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ABSTRACT

Integrated circuits have become increasingly complex while their users have
become more stringent in their quality requirements and simultaneously exhibiting a
larger appetite for newer products at a faster rate. Indeed, some integrated circuits
resemble the statement of systems on silicon and are being designed by systems

designers instead of the traditional IC designer.

When one adds to these tough specifications the need for high reliability, the
ability to be manufacturable, and the desire to provide a product ready for volume
delivery within six months of defining of the circuit’s objective specification, it
becomes apparent that the current testing bottleneck can no longer be tolerated. It is
desirable to provide a design environment which will allow the design team to
identify testing difficulties such as those logic faults, due to circuit fabrication, which
are hard to test. It is critical that these faults are identified as early in the design as
possible, and that the necessary information describing their origins be provided to
the design team thus allowing the appropriate design corrections to be made given
knowledge of the design’s constraints: cost, circuit performance, yield at the wafer
level, test time, and time to market; all of these are known from the original objective

specifications which form a contract on all the parties involved in the design process.

This thesis examines an approach to defining and indentifying hard to test
faults contained within a combinational logic circuit based upon the use of cost
constraints imposed upon the automatic test pattern generation (ATPG) process.
This approach was used since past heuristic-based methods such as testability
measures have not provided an accurate means of detecting the hard faults’
presence. By coupling the concept of cost constraints to a variant of an efficient and
extensible automatic test pattern generation tool (Fujiwara’s FAN), it was hoped
that one of the heuristic’s past problems, the lack of coupling to the test generation

effort, could be corrected.

In addition to creating this tool, a new circuit modelling method was

developed: graph binary decision diagrams (gBDD) which was created to provide a



means of including information about the circuit’s functionality and structural aspects.
A simple fault simulator, designed around the single stuck at fault model, was
incorporated into the hard fault identifier HUB. HUB also provides feedback indicating
the causes of the hard faults by indicating which ATPG phase is the most costly
(according to time measurements), which ATPG phases cause backtracks to occur,

and which logic elements can be clearly defined as the originators of the backtracks.

The results of this research have indicated that this approach has merit, but a
problem is apparent: without circuit schematics for the circuit being evaluated, it is
difficult to verify the preciseness of HUB’s results and to allow meaningful analysis
of the circuit. However, for the circuits evaluated and for which schematics were
available, HUB provided information about the reasons for the redundant logic faults
(not considered as hard faults in this thesis) identified by exhaustive searches of the
circuit whose correctness was verified by comparision with the circuit’s schematics.
The cost information also shows the relative costs of the various ATPG phases and
clearly identified that the majority of the backtracks are caused by the net justification

phase.

The most significant result of this research is the creation of the new circuit
modelling technique gBDD that allows the vertical integration of a wide variety of
previous researchers’ works in manipulating functional related circuit information and
structural based circuit data. The ability to generate functional based tests (as
opposed to tests built around a fault model such as the traditional stuck at fault) is
made possible by the functional circuit information and is derived from the binary
decision diagram portion of the gBDD circuit model. The manipulation of graph portion
of the new circuit model, extracted from the circuit’s structure, is useful for
determining the placement of diagnostic test points derived from knowledge about the
circuit’s reconvergent fanout characteristics and for calculating testability metrics in

hierarchically described circuits.



SOMMAIRE

Une nouvelle méthode a été créée afin de découvrir la présence des défauts
dans un circuit logique, combinatoire seulement, qui sont difficiles & détecter
(ITFs) avec des cssais pour la vérification du circuit. On a proposé de les
classer et de fairc leur détection en utilisant des heuristiques fondées sur les
cotits et les budgets de vérification pour le circuit pendant qu’un algorithme
tente de générer des tests pour les défauts choisis. Cette méthode a été choisie
afin de permettre 'intégration des contraintes de ressources, les heuristiques
qui découlent, les vrais efforts requis pour la génération des vecteurs, et de
ramasser des informations sur les causes de ces HFs. Grice a l'algorithme de
génération automatique des vecteurs de test AN, qui sert comme fondation
pour HUB (le systéme pour découvrir la présence des HFs), on peut méme
détecter s'il y a des IIIs créds par la redondance lors de la conception du
circuit.

Pour supporter HUB, une nouvelle méthode de modélisation du circuit
a été créée - gBDD - (graph binary decision diagram): cette modélisation
permet de combiner les avantages des informations structurelles, décrites par
les graphes, ave les informations de comportement détaillées par les BDDs
(binary decision diagrams).

