
Using Automated Source Code Analysis For Software Evolution

Liz Burd and Stephen Rank,
Department of Computer Science,

University of Durham�
Liz.Burd,Stephen.Rank � @durham.ac.uk

Abstract

Software maintenance is one of the most expensive and
time-consuming phases in the software life-cycle. The
size and complexity of commercial applications probably
present the greatest difficulty that maintainers face when
making changes to their applications. As a result of the
corresponding loss of understanding, business knowledge
encapsulated within the system becomes fragmented, and
any changes made as a result of new business initiatives be-
come difficult to implement and hence may mean a loss of
business opportunities.

This paper outlines an approach to regaining under-
standing of software which has been used in the Release
project at Durham University. This approach involves de-
termining the calling structure of a program in terms of a
call-graph, and from this call-graph extracting a dominance
tree. Various problems which have been encountered during
the construction of tools to perform this task are described.

1. Introduction

Software maintenance is one of the most expensive and
time consuming phases in the software life-cycle. However,
despite its obvious importance, it is invariably given little
emphasis by those working on software applications. Soft-
ware is perceived as a flexible medium of which change is
both feasible and simple. In reality this could be, but is not
true. The prolonged and expensive maintenance phase is
recognised as being detrimental to the overall maintainabil-
ity of applications and so the flexibility and adaptability that
software may have is soon lost. During this process appli-
cations are said to be gaining legacy properties. As a conse-
quence of this rift between the desired and actual properties
of our software applications, ways are sought of ensuring
that the continued change of applications, their evolution,
progresses in a manner which ensure their continued flexi-
bility.

The costs of performing maintenance has been estimated
to be 70 to 90 percent of the total life-cycle cost [10]. Fur-
thermore, the costs of performing program comprehension
have been widely cited as being between 50 and 90 percent
of the overall cost of performing maintenance [10]. Assum-
ing that these figures are accurate, we can estimate that the
costs of performing comprehension for maintenance over
the life-time of software could account for approximately
35 to 80 percent of the software life-cycle costs (i.e., devel-
opment and maintenance costs). Clearly, this is an impor-
tant activity so any approach towards assisting the compre-
hension process can considerably reduce software costs.

Legacy systems have, embedded within them, a large in-
vestment made by the systems developers and/or owners.
This investment ranges from low-level code items or ob-
jects through to higher level business objects. However, the
structure imposed by designers and developers of software
systems are, in general, not suitable for continued change
and evolution. Part of the reason for this is that during de-
velopment it is difficult, or even impossible, to predict how
the system is going to evolve. The fact that the software
must continually change over time, or become increasingly
less useful, was emphasised by Lehman [1]. He also pointed
out that the structure of evolving software will degrade un-
less remedial action is taken. This has also been confirmed
and shown visually by Burd and Munro [4]. An important
aspect of this loss of structure is that business knowledge
encapsulated within the system becomes fragmented, and
any changes made as a result of new business initiatives be-
come difficult to implement and hence may mean a loss of
business opportunities.

The size and complexity of commercial applications
probably present the greatest difficulty that maintainers face
when making changes to their applications. To assist the
comprehension process, maintainers need timely and se-
lective information with regard to their programs. Bigger-
staff [2, 3] and Rich and Wills [9] carried out research on
design recovery, where the software architecture was repre-
sented using techniques such as data-flow graphs, control-
flow graphs, call graphs, structure diagrams and cross ref-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/57234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

erence tables. Although these representations are useful
for small programs, little attempt has been made towards
achieving abstraction in order to simplify the representation
and allow generalisation. A deeper analysis—for example
using dominance relations on call graphs [7]—of some of
these representations can lead to a greater understanding of
the code [5].

The study of software evolution has been identified as a
critical aspect of ensuring that the maintainability of soft-
ware applications is retained or even enhanced. Not only
does it provide an abstraction of the information required
for the comprehension process, but it also shows the evolu-
tionary path of a software application thus enabling a main-
tainer to evaluate changes based on more evidence. For in-
stance, errors identified can be first investigated with regard
to those areas in the software which have previously been
shown to be at fault. Furthermore, the studies of evolution
can identify specific locations in the software where consid-
erable maintenance has been performed and therefore can
be used in the targeting of preventative maintenance.

