6,248 research outputs found

    Test aspects of the JPL Viterbi decoder

    Get PDF
    The generation of test vectors and design-for-test aspects of the Jet Propulsion Laboratory (JPL) Very Large Scale Integration (VLSI) Viterbi decoder chip is discussed. Each processor integrated circuit (IC) contains over 20,000 gates. To achieve a high degree of testability, a scan architecture is employed. The logic has been partitioned so that very few test vectors are required to test the entire chip. In addition, since several blocks of logic are replicated numerous times on this chip, test vectors need only be generated for each block, rather than for the entire circuit. These unique blocks of logic have been identified and test sets generated for them. The approach employed for testing was to use pseudo-exhaustive test vectors whenever feasible. That is, each cone of logid is tested exhaustively. Using this approach, no detailed logic design or fault model is required. All faults which modify the function of a block of combinational logic are detected, such as all irredundant single and multiple stuck-at faults

    Using automated source code analysis for software evolution

    Get PDF
    Software maintenance is one of the most expensive and time-consuming phases in the software life-cycle. The size and complexity of commercial applications probably present the greatest difficulty that maintainers face when making changes to their applications. As a result of the corresponding loss of understanding, business knowledge encapsulated within the system becomes fragmented, and any changes made as a result of new business initiatives become difficult to implement and hence may mean a loss of business opportunities. This paper outlines an approach to regaining understanding of software which has been used in the Release project at Durham University. This approach involves determining the calling structure of a program in terms of a call-graph, and from this call-graph extracting a dominance tree. Various problems which have been encountered during the construction of tools to perform this task are described

    Marxism

    Get PDF
    No description supplie

    Testing of Asynchronous NULL Conventional Logic (NCL) Circuits

    Get PDF
    Due to the absence of a global clock and presence of more state holding elements that synchronize the control and data paths, conventional automatic test pattern generation (ATPG) algorithms would fail when applied to asynchronous circuits, leading to poor fault coverage. This paper focuses on design for test (DFT) techniques aimed at making asynchronous NCL designs testable using existing DFT CAD tools with reasonable gate overhead, by enhancing controllability of feedback nets and observability for fault sites that are flagged unobservable. The proposed approach performs scan and test points insertion on NCL designs using custom ATPG library. The approach has been automated, which is essential for large systems; and are fully compatible with industry standard tools

    Resilience of an embedded architecture using hardware redundancy

    Get PDF
    In the last decade the dominance of the general computing systems market has being replaced by embedded systems with billions of units manufactured every year. Embedded systems appear in contexts where continuous operation is of utmost importance and failure can be profound. Nowadays, radiation poses a serious threat to the reliable operation of safety-critical systems. Fault avoidance techniques, such as radiation hardening, have been commonly used in space applications. However, these components are expensive, lag behind commercial components with regards to performance and do not provide 100% fault elimination. Without fault tolerant mechanisms, many of these faults can become errors at the application or system level, which in turn, can result in catastrophic failures. In this work we study the concepts of fault tolerance and dependability and extend these concepts providing our own definition of resilience. We analyse the physics of radiation-induced faults, the damage mechanisms of particles and the process that leads to computing failures. We provide extensive taxonomies of 1) existing fault tolerant techniques and of 2) the effects of radiation in state-of-the-art electronics, analysing and comparing their characteristics. We propose a detailed model of faults and provide a classification of the different types of faults at various levels. We introduce an algorithm of fault tolerance and define the system states and actions necessary to implement it. We introduce novel hardware and system software techniques that provide a more efficient combination of reliability, performance and power consumption than existing techniques. We propose a new element of the system called syndrome that is the core of a resilient architecture whose software and hardware can adapt to reliable and unreliable environments. We implement a software simulator and disassembler and introduce a testing framework in combination with ERA’s assembler and commercial hardware simulators

    Leakage Assessment in Fault Attacks: A Deep Learning Perspective

    Get PDF
    Generic vulnerability assessment of cipher implementations against fault attacks (FA) is a largely unexplored research area to date. Security assessment against FA is particularly important in the context of FA countermeasures because, on several occasions, countermeasures fail to fulfil their sole purpose of preventing FA due to flawed design or implementation. In this paper, we propose a generic, simulation-based, statistical yes/no experiment for evaluating fault-assisted information leakage based on the principle of non-interference. The proposed exper- iment is oblivious to the structure of countermeasure/cipher under test and detects fault-induced leakage solely by observing the ciphertext dis- tributions. Unlike a recently proposed approach that utilizes t-test and its higher-order variants for detecting leakage at different moments of ciphertext distributions, in this work, we present a Deep Learning (DL) based leakage detection test. Our DL-based detection test is not specific to only moment-based leakages and thus can expose leakages in several cases where t-test based technique demands a prohibitively large number of ciphertexts. We also present a systematic approach to interpret the leakages from DL models. Apart from improving the leak- age detection test, we explore two generalizations of the leakage assess- ment experiment itself – one for evaluating against the Statistical ineffec- tive fault model (SIFA), and another for assessing fault-induced leakages originating from “non-cryptographic” peripheral components of a secu- rity module. Finally, we present techniques for efficiently covering the fault space of a block cipher by exploiting logic-level and cipher-level fault equivalences. The efficacy of DL-based leakage detection, as well as the proposed generalizations, has been evaluated on a rich test-suite of hardened implementations from several countermeasure classes, includ- ing open-source SIFA countermeasures and a hardware security module called Secured-Hardware-Extension (SHE)

    Detection of hard faults in combinational logic circuits

    Get PDF
    ABSTRACT: Previous Work in identifying hard to test faults (HFs) -- The effect of reconvergent fanout and redundancy -- Testability measures (TMs)Using of ATPGs to detect HFs -- Previous use of cost in Testability analysis -- Review of automatic test pattern generation (ATPG) -- Fault modelling -- Single versus multiple path sensitization -- The four ATPG phases of deterministic gate level test generation -- Random test pattern generation and hybrid methods -- Review of the fan algorithm -- Backtrack reduction methods and the importance of heuristics -- Mixed graph -- binary decision diagram (GBDD) circuit model -- A review of graph techniques -- A review of binary decisions diagrams (BDDs) techniques -- gBDD -- graph binary decision diagrams -- Detection of hard faults using HUB -- Introduction to budgetary constraints -- The HUB algorithm -- Important HUB attributes -- Circuits characteristics of used for results -- Comparison of gBDD -- ATPG related results -- Fault simulation related results -- Hard fault detection
    • 

    corecore