HUB est un ensemble de logiciels qui permet de traduire une description
du circuit en modélisation gBDD, qui géneére des mesures afin de les utiliser
avee des heuristiques pendant la phase de génération des vecteurs de test, et qui
tente d’identifier la présence de ces défauts difliciles & détecter par I'algorithme
de génération des vecteurs. [IUB mesure les cofits de cette phase de génération

el le logiciel garde ces donndes dans un fichier pour un traitement ultérieur par



vil

I'usager. Les logiciels ont été faits pour que l'usager puisse modifier les con-
tenus avec les logiciels commerciaux et en utilisant des commandes du systéme
d’exploitation de l'ordinateur, surtout ceux d’UNIX. Donc cette recherche a
créé un environnement de travail. L’usager peut se servir d’HUB comme simple
générateur de vecteurs ou méme pour apprendre comment ce genre de logiciel
fonctionne.

HUB a été utilisé pour tenter d’identifier la présence des HF's dans des cir-
cuits combinatoires d’ISCAS 1985. Malgré que les principes de base permettent
de découvrir et de définir ces défauts, selon la définition de coflit et en absence
des retours en arriére (en anglais, backtracks), HUB ne génére pas assez de
données pour bien identifier les causes de ces HF's. Les résultats indiquent que
HUB peut identifier les raisons pour les retours en arriére par I'identification du
noeud responsable pour ce retour et que la majorité de ces retours sont causés
par la phase de justification des noeuds & Pintérieur du circuit. HUB a réussi
4 mesurer les coflits de chaque phase majeure de la génération automatique
des vecteurs de test malgré que le systéme d’UNIX semble avoir un probléeme
a bien mesurer la quantité de temps. Pour permettre la future correction du
circuit, HUB imprime des informations sur les heuristiques responsables des
difficultés pendant les phases majeures de la générations de ces vecteurs.

Par contre, le modéle du circuit (gBDD) a fait ses preuves comme méthode
pour aider la génération des vecteurs de test et est devenu le résultat le plus
important de cette recherche. Ce modéle a permis la modification de la facon
de générer les vecteurs de test et d’ajouter des nouvelles heuristiques. Ce
modele permet 1'utilisation d’autres modéles de défauts avec des modifications

au logiciel.
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1.0 Introduction.

The continued increase in integrated circuit (IC) complexity, the tremendous
pressure on reducing the time to market for these dense products coupled with the
tumultuous drive to design products having inherently better quality and
manufacturability with the first product revision has resulted - once again - in a
heightened awareness of the testing bottleneck. Test and design engineers
understand from their first hand experience, the conflicting interests caused by the
requirements of high quality (expressed as a test metric), short test application
times, the need for high yields - an ambiguously defined term - and reduced test

costs.

The literature mentions that high test quality, such as 95% fault coverage
metric using the single stuck at fault model, provides for more reliable products
[McCluskey 88]. All testing, and hence the ensuing high quality, requires the ability
to control the testing stimuli and observe the deterministic results. An IC design’s
controllability and observability are key aspects that have been addressed through
the design methodology and grouped loosely under the monicker of Design For Test
(DFT). Ad hoc techniques, such as those listed by Bardell [Bardell er al. 86], and the
more formal DFT ideas, examples are listed in [McCluskey 86][Bardell et al. 86],
have been suggested as means to approach the testing problem from the hardware
perspective. Even more recently, researchers have been working on synthesis which
includes the designing of testable hardware as demonstrated in papers from
[Devadas er al.][Sangio 88a] [Beenker er al. 89 ]. There has been a tendency to use
these methods as the proverbial ‘‘silver bullet’’ intended to slay the testing monster.
The negative effect of some DFT solutions on product yield, die size and even circuit
performance has led to its use on an as needed basis in more recent years - as

exemplified by the work on partial scan path [Agrawal et al. 88].

At the 1989 International Test Conference, the invited speaker, Dr. Tom Williams of
the IBM corporation stressed the need for quality by stating that achieving the 100

ppm (parts per million) of defective units requires a minimum of 100% single stuck at



fault coverage and that the integrated circuits must be tested for delay faults. With
the increasing demand of the computationally intense software verification activities
such as fault simulation, one must design testable, manufacturable ICs using
methods that relieve this tool-related burden [D&T 89] [Miczo 86].

Therein lies one of the fundamental problems facing the testing community -
identification of what is hard to test and what is easily tested. Much work in the field
of estimating circuit testability, using the concept of testability measures (TMs), has
met with limited success. Despite the introduction of many different TMs - SCOAP
[Goldstein 79], COP [Brglez 85], VICTOR [Ratiu 82] - subsequent authors have
shown that there is little confidence in the ability to correlate these static TMs with
the reality of testing the circuits; this despite their use in guiding automatic test
pattern generation (ATPG) for pruning the algorithm’s decision search space. Even
Ivanov’s work using dynamic TMs [Ivanov 85] provided little extra benefit once the
added computational loading was considered. The underlying difficulty appears to be
the use of heuristics to create linear algorithms to approximate an NP complete

problem.