The Release project has identified that the calling struc-
ture of the code is one of the most frequently used structures
within source code as a mechanism for gaining an under-
standing of that code. This research has also highlighted
that this calling structure is also the most likely starting
point which maintainers will use when initiating the com-
prehension process of code that is unfamiliar to them. Thus
as a means of making the comprehension process of evolu-
tion accessible to maintainers these familiar constructs are
adopted as a means of visually representing the code.

This paper will describe an approach which has been
used to study commercial applications. The problems (such
as problems writing tools to process this language) that have
been identified through this study and the preliminary re-
sults that have been obtained are also described.

The language which is being studied is the user language
from a database system known as ‘Model 204’, first pro-
duced by the Computer Corporation of America1 in 1965,
and further developed since then. The user language is used
to construct database queries and to provide user interac-
tion. It is more than a query language, as it can be used to
write general-purpose programs.

Section 2 describes the means by which the calling struc-
ture of a program is extracted from the source. In section 3,
the process for determining dominance trees is outlined.
Results and conclusions are presented in sections 4 and 5
respectively.

2. Call-Graph Extraction

The overall approach adopted within Release is through
a stepwise method. The first of these steps involves the gen-

1http://www.cca-int.com/

eration of a call graph. The objective of this step is to iden-
tify the calling structure of the code on a procedural basis.
This step consists of two tasks. These are:

Check preconditions for producing a call graph The
generation of a true calling structure of the software
relies on each procedural unit being logically distinct
from other procedures. There should be no use of
constructs so as GO TOs or ‘fall through’ to other
procedures (as is common in COBOL). If any of
these conditions do not hold then the code should be
restructured before the call graph is generated.

Generate the ‘Perform’ graph A perform graph is con-
structed from the call graph for each procedural unit.
For each call in a procedural unit, a link is made be-
tween the calling and called procedural unit. These
caller/callee relationships are referred to as the call
graph pairs. Where more than one call is issued to a
particular procedural unit within one procedural unit,
then the duplicate call is recorded numerically. A call
graph is a call-directed graph (CDG). A call-directed
graph of a code module is formally defined as a di-
rected graph ���������	��
��� where ����������� is
the union of � , the set of the entry procedural unit(s),
and ��� , the set of all procedural units, and � is the
call relation �	��������������� .

Call-graphs are represented in the ‘CLL’ file
format; each line in a CLL file is of the form
“parent : child”, where parent and child
are the two nodes connected by a directed edge.

The process of call-graph-extraction is done by pars-
ing the source code (using a parser generated by the Bi-
son parser generator). This section describes the process in
more detail.

2.1. Source Files

One of the first problems of analysing software for evo-
lution is finding a suitable parser. This project involves
analysing Model 204, a language for which there are no
suitable parsers available (the only previously known tool
is the interpreter used by the database system itself). There-
fore it was decided that the most appropriate solution was
to build a parser to extract the appropriate constructs.

The Model 204 source files from each release have been
concatenated into a single file, numbered according to re-
lease sequence number. Source programs have the format
shown in figure 1.

2.2. Call-Graph Extraction Methods

This section describes the means by which call graphs
are extracted from source files.

Preamble Including global variable declarations, file con-
trol commands, etc. (optional).

Main Program of the form:
BEGIN
Main program statements
END

Procedure (Subroutine) Definitions (optional); of the
form
FOO: SUBROUTINE or
SUBROUTINE FOO(%BAR IS type,. . .)
. . .
END SUBROUTINE name �����

Figure 1. Format of Source Files

Initially, the calling structure of source was determined
manually [8]. These pilot studies highlighted the benefits of
the analysis process for the study of evolution. A number of
important points have been identified from this study:

� The process provided essential information to main-
tainers that they would not have otherwise been aware
of. From interviewing maintainers of these commer-
cial applications, it was clear that in some instances
the implementation approach that was adopted by the
maintainer would not have been considered if they
were able to see the consequence of a specific change.

� The manual approach was costly in terms of time and
prone to errors; for commercial use the approach must
be automated to prevent these problems and produce
timely information.

� Earlier feedback would be more beneficial. The
manual approach analysed only completed system
changes. To maximise the benefit of the approach what
is needed is daily feedback on changes. In this way
maintenance approaches can be adjusted depending on
the resulting evolutionary trend. Thus it is proposed
to use the automated system to analyse each nightly
build. However, this intensifies the problems experi-
enced with the manual approach highlighted above.

