
Defibrillator/Monitor had a short circuit in one of 
the relays on the analog printed circuit board that 
affected the ECG amplitude, causing the device to 
not analyze the ECG rhythm correctly and not 
delivering therapy. 

Missed 
Therapy 

Software 
Error 

Errors due to software 
bugs  and  transient 
errors  

Recall 
Z-2168-2011 

Philips FloTrak Elite module used in NM3 is a 
multi-parameter patient monitor calculates two 
displayed respiratory parameters incorrectly 
(higher than actual) due to errors in the system 
software. 

Incorrect 
Results 

 

 

Given the criticality of application to the human life, medical monitoring systems have to be 

resilient in both accurate and timely delivery of results, despite the changes in the patient and 

environment and even in the face of accidental errors. Toward that objective, we specifically 

identify three main challenges for design of resilient medical monitoring devices: 

• Accuracy: real-time analysis of physiological signals with low false positive/false negative 

rates. 

• Adaptability: adaptation to patient-specific physiological characteristics, diagnostic needs, 

and different application scenarios. 

• Availability: dependable monitoring that is resilient to unexpected artifacts and accidental 

errors. 
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 Related Work 
A limitation of existing patient monitoring systems is their fixed functionality and lack of 

functional adaptability. These devices are usually designed for analysis of only a certain type of 

physiological parameters associated with a specific medical condition, and cannot support multi-

parameter analysis techniques for unified clinical reasoning. Interest in patient-specific and 

adaptive monitoring has increased in recent years as they have proved to be more effective in 

identifying the potential health risks and specific clinical symptoms of an individual, compared to 

the conventional population-based generic diagnostic flows [254] – [258].  

Multi-parameter medical monitoring [259] and multi-sensor data fusion [260] are popular 

techniques for unified clinical reasoning and improve the robustness of a system by exploiting 

inherent redundancy in sensor data and signal processing. These techniques are particularly useful 

for monitoring in extreme circumstances and critical environments where the analysis of 

intrinsically correlated signals is required, such as intensive care units [261], battlefields [262], 

and outer space [263]. There are a variety of related works that use multi-parameter 

monitoring [264] along with data aggregation and fusion [265], [266] but the majority of them 

focus on analysis of individual measurements or use of correlation between the measured signals 

to reduce false alarms generated from the monitors. A few related works used multi-parameter 

physiological signals such as ECG and EEG to compile new measures for prediction or detection 

of critical conditions such as epileptic seizures or cognitive decline [267], [268]. 

 Overall Approach 
We propose a novel monitoring flow and reconfigurable architecture for real-time monitoring 

of patient's health status to address the aforementioned challenges. The proposed approach 

comprises the following parts: 

1. Multi-parameter signal analysis and data fusion that allows real-time masking of errors 

by simultaneous monitoring of multiple physiological signals, extracting features of these 

signals, and synergistic combination of multiple features to compile a personalized health 

index that can accurately characterize an individual’s health status. 
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2. Dynamic reconfiguration supported in hardware that integrates heterogeneous 

computing modules through novel reconfiguration strategies to meet changing requirements 

of the application, performance, and reliability in energy- and cost-effective ways. 

3. Algorithm- and application-specific low overhead detection techniques that enable real-

time detection and diagnosis of errors in the computing engines and recovery from failures 

while considering power and performance constraints. 

Section C.3.1, Section C.3.2, and Section C.3.3 describe each part in more detail. 

C.3.1. Multi-Parameter Signal Analysis and Data Fusion 

Figure C.1 shows our proposed patient-specific multi-parameter monitoring flow which is based 

on aggregation of the features and analysis results from inter-correlated physiological signals. The 

monitoring flow starts with an initial training phase, in which a physiological signature of the 

individual (Health Index), is compiled by aggregating (constructing a vector of) different statistical 

features from the input signals. During the monitoring phase, the constructed signature is used as 

a reference point (patient-specific threshold) for detecting abnormalities in each signal. At the end, 

a fusion technique (such as a majority voting process) is employed to reach a final diagnostic 

decision. The data fusion unit can perform different levels of fusion (spanning from data- to 

feature- and decision-level fusion) according to specific diagnostic needs or the feedback from the 

results. 

 

Figure C.1. Patient-specific multi-parameter signal analysis and fusion. 
 

Figure C.2 shows an example from our initial experiments, where we extracted simple statistical 

features such as mean and standard deviation from the systolic arterial blood pressure (ABP 

Systolic) and heart rate (HR) signals and used median filtering to compile a template of patient's 
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ECG waveforms over a training period of 2-hours. The left part shows a 10-minute period of 

physiological signals along with their corresponding patient-specific thresholds (green lines) 

computed for a patient (diagnosed with CHF/pulmonary edema), from the publicly available 

MIMIC database [269]. The right part shows the patient-specific alarms generated based on each 

individual signal as well as the alarms generated by a majority voter fusion unit (last row). The red 

bars correspond to the alarms that are masked by the fusion unit. 

 

 

Figure C.2. Patient-specific multi-parameter signal analysis and fusion for a patient from MIMIC database. 
 