The use of ATPGs to detect faults which are hard to test (HFs) is a definite
possibility since, when an algorithm is employed, an exhaustive search will positively
identify the presence of redundant logic and other HFs. ATPGs are known to be NP
complete and their indiscriminate use can result in large computer run times.
Guidance heuristics, such as TMs and backtrack limits, were introduced as attempts
to reduce this excessive computer usage. However, as Fujiwara [Fujiwara 85] and
Marlett [Marlett 89] indicate, it is important to reduce backtracks by making the
correct decision and thus try to avoid labelling testable faults as HFs due to
erroneous decisions. Ivanov suggested that the use of TMs actually causes the

ATPG’s failure [Ivanov 85] for certain conditions.

ATPGs and TMs suffer another limitation: they indicate that a fault is hard to
test but fail to indicate the cause other than the fact that the backtrack limit has been
exceeded (ATPG) or that the testability is deteriorating. In order to correct the



underlying problem, it is desirable to understand the HF’s origins - is there no error
propagation path? - is there a conflict due to the assignment of logic values to the

nets?

This thesis proposes to identify the existence of HFs in logic circuits
(restﬁcted to combinational logic) based upon some new concepts which will be used
to extend the previous work of other researchers. The concept of costs - and the
budgetary constraints which arise from the cost of work - will be applied as a true
measure of what type of fault is a hard fault. This is the primary direction taken by
this paper. Cost accounting techniques will be applied to the various phases of an
extended version of a well known ATPG (Fujiwara’s FAN [Fujiwara 85]): these
phases are the error propagation (difference or D propagation), net justification, the
net implication (the simulation due to application of known values to the logic
circuit’s nets), the decision space creation (backtracing) and the re-evaluation of

previous decisions (backtracking).

The concept of cost will be used to tie in design related knowledge - i.e.
how much emphasis the designer wishes to place on the thorough testing of a given
design - by allowing the designer to specify the total cost constraints for the unit
under test (UUT). This will allow the use of an efficient algorithm to perform an
exhaustive search in the worst case or unlimited budget, and to also examine the
impact of severe budget considerations. Recent estimates indicate that fully one half
of a large IC’s development cost may be due to the impact of the IC’s testing
[Henckels 88a] [Henckels 88b].

In order to support this method, new heuristics have been developed and
coupled with a new circuit modelling technique. These aid an extended FAN
algorithm in arriving at a solution. The novel circuit model provides help in guiding the
decision making process and provides for the future use of hierarchical circuit
description in order to reduce the test generation time. It also permits the removal of

the single stuck at fault model restriction.

This thesis is divided into 7 Chapters and has the following organization:



Chapter 2.0 reviews previous research on identifying hard to test
faults (HFs). Testability Measures (TMs), specifically SCOAP and
COP, are discussed; the effect of reconvergence and fanout in
circuits, and the previous use of cost in Testability Analysis are
reviewed; and the means by which automatic test pattern generation
have all been used to attempt to discover the presence of HFs at the

various phases of circuit design are described.

Chapter 3.0 provides a review of the key concepts involved with
automatic test pattern generation (ATPG) required to introduce our
method of hard fault identification - HUB. A summary of the basic
single stuck at fault model, the internals of ATPG algorithms
(specifically Fujiwara’ s FAN since this has served as a basis for

HUB), and the basic framework of definitions is undertaken.

Chapter 4.0 details the mixed graph and binary decision diagram
circuit model which is required by HUB. Its ability to describe the
circuit’s functionality and structure, to provide hierarchical modelling
of mixed combinational and sequential circuits, and to allow different

fault models to be employed are presented.

HUB - Hard fault detection Using Budgetary constraints - is
explained in depth in Chapter 5.0.

HUB’s heuristics, the introduction of the budgetary constraint
concept that is central to our HF identification tool, and a preview of
how the circuit modelling technique will be closely coupled with to
HUB, are described in Chapters 4.0 and 5.0

« The results of measurements obtained from HUB on some of the 1985

ISCAS combinational benchmark circuits are provided in Chapter 6.0;
this data is also analysed and explained in this same chapter.

Chapter 7.0 provides the conclusions.



2.0 Previous Work in Identifying Hard to Test Faults (HF's).

This chapter will provide insight into the existence of hard to test logic faults
caused by the nature of the design methodologies and how various techniques have
been employed to attempt the detection of their existence at various stages of the

circuit design cycle.

The important effects of reconvergent fanout and logic redundancy in a logic
circuit provides a review of some basic definitions and leads into the use of tools;
specifically tools used to manipulate this information. Additional heuristic tools, used
to estimate the vaguely defined circuit testability, are presented using two traditional
testability measure sets: (1) SCOAP; and (2) COP which are linear approximation
approaches to the NP complete test generation problem. Subsequently, the use of
automatic test pattern generation tools in detecting HFs will be described including
additional explications as to how the tool and its circuit environment can cause faults

to become hard to test.