In order to increase the efficiency of this process, an ex-
traction tool is in the process of being written. This tool is
being created using the parser-generator Bison, which gen-
erates an LALR(1) parser from a definition script (using the
same input language that YACC accepts). There are sev-
eral issues which have been discovered while writing the
tool, most of which have been problems with the source
language and its documentation. Some example problems
are described in the next section.

2.2.1 Example Language Problems

Block structure According to the language documenta-
tion2, ‘IF’ statements have the traditional (nested) syntax,
given here in slightly modified B.N.F. (using C-style com-
ments):

if statement � IF condition THEN
statements
else part opt
END IF

else part opt � /* empty */
else part opt � ELSE statements
else part opt � ELSEIF condition THEN

statements else part opt

statements � . . . /* including if statement */
condition � . . .

However, figure 2, which contains code taken from re-
lease 381, line 7839ff, edited for brevity (elisions indicated
with ‘...’), illustrates a nested IF (marked with [*])
which has no corresponding END IF of its own (it is in-
stead ended with the ELSEIF marked with a ‘[#]’).

IF %SALE:TYPE = 1 THEN
...

ELSEIF %SALE:TYPE = 2 THEN
...

[*] IF %DEPT NE %SALE:DEPT THEN
%ABORT = 24
CALL ABORT

ELSE
%QTY = %QTY + %SALE:QTY
...

[#] ELSEIF %SALE:TYPE = 9 THEN
...

ELSE
...

END IF

Figure 2. A Code Fragment Illustrating a Sin-
gle ‘END IF’ Statement Taking The Place of
Many.

2.2.2 Comments

The language documentation3 indicates that comment lines
take the form of an optional label (of the form ‘FOO:’) fol-
lowed by an asterisk, and then the text of the comment.

2“You must end the IF statement with an END IF statement or an END
BLOCK statement.” [6, page 11-3].

3[6, page 2-12].

However, in some of the source files, a comment starts af-
ter a statement, in a form not explicitly mentioned in the
documentation. For example:

END IF *** end of processing

This problem manifested itself when the initial ‘*’ was
interpreted as the multiplication sign, producing a parse er-
ror. In order to get around this problem, multiple asterisks
are interpreted (in the tokeniser) as beginning comments,
even if they’re not at the start of a line.

2.2.3 Example Documentation Problems

As documentation is not automatically generated, it is fre-
quently not kept up-to-date with changes to the code. For
example, the CHANGE statement is specified in one part of
the documentation as
CHANGE fieldname
[= value] TO newvalue
but in another as
CHANGE fieldname [(subscript)]
= value1 TO value2

This conflict was only resolved by referring to examples
in the source, and turns out to be a mixture of the two:
CHANGE fieldname [(subscript)]
[= value] TO newvalue

3. Dominance Tree Generation

When studying large commercial applications it is nec-
essary to provide a means of information abstraction, such
as calling structures, to assist the maintainer in the com-
prehension process. However, when studying evolution of
large applications this problem becomes even more acute.
When the changes of a considerable number of an appli-
cation’s versions are being considered then the timely and
accurate extraction and abstraction of appropriate informa-
tion becomes essential.

Research on the Release project has identified that com-
mercial applications sometimes have several hundred nodes
and several thousand arcs. Within Release, studies of up
to 30 versions of a single software application have been
conducted. Thus a means of information abstraction is an
essential aspect of the analysis process if the information
presented is to be understandable and usable to the main-
tainer. The dominance tree is used to provide an abstraction
of the information required to study evolution. The domi-
nance tree is a way of abstracting the call graph, but in ad-
dition represents high-level modularisation of the software
applications through its branches. Each branch of the domi-
nance tree represents a concept or high level function of the
system.

The problem with call graphs for large commercial appli-
cations is again their size and complexity. Research on the
Release project has identified that commercial applications
sometimes have several hundred nodes and several thousand
arcs. The dominance tree provides an abstraction of this in-
formation and is thus the second step of the Release method.
The objective of this step is to identify the dominance rela-
tionships between procedural units.

A dominance tree is created from a call-directed-acyclic-
graph (CDAG). Two relationships can be identified between
the nodes of the graph. These are strong and direct domi-
nance [7].

This step is composed of three tasks. These are:

Remove cycles from the call graph Cycles can occur
within the source code between one or more nodes.
Cycles can be removed by collapsing every strongly
connected subgraph (those nodes contained within a
cycle) into one node.