 

Our preliminary analysis of sample periods of up to one hour of patient data collected from the 

MIMIC database, showed that the decision fusion technique based on simple majority voting is 

effective in masking the false alarms raised due to patient movements and artifacts [248]. However, 

in our further experiments on longer periods of patient data (41 hours), we found that around 2% 

of ICU monitor alarms raised by the ICU monitors were potentially false alarms, because they 

occurred in a close-proximity of a monitor noise alarm. But the simple majority voting mechanism 

masked about 98% of the ICU alarms from which only 2% were actually false alarms, i.e. it only 

had a masking accuracy of 2% [247].  



166 

By an intensive study of related works [270] – [275] on detection and prediction of different 

cardiac events and particularly arrhythmia, we found various features that can be extracted from 

ECG and ABP waveforms and vital signs. Table C.1 shows the list of features that we implemented 

in our experiments. We used the time-series ECG, ABP, and vital signs data from MIMIC II multi-

parameter database [276], collected from patients in cardiac intensive care units. A subset of the 

patient data included the expert-reviewed annotations on the patient alarms, which we used as 

golden alarms in our analysis. Figure C.3 shows six features (ADBvariance, ADBmax-mean5, ADBmean-

top5, R-R interval, Mean Energy, and Heart Rate) extracted for every 20-sec window extracted for 

the patient a40022 (horizontal axes correspond to 20-sec processing windows). The first row 

shows the golden alarms, indicating the cardiac abnormalities and the red circles highlight the 

changes in the features in a close proximity of a golden alarm. 

 

Table C.1. Features extracted from the ECG and ABP waveforms. 
Signals Features Example Features Extracted 

W
av

ef
or

m
 

ECG 

• R Peaks 
• R-R Intervals 
• ECG Template  
• Area under each beat (QRS-complex) 
• ADB: Area difference of beat with mean area of 

beats(20sec window) 
• ADBmean_top5, ADBmax_mean5, ADBvariance, ADBgradient  
• Mean Energy in Lower Frequencies of ECG  
• Kurtosis of ECG  
• Heart Rate (20 sec window) 

 
 
 

ABP 

• ABP Peak Detection 
• BBI: Beat-Beat-Intervals 
• SBP: Systolic Blood Pressure 
• DBP: Diastolic Blood Pressure 
• MBP: Mean Blood Pressure 
• PP: Pulse Pressure (SBP-DBP) 
• AREA: Area of the Period 
• BBI_diff: Difference between two BBI 
• SBP_diff: Difference between two SBP 
• DBP_diff: Difference between two BBI 
• Signal Quality Features (SQI) 

 

 
Vital Signs • Heart Rate, ABPSys, ABPDias, ABPMean, RESP, Spo2  
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Figure C.3. Golden alarms and extracted features from ECG signal for a patient from MIMIC II database. 
 

We designed two classifiers based on multivariate Gaussian distributions and logistic 

regressions for detecting the abnormalities using the extracted features. We trained the classifiers 

based on different periods of training data (100 to 1500 windows) and performed the testing data 

on the remaining set of samples to label each 20-sec window as an alarm (Class 1) or no-alarm 

(Class 0) event. Then we compared the results of these classifiers with the golden alarms (as 

indicated by the expert-reviewed annotations) and computed a confusion matrix showing the 

number of true/false indications of alarm/no alarm events. We used sensitivity and specificity as 

the measure to evaluate the accuracy of the results.  

Figure C.4 shows the performance of the Gaussian and logistic regression classifiers for the 

same patient data shown in Figure C.3. 
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Figure C.4. Sensitivity and specificity of Gaussian and logistic regression techniques in classifying the 
cardiac events. 
 

The major results from our experiments can be summarized as follows:  

• For both the classifiers, an increase in the size of training data improves in the sensitivity of 

the results. For the Gaussian classifier, a sensitivity of 87% and a specificity of 97% is 

achieved with training sizes of larger than 1200 windows (> six hours).   

• For the logistic regression classifier, with increasing the threshold, the sensitivity tends to 

decrease and specificity increases.  

• Depending on the value of the threshold selected for logistic regression classifier, sensitivity 

values vary while specificity is almost always high and varies from 63% to 100%. This is 

because number of “no alarm” cases is higher than “alarm” cases. Among five thresholds, 

the one-sigma (red) threshold led to the highest sensitivity and specificity for all the tested 

patients. 

C.3.2. Dynamic Reconfigurable Architecture  

As shown in Section C.3.1, accurate real-time monitoring of the health status requires 

concurrent recording and analysis of multiple biomedical signals collected at relatively high 

sampling rates (125-360 Hz) from the patient's body. Therefore, patient monitors face challenges 

in real-time parallel processing of large amounts of data under tight power and area constrains. So 

in order to support adaptive and multi-parameter medical monitoring in real time, an embedded 
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medical device should exhibit both flexibility and circuit customization. A flexible design can be 

dynamically reconfigured in the field to meet changing application and performance requirements. 

Circuit customization on the other hand allows meeting the timing constrains and achieving high 

throughput, low energy consumption, and small silicon area [277].  