A review of sensitivity cost functions, random test cost functions, and
sequential test cost functions introduce more fully the concept of applying cost
measures in improving a circuit’s testability. These sections will also provide
insights into the diversity of techniques, metrics, and heuristics employed in

testability analysis.

2.1  The effect of reconvergent fanout and redundancy.

The presence of reconvergent fanout definitely causes difficult to test faults -
HFs. Bell states that backtracking operations within ATPGs, caused by redundancy
and the decision making process, are caused by reconvergent fanout [Bell Taylor 88].
He also quotes Savir as indicating that reconvergent fanout [Savir 83] may cause the
inability of TMs to correlate with the difficulty that ATPGs can experience in trying to
generate a solution. Reconvergent fanout also prompted Fujiwara to develop the
FAN ATPG algorithm [Fujiwara 85]. These HFs have driven several researchers to

develop techniques which analyse the circuit’s structure and indicate either the



points at which zest points (used to increase the observability within a circuit) need

to be inserted or whether the circuit is difficult to test - TMs.

Russell provided techniques, based upon graph theory, for determining the
diagnostic resolution of faults within combinational logic circuits with application to
the insertion of test points [Russell Kime 71]. These techniques only examined the
circuit’s structure without any consideration of the UUT’s function or the function of
the individual modules from which the UUT is.composed. This work was specifically
aimed at determining where test points - a structural change - could be inserted.
They also wished to evaluate the network structure’s contribution to the UUT’s fault
diagnosis properties. Batni later extended these principles to diagnostic test
generation techniques [Batni Kime 76].

Reconvergence in a circuit exists when a signal, emanating from a common
point known as the fanout stem, flows along more than one path each of which are
referred to as fanout branches, and then arrive at a common circuit primitive - the
reconvergence point [Kirkland Mercer 88]. Figure 2.1.1 shows a simple example with
the appropriate points annotated. Note that the introduction of reconvergence alters
the tree like structure of the circuit’s associated graph. Figure 2.1.2a shows the
circuit graph in the presence of reconvergent fanout and Figure 2.1.2b demonstrates

the effect of replacing the fanout branches with two independent signal sources.

Redundancy can generate HFs also. A redundant fault is caused by a
redundant connection - a connection, which when removed and replaced by a fixed
logic value of 0 or 1 - does not alter the output functions of a circuit. A circuit that
contains no redundant connections is called irredundant. A theorem [Miczo 86]

follows from this definition.

THEOREM 2.1; All stuck at 0 and stuck at 1 faults contained in the
combinational circuit UUT, are detectable if and only

if the circuit is irredundant.
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Figure 2.1.1: Example of reconvergent fanout.

[Russell Kime 71] state that reconvergence is a necessary condition for
redundancy. They extend theorem 2.1 to state the sufficient condition for detecting

every fault within an irredundant circuit.

THEOREM 2.2: If a circuit is irredundant, then every stuck at 0 and
stuck at 1 fault on a net and at a module’s inputs
and outputs in the network is detectable. If a
network is irredundant, then the existence of a
directed path from an element fault to a PO is a
sufficient condition for that fault to be derectable at
that PO

VICTOR (Visi Identifier of Controllability, Testability, Observability and
Redundancy) [Ratiu 82] is an example of a 4 pass linear algorithm for combinational
logic circuits which endeavours to determine an UUT’s testability, identify
redundancy, and attempt to generate test vectors. VICTOR flattens (levels) the
circuit, calculates the zero and one controllabilities, obtains the observability values
and then indicates redundancies while performing test generation. However

McCluskey notes that VICTOR [McCluskey 86] tends to be a pessimistic procedure,



identifying many nodes as being potentially redundant even if this is not the case.

—O—

Figure 2.1.2a: Graph with reconvergent fanout.

—O—

Figure 2.1.2b: Graph without reconvergent fanout.

2.2 Testability Measures (TMs).

Several researchers have tried to identify the presence of faults which will be
hard to test, (HFs), by establishing testability measures (TMs). The testability of a
design is evaluated using these TMs prior to generating the set of test vectors used

to detect a faulty circuit. Efforts have focused on the creation of linear algorithms



based upon heuristics in order to quantify the relative difficulty in generating the
subsequent testing stimuli. These TMs are derived, in general, from metrics designed
to quantify the conmtrollability and the observability of the individual rets or lines
within the UUT. The controllability is the ability to set a given net [ to a known logic
value v € {0, 1} from values placed on the UUT’s primary inputs (PIs). Observability,
the counterpart of controllability, is the ability to observe the logic value on ner !
(typically with an error value impressed on it and not a logic 0 or logic 1) at a given
UUT’s primary output (PO). Observability is also a function of the nets’

controllabilities as is shown below.