Identify entry points Sometimes more than one entry
point exists within a single source code module. This
means that a number of sets of dominance tree rela-
tionships can be identified from a single code module
for each of the entry points within the code. Proce-
dural units within more than a single dominance tree
should be marked as special cases for analysis during
reconstruction.

Generate dominance relations The dominance relations
are obtained in the following way. In a CDAG, a node
��� dominates a node ��� if, and only if, every path from
the initial node � of the graph to ��� includes ��� . In a
CDAG, a node ��� directly dominates a node ��� if, and
only if, all the nodes that dominate ��� dominate ��� .
In a CDAG, there is a relation of strong direct domi-
nance between the nodes ��� and ��� if, and only if, ���

directly dominates and it is the only node that calls ��� .

Dominance trees are represented in the CLL for-
mat, with the extension that lines are of the form
“parent : child [: {d,s}]”, with d or s repre-
senting direct or strong dominance respectively.

As with call-graphs, dominance trees were initially ex-
tracted using manual techniques[8]. Again, manual pro-
cesses have been automated, leading to an improvement in
the time taken to generate dominance trees.

Call-graphs are converted to dominance trees using a
tool written in a mixture of Haskell and C4. The tool ac-
cepts as input a call-graph (in CLL format), and carries out
the following steps:

4A tool, written in C, for converting paths (described later) into domi-
nance tree was already available.

Cycle Collapsing All nodes involved in a cycle are col-
lapsed into a single node (optionally containing the
names of all the nodes). This is because the follow-
ing steps require acyclic graphs. Cycles are recursively
collapsed, until the graph is acyclic. An example is
shown in figures 3 and 4.

Path Determination Root nodes in the call graph are iden-
tified, and then the list of paths from each root node are
determined. This is shown in figure 5.

Dominance Tree Production Path lists are converted to
dominance trees by considering the possible paths
from a root node to the various other nodes in its tree.
The dominance tree for the above-mentioned graphs is
shown in figure 6.

D

B

FE

C

A

Figure 3. An Example Call-Graph

D

B Cycle1
[C,E,F]

A

Figure 4. A Call-Graph With a Collapsed Cycle

A A

B

D

[C,E,F]
Cycle1

D

Figure 5. Paths in the Call-Graph

B

s s

d

Cycle1
[C,E,F]

A

D

Figure 6. Dominance Tree

4. Results

The results of the pilot trials and tool development have
identified some of the difficulties of supporting the evolu-
tion process. The development process has highlighted that
over the lifetime of the software a number of factors are
continually changing. For instance, not only does the soft-
ware under study evolve but the language itself and com-
pany development house styles change. This increases the
complexity of the support tool. However, gains obtained
for the availability of such a support tool justify the com-
mitment for its development.

In order to evaluate the suitability of the tool three eval-
uation criteria are considered. These are speed, accuracy,
and usability.

As the previous system involved at least a partially man-
ual analysis of the software applications, improvements in
the operating of the tool based approach are to be expected.
On average the speeds of the semi-manual process per ver-
sion of code was approximately 30 minutes. The operating
speed of the tool running on a standard desktop machine for
the same software application has now been reduced to less
than half a minute. However, the most significant improve-
ment is the accuracy of the information.

Currently, the tools are invoked via a Unix-style
command-line interface. Although a more graphical inter-
face could be developed, the tools operate in a batch style
(it is not possible, for example, to interact with the parser
while it is processing a program), and could be used as part
of automatic overnight processing, for which a GUI is not
suitable. It would be difficult to justify a claim that, for ex-
ample, a graphical drag-and-drop interface would be more
productive or easier to use than the command-line equiva-
lent. The users at whom the tools is targeted are experts in
using the database system for which they develop. This sys-
tem is primarily accessed through the command line, and so
these developers will be familiar with this kind of interface.

The output of the tool has so far been a series of static
dominance trees. The dominance trees are then represented
using a graphical representation tool which has been de-
veloped as part of the Release project. The trees are then
loaded either individually for detailed analysis or in series to
allow comparison. To assist the comparison, process nodes
(representing the procedures) are sorted alphabetically. The
nodes are then laid out in a tree formation restricting cross-
ing arcs to a minimum.