We proposed an application-specific reconfigurable architecture for patient-specific multi-

parameter medical monitoring with a trade-off between flexibility and circuit customization. As 

shown in Figure C.5, based on a hybrid hardware/software approach, the proposed architecture 

incorporates a set of coarse-grained reconfigurable, a configurable communication block, a 

configurable data fusion unit, and an embedded main processor. The processing elements (PE) are 

dynamically reconfigurable computing engines, designed by optimized integration of a common 

set of algorithms for feature extraction from biomedical signals (see Section 3.3). The 

homogeneous PEs and the flexible communication block, although developed for multi-parameter 

signal analysis, inherently introduce redundancy in both input data and computational engines, 

which further enables improved accuracy and reliability, particularly in the face of sensor failures 

or artifacts in data. 

An initial prototype of the proposed architecture was developed on an FPGA platform and was 

evaluated by running the monitoring flows presented in Section C.3.2, using real patient and device 

status data collected from the MIMIC database, as well as the algorithms for real-time seizure 

detection, presented in [278]. Our prototype utilized only around 28% of look-up tables (LUTs) 

and 17% of slice registers from the whole FPGA resources and other than the embedded processor, 

the custom logic parts consume only around 300 µW of dynamic power.  

For more details on this work can be found in [246], [248], and [249]. 
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Figure C.5. Reconfigurable architecture for patient-specific multi-parameter monitoring. 
 

C.3.3. Low Overhead Detection and Recovery Techniques  

As mentioned in Section C.1, an important safety requirement for patient monitoring devices is 

to continuously deliver trustworthy results even in the presence of faults to prevent catastrophic 

impacts on patients. However, along with the scaling of transistor technology, the electrical and 

hardware components become more susceptible to both transient and permanent faults. However, 

traditional techniques based on double and triple modular redundancy introduce large area and 

power overheads and the selective hardware replication techniques cannot provide 100% 

protection against the faults. 

We proposed a runtime reconfigurable feature extraction architecture for the processing 

elements in the architecture of Figure C.5 that enables trustworthy computation under performance 

and power constraints.  The proposed architecture is composed of a set of functional units that 

serve as accelerators for commonly used feature extraction operations in biomedical monitoring 

applications. The functional units are configured and scheduled to run the desired application 

through extended instruction set of a lightweight embedded processor shown in Figure C.6.  

The embedded microprocessor (a lightweight MIPS processor in our prototype) is responsible 

for: (i) configuring the functional units by sending configuration parameters to them, (ii) 
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scheduling the execution of operations on the functional units by sending the execution 

instructions, and (iii) executing the basic MIPS instructions that are not supported by the 

coprocessor (e.g., control flow). The following strategies were employed to enable efficient 

detection and recovery from computation faults in the functional units with small hardware 

footprint and low energy consumption: 

• Coarse-grained reconfigurable functional units (FUs) designed for the shared computational 

kernels, which can be programmed within a few cycles to perform different kinds of 

biomedical signal processing and enable energy-efficient computations in real time. The 

FUs are designed by following a template with the same interface to allow architecture 

extension to support other biomedical applications, such as breathing rate monitoring. 

• A low-overhead hardware fault detection and recovery unit (FDRU) that monitors the 

activities of FUs using a configurable watchdog timer and patient-specific invariant 

checking and upon detection of faults will reset and re-execute the affected FU in real time 

to dynamically recover from the unexpected faults. 

 

Our initial experiments of running a heart monitoring application (including feature extraction 

from ABP and ECG signals and heart rate estimation using Kalman filters) on both FPGA and 

ASIC prototypes of the architecture achieved better performance and energy efficiency compared 

to an Android implementation of the same algorithm. The proposed architecture could recover 

from transient faults with low resource (~15%) and energy (~34%) overheads and no (0%) 

performance impact. More details on this work can be found in [246].  

 

Figure C.6. (a) Input biomedical signals and features extracted by the architecture, 
b) Architecture overview, (c) Example codes and extended instructions. 

 

|   15:12     11:10  9:6       5:3 2:0
FU_CFG   |   1101 00(unused)    fu_id reg_id fu_conf_reg_id
FU_START |   1101    00(unused)   fu_id 000 000
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RRA_max(int array[], int size):      
// configure fu4 to max function (operation ty  

1. mov #1, reg1   // reg1 = 1
2. fu_cfg fu4, reg1, fu_conf_reg_0

// configure starting address to read input
3. mov #array, reg1 // reg1 = starting addr
4. fu_cfg fu4, reg1, fu_conf_reg_1

// configure the size of input data to read
5. load     size, reg1  // reg1 = size of array
6. fu_cfg fu4, reg1, fu_conf_reg_2

// configure the mem address to store the resu
7. mov #store, reg1  // reg1 = unused addres
8. fu_cfg fu4, reg1, fu_conf_reg_3

// start execution of max function on fu4
9. fu_start fu4

// load result to return register
10. load    #store, reg1 
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#define size 100

int main()
{

int array[size];
init_array(array, size);
….
int max = RRA_max(array, size);
….

return 0;
}
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