Poor controllability or observability hinders the ability to generate a test for a
faulty circuit element. Lack of control can cause one or more of the following problems

10 occur:

+ propagation of the error, caused by the faulty element, may be
blocked due to a blocking condition on a logic gate: such as a logic 0

on one or more of an AND gate’s inputs as shown in Figure 2.2.1;

« line justification may not be possible. Figure 2.2.2 shows a net with
the current value of ‘X’ (don’t care) and which requires setting to

logic 1. In this example, a zero is more easily generated than a one,

since only 1 of the 24 input combinations provides this logic 1;

« the actual sensitization of the error, local to the faulty logic element,
may be difficult. The inability to generate an environment whereby
the error condition is clearly evident may preclude the possibility of

detecting the faulty circuitry.
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Xr 0 &OD

T—— Blocking condition.

Figure 2.2.1: Blocking condition example.

Lack of observability can be related to the inability to control a net which would allow
the error signal to be propagated to an UUT PO. The terms, propagation,
sensitization and justification, will be explained in more detail as automatic test

pattern generation is covered in Chapter 3.

Two examples of widely discussed TMs are presented: (1) SCOAP - Sandia
Controllability Observability Analysis Program - which uses heuristics related to a
circuit element’s relative depth within the UUT; and (2) COP - Controllability
Observability Program - that applies signal probability under the assumption of
independent fanout branches for reconvergent fanout conditions. The overall

advantage of these TMs is that they are O(n), linear, where n is the number of logic
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gates contained by the circuit being examined.

X
0 Dbar

L &
X o 1

G & D
X I

C
X & -

T— Must be set to 1.

Figure 2.2.2: Line justification example.

2.2.1 SCOAP - Sandia Controllability Observability Analysis Program.

Goldstein suggested that the relative depth of a logic gate within the UUT
would provide a measure of the ease in testing a fault on a net associated with this
gate. SCOAP [Goldstein 79] [Goldstein 80] was the computer implementation of the
algorithm which calculates the 6 TMs. These 6 metrics are used to gauge the
testability of the combinational and sequential circuitry; only the 3 combinational
TMs will be described. Essentially the controllability is decreased, indicated by an
integer value which increases by an fixed quantity (tending towards infinity or poor
control), as one proceeds from the UUT’s primary inputs (PIs) heading towards the
UUT’s primary outputs (POs) through the various gates in its cone of influence.
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SCOAP first determines the nets’ zero, CO(net D, and one, Cl(net D,

controllabilities. This information is required for calculating the nets’ observability on

the second pass. The observability also decreases as the TM’s magnitude increases

Initialize all Pls, POs and internal nets.
C0 and C1 for Pls set to 1.

CO0 and C1 for POs and nets set to .
Obs for Pls and nets set to eo.
Obs for POs set to 0.
for all logic elements in UUT {
Calculate CO.
Calculate C1.

}

for all logic elements in UUT {
Calculate Observability.

Figure 2.2.1.1: SCOAP pseudo code.

and is denoted by Obs(l); observabilities are independent of the value being
observed. The SCOAP program’s pseudo code is presented in Figure 2.2.1.1 makes
use of the following relationships, only some are shown, and initial conditions in order
to predict the testability. Some simple logic primitives, with their corresponding
combinational controllability and observability equations, are shown in Figure 2.2.1.2.
The samé figure also provide the information for fanout stems, the net driving a
fanout, and fanout branches. The initial conditions for the unit under test’s primary
inputs (PIs) and primary outputs (POs) are listed in Table 2.2.1.1. Agrawal has
indicated in a past paper [Agrawal Mercer 82] the poor correlation between the
predicted ease of testability and the reality.

A simple circuit, the full adder of Figure 2.2.1.3, is used as an example to

show the combinational controllabilities and observabilities for every net in the
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circuit; these values are found in Table 2.2.1.2. This same circuit is reused in the next
section, where a different set of testability- measures is calculated. Note that the
values within the accolades are for the fanout branches. The value chosen is the

minimum of the set.

Parameters Primary Inputs Primary Outputs
co 1 oo
C1 1 oo
Obs oo 0

Table 2.2.1.1: SCOAP initial conditions.

SCOAP’s sequential TMs are not discussed here as many other techniques
have been proposed and since this thesis is primarily concerned with combinational
logic HF identification. The TMs based upon sequential path length, as established

from a graph representation seem to be a more favoured approach.

CO(Y) = C1(X) + 1
X Y CL(Y) = COX) + 1
Obs(X) = Obs(Y) + 1
X1 . CO(Y) = min(CO(X;) + 1
C1(Y) = CI(X;) + 1

Y1

CO(Y;) = COX) + 1
= Cl(Y; = C1(X) + 1
Yn Obs(X) = min(Obs(Yy)) + 1

Figure 2.2.1.2: Some elements and their SCOAP relations.
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Figure 2.2.1.3: Full adder circuit.