Particularly the comparison process has identified a
number of problems. The first and most obvious of these
problems is that of space. When a large number of ver-
sions are represented then it is not possible to represent
them with clarity side by side on a screen. The problem
is currently overcome by printing the results. The second
and more interesting problem surrounds the change of soft-

ware applications. As indicated above the nodes are laid
out alphabetically and to reduce crossing arcs. The laying
out of the nodes in alphabetical order ensures that the trees
across versions looked the same. However, when nodes
are added or deleted through the evolution process then it
is harder to see the correspondence between the versions.
Furthermore when additional calls are added between ex-
isting nodes then it may be necessary to relax the crossing
lines weighting on the sort algorithm if the ordering of the
nodes between versions is to be maintained. When signifi-
cant changes are made throughout the lifetime of a software
application then the maintenance of position tends to signif-
icantly reduce the readability of the resulting visualisations.
Overall this is a complex problem that requires considerable
further research.

Finally the results of the analysis of the commercial ap-
plication seems promising based on the results of the pilot
trials, however the results of the commercial use of the tool
are yet to be completed. In many instances from the trials,
it has been found that metrics are more suitable to repre-
sent the overall change process and when specific interest-
ing anomalies are found in the metrics data small sets of the
dominance trees are then used as a means of further detailed
analysis. Thus support for the daily build process can con-
centrate on displaying the dominance trees from only the
previous couple of days’ builds.

5. Conclusions

The problems associated with software maintenance are
both important and difficult to tackle. In particular, in this
paper, some of the problems of source-code understanding
have been outlined, and an approach to their solution has
been described.

Various problems associated with building a parser for a
little-known and aged language have been identified. These
include both language and documentation problems. Study-
ing systems which have been changed over many years, as
is the case with the systems described here, brings further
problems, as the programming language has changed, along
with the programs. This leads to further complication in the
grammars which are required.

Call graphs (and therefore dominance trees) can be in-
ferred from source code (subject to resolution of the above-
mentioned problems). This produces an overview of the
system which is useful during program comprehension. It
is hoped that further work will enable the use of these tools
during development work, as a toolkit for developers and
maintainers, in order to decrease costs associated with pro-
gram understanding.

The next phase of the project will be to extend the tool
for the support for data analysis. This will again need to en-
sure that appropriate abstraction mechanisms are provided

to ensure that the maintainers are able to early comprehend
and identify the important information.

More long term research aims concern issues highlighted
above such as maintaining placement of nodes. One pro-
posed solution to this problem revolves around the anima-
tion of evolution process. Currently the animation of met-
rics have been attempted and show promising results. How-
ever the animation of the dominance trees is a more com-
plex problem but seems to be worthy of pursuit. Finally it is
intended to conduct a more detailed analysis of comments,
for example to extract meaning from them to support the
concept assignment process for branches of the dominance
tree. This will therefore lead to the first steps of automated
documentation of the evolution process where descriptions
can be obtained as to the functional changes of software
over time.

References

[1] On understanding law, evolution and conservation in
the large program, life cycle. Journal of Systems and
Software, 1:213–221, 1979.

[2] T. J. Biggerstaff and A. J. Perlis. Software Reusability;
concepts and models, volume 1. ACM Press, 1989.

[3] T.J. Biggerstaff, B.G. Mitbander, and D. Webster. Pro-
gram understanding and the concept assignment prob-
lem. Communications of the ACM, 37(5):72–83, 1994.

[4] E.L. Burd, M. Munro, and C. Wezeman. Analysing
large cobol programs: The extraction of reusable mod-
ules. In Proceedings of the International Conference
on Software Maintenance, November 1996.

[5] A. Cimitile and G. Visaggio. Software salvaging and
the call dominance tree. Journal of Systems Software,
28(2):117–127, 1995.

[6] Computer Corporation of America, 36-38 Market
Street Maidenhead, Berkshire England SL6 8AD.
Model 204 User Language Manual Parts I and II Ver-
sion 4 Release 2.0, February 1999.

[7] Matthew S. Hecht. Flow Analysis of Computer Pro-
grams. Elsevier North-Holland, New York, 1977.

[8] Sonata Pakstiene, Liz Burd, and Malcolm Munro.
Black magic recipe for generating dominance trees
from COBOL (or any other programming language)
source code. Technical report, Department of Com-
puter Science, University of Durham, 2000.

[9] C. Rich and L.M Wills. Recognising a program’s de-
sign: A graph-parsing approach. 7(1):82–89, 1990.

[10] T. A. Standish. An essay on software reuse. IEEE
Transactions on Software Engineering, 10(5), 1984.