2.2.2 COP - Controllability Observability Program.

Brglez suggested that a more correct method [Brglez 83] [Brglez 85] for
determining a circuit’s testability is to use signal probabilities in calculating the TMs.
COP’s controllability and observability metrics are restricted to only combinational
circuitry resulting in a total of 3 measures. COP [Brglez 85] also requires two
passes, highlighted in Figure 2.2.2.1, through a UUT to accomplish the testability
analysis: the first pass is initiated from the UUT PIs and determines the
controllabilities, Co(net D) and Cl(net l) as the algorithm proceeds through the UUT

towards the UUT POs; the second iteration determines the observability Obs(/)
starting at the UUT POs and working towards the UUT PIs using the previously
determined CO(net D and Cl(nct ). The initial conditions are stated in Table 2.2.2.1

and some formulae are shown in Figure 2.2.2.2. The COP TMs, for the full adder
circuit of Chapter 2.2.1, have been calculated and are found in Table 2.2.2.2.



NET NAME Co 1 Obs
Al 1 1 6 {8, 6, 13, 10}
B1 1 1 6 {8, 6, 13, 10}
CIN1 1 1 7 {7, 13, 10}
D 3 2 6
E 2 3 4
F 4 2 10
G 2 4 7
H 2 4 4
J 4 5 1
K 5 8 4
L 6 8 1
CARRY 6 5 0
SUM 9 7 0

Table 2.1.1.2: SCOAP values for the full adder circuit.

15
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Parameters Primary Inputs Primary Outputs
co 0.5 0
Cc1 0.5 oo
Obs oo 1

Table 2.2.2.1: COP initial conditions.

Other TMs have been suggested, but Huissman has indicated in a recent
paper that there is still a great deal of difficulty in predicting a circuit’s testability
[Huissman 88]. He also notes that despite the lack of a definitive TM, and their lack

of success, that work should continue in this area.

Initialize all Pls and POs.
CO0 and C1 for Pls set to 0.5.
CO0 and C1 for POs and nets set t0 e,
Obs for Pls and nets set to .
Obs for POs set to 1.

for all logic elements in UUT {
Calculate CO.
Calculate C1.

}

for all logic elements in UUT {
Calculate Observability.

Figure 2.2.2.1: COP pseudo code.
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CO(Y) = C1(X)
X Y C1(Y) = CO(X)
Obs(X) = Obs(Y)

Sl CO(Y) = 1 - C1(Y)
CL(Y) = TIC1(X;) + 1
Xn | Obs(X;) = I C1(X;) x Obs(Y)
X1
CO(Y;) = CO(X)
Xl CL(Yy = CI(X)
vy,  Obs(X) = min(Obs(Y;))

Figure 2.2.2.2: Some elements and their COP relations.

Despite the inherent limitations of these TMs caused by the use of heuristics,
their use in guiding automatic test generators has become commonplace. These
guidance heuristics have not been limited to the COP and SCOAP TMs.

2.3  Using of ATPGs to detect HFs.

Automatic Test Pattern Generation (ATPG) algorithms and procedures have
been created to generate test vectors for a given fault set for a given circuit requiring
testing. Algorithms, by their very nature, guarantee a solution (providing that there is
at least one solution possible) if they are allowed to work until their natural
termination point. However brute force methods such as the D-algorithm [Roth 67]
may have a tendency to be highly inefficient for classes of logic circuits - and degrade
to a time consuming exhaustive search of all the circuit’s vector space. The assigning
of decisions in a totally random manner lead to the development of improved
techniques that prune the decision space: PODEM [Goel 81]. FAN [Fujiwara 83]
used topological heuristics to reduce the decision space’s size. PODEM and FAN
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will become exhaustive searches in the limit should their pruning heuristics be
useless, or of poor quality, for a particular circuit. Thus, an algorithmic ATPG can be

used to decisively indicate an HF’s presence.

As the ATPG works towards constructing a solution, it may encounter
situations where a decision (arbitrary) is required; an incorrect choice is a costly
effort as indicated by Fujiwara in his work on developing FAN [Fujiwara 83]
[Fujiwara 85]. Reversing a previous decision - a backtrack operation on the decision
space - requires that the ATPG perform much extra work. As such, many ATPGs
will declare a fault as hard to test when the number of ‘‘backtracks’’, generated in
the search for a solution, exceeds an arbitrary limit - such as 10. The fault may be
incorrectly labelled since a generic heuristic has been arbitrarily imposed. This is,
none the less, one additional method (above an exhaustive search) by which an
ATPG can identify HFs - the metric of cost of effort. While the heuristic based result
is not always precise, the exhaustive search is and one can safely assume that the
cause is redundancy. A limit of 10 backtracks per test generation exercise for a
selected fault appears to be a useful figure of merit. Researchers, such as Fujiwara,
found that increasing this limit by 2 orders of magnitude does not significantly
increase the quantity of detected faults. It would seem that the heuristics may be
causing the ATPG failure. [Agrawal Seth 89] suggest that test generation is made
difficult by factors other than the quantity of gates, the quantity of memory elements
(sequential logic elements) and the circuit’s sequential depth. Their list is augmented
by Ivanov’s suggestion that the heuristics [Ivanov 85] also compound the automatic

test generator’s quandary in finding a solution:
e poor initializability.
« poor controllability and observability for memory elements.
« structural dependencies (reconvergent fanout for example).
» cycles within the circuit.

» the guidance heuristics.



NET NAME Co c1 Obs
Al 0.500 0.500 0.312
Bl 0.500 0.500 0.312
CIN1 0.500 0.500 0.562
D 0.250 0.750 0375
E 0.750 0.250 0.625
F 0.125 0.875 0.410
G 0.875 0.125 0.560
H 0.625 0.375 0.750
J 0.531 0.469 1.000
K 0.590 0.410 0.875
L 0.484 0.516 1.000
CARRY 0.469 0.531 1.000
SUM 0.516 0.484 1.000

Table 2.2.2.2: COP values for the full adder circuit.

19
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24 Previous use of cost in Testability Analysis.

2.4.1 Breuer’s Sensitivity Functions.

Breuer used the concept of cost [Breuer 83] in extending the testability
measure concepts. His specific goal was to identify points within the UUT for the
optimal and automatic insertion of test points for improved observability and gates for
increased controllability (addition of AND gates for improving the zero controllability
and OR gates for facilitating the one controllability). He identified the cost of
controlling nets and observing nets by heuristics that had served as the basis for
SCOAP. Breuer labels the zero controllability as ¢0(l), the one controllability as

¢1(l), and the observability as ¢2(l), for a given circuit net /. The UUT’s costs are

totalled by first summing each individual cost for L - the set of nets contained by the
UUT - providing $j, $;, and $, as shown in equations 2.4.1.1 - 2.4.1.3. The total

testability cost, $’, is the result of the weighted sum of these addends.

$o= 2 ¢o 2.4.1.1

lelL

$1= 2¢10D 2412
lelL

$o= 2 ¢r2(D) 24.13
le L

$= 3 kl $i 2.4.1.4

Breuer then specified a sensitivity function used to calculate the reduction in
costs (such as the improved zero controllability of a net / obtained by inserting an

AND gate) generated by adding a test point at an arbitrary circuit net. Equation
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2.4.1.5 specifies the sensitivity for a single modification to a net /. Sj is a binary

variable used to indicate that the test point is activated (Sj = 1) or that normal circuit

functionality occurs (Sj = (). Breuer [Breuer 83] [Chen Breuer 85] implemented a

program by which constraints could be applied - the maximum cost of modifications;
upper bounds on individual nets within the UUT - to the UUT while automatically
applying DFT.

98; | $,8:0 =1 - $;65;) =0

24.15

8$j(1)_ 1-0

2.4.2 Random Test Cost Functions.

Lisanke et al. also use a cost function - a testability cost function - while
generating tests from randomly created patterns [Lisanke et al. 86] [Lisanke et al.
87). Their program, ESPRIT, consists of the five modules indicated in the pseudo

code shown in Figure 2.4.2.1.

do{

Compute Input Signal Probabilities. ~ /* 1 */
do{

Generate Vectors.  /* 2 */

Fault Simulation. [*3 %/

Update Fault List. /* 4 */

Evaluate Fault Coverage Slope. /* 5 */
} until Fault Coverage Slope < User’s Value.

Evaluate Fault Coverage Slope.
} until Fault Coverage Slope < User’s Value.

Figure 2.4.2.1: ESPRIT pseudo code.
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Costs are used for 2 of ESPRIT’s ‘‘functions’’: (1) - the computation of input
signal probabilities and (2) - by the decision making process for continuing to
attémpt to generate tests. The former is the most important part of ESPRIT and is
based upon COP [Brglez 84]. Remembering that the probability of detecting a fault

on a net / is:

Pdj/0 = C;(1) * Obs(l) 2421

Pdy =(1 - Cy(@) * Obs() 2422

One can then determine the cumulative detection probability Cde, by random

patterns, given n independent trials, with the expression:

n
CPdi() =1 - (1 - Pd) 2423

Lisanke et al. defined a fault coverage estimate (FCE) as a means to predict random
test pattern generation costs for an UUT about which one knows the net list, fault set
and input signal probabilities. The estimated fault coverage curve, a function of the
number of independent trials is shown in Figure 2.4.2.2 and is the average of the
cumulative detection probabilities over the fault set F as defined by:

1 F
FCEMm) = ~g 121 CPd(D 2424

That the estimated fault coverage approaches unity with an increasing number of

trials is intuitive - as n approaches 2™ (m primary inputs on the UUT) the testing

becomes exhaustive.

The area above the curve described by FCE is proportional to the amount of
effort required by the fault simulation phase, Since ESPRIT’s run time costs

(computer processing unit’s - CPU - time or cost) is dominated by the fault
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simulation phase, the authors created a cost function $ that represents this area $.

This area is defined by the equation:

$ =NZ [1 - FCE(n)] 2.4.10
n=0 .

100%

%

vector quantity —_

Figure 2.4.2.2: Fauit Coverage function.

The authors minimize the cost function $ in order to produce the optimal input
signal probabilities used during the vector generation phase. This is achieved by
using a gradient optimization technique that provides information on how $ changes

due to input signal probability modifications.

2.4.3 Sequential Test Cost Functions.

Agrawal et al., in creating a new ATPG [Agrawal et al. 89], defined three (3)
cost functions used in developing a generalized directed search methodology. (1) An
initialization cost function is used during the circuit initialization phase of their

ATPG. (2) A concurrent test generation cost function is employed for simultaneously
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testing several faults, and (3) a single fault test generation cost function is used
when testing a single fault while generating vectors. Each of these cost functions is

applicable to one of the three independent ATPG phases.

The initialization phase is required to generate an initialization vector
sequence where the number of unknown signals on flip flop logic elements increases
the initialization cost. The user may specify a non-zero initialization target value

instead of the default target of zero cost.

A distance metric, the shortest distance from any fault effect of that fault to
any primary output, is used in selecting whether a vector candidate is to be accepted
after its trial. Agrawal et al. contend that the smaller the cost, the closer the fault is
to being detected - thus a detected fault has zero cost.

The third cost function - single fault test generation cost function - is similar
to the concepts proposed by the SCOAP TM. This dynamic cost reflects the
minimum number of primary inputs that must be changed and the minimum number of
additional vectors to control a node’s value. This cost must describe both the effort to
sensitize the fault and to propagate the fault to a primary output. A weighting penalty
may be assigned to the dynamic sequential controllability (DSC).

2.4.4 Summary of Cost Functions.

The above three methods are indicative of .the segregated approach to the use
of cost in the testability arena. Breuer used his cost metrics to indicate how design
for testability could be automatically added to the UUT. However, Breuer’s metrics
were based upon SCOAP’s predecessor and Agrawal [Agrawal Mercer 82] has
previously demonstrated the limitations of SCOAP TMs. [Agrawal et al. 89] also
rely heavily on heuristic cost measures although attempts were made to vertically
integrate these measures into an ATPG system. Lisanke e al. attempted to unify
the cost of test pattern generation, albeit randomly created test patterns, with TMs.

An improved technique would appear to be a properly formulated

amalgamation of these seemingly disparate methods; testability —measures,
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heuristics, costs, automatic test pattern generation and user supplied constraints.

Cost is a primordial consideration given that one cannot:
« increase the circuit size without reasonable justification;
+ degrade system performance;
« monopolize computer capacity for ATPG;

« cause excessive test application times due to excessively long test

patterns;

o allow poor quality product, determined by lower fault coverage

values, to reach clients.

Many of these, if not all, cost related parameters can be used to define a more
precise definition of device testability and may be applicable on a varying product by
product basis. This shall be the thrust of this thesis - the identification of HFs based
upon budgetary (cost) constraints.



3.0 Review of Automatic Test Pattern Generation (ATPG).

ATPG principles are reviewed in depth in this section, providing the
foundation for the HF identification algorithm HUB. The traditional fault model, the
single stuck at fault, and the use of the five valued logic - at the heart of the D
calculus used for the D algorithm - are also presented. This section also reviews the
differences between the single path and multiple path sensitization methodologies.
The definitions of basic terms are interspersed throughout the section. An ATPG’s
use of heuristics is explained as are the trade-offs and additional features

encountered during the creation of an automatic test pattern generator.

3.1  Fault modelling.

Dr. Tom Williams noted that the concept of testing structure instead of
function, as proposed by R. Eldred, was responsible for the literal explosion of
research into fault models and the accompanying automatic test pattern generation
tools [Williams 89a]. Eldred described how structure could be verified based upon
tests for specific faults under a fault model which accurately describes the realistic
set of physical defects that occur within the structure [Eldred 59]. An underlying
theme of fault models is the 3 abstraction levels associated with the concepts of

defects, faults, and errors.

Defects refer to the physical aberration or anomaly which occurs during the
manufacturing process. For integrated circuits, these may correspond to
contaminants, metallization problems (voids or bridging), contact problems, etc..
These defects can have different defect densities and are often a function of the
particular process [Galiay 80] . The defects may be modelled as having an influence
over a relatively large area - known as global or clustered defects - or as very
localized defects - point defects [Shen 85]. A metal bridging defect between the
positive power supply and an inverter’s output is shown at a layout representation

level in Figure 3.1.1.a. This defect’s effect could be represented at the transistor

abstraction level by a fault such as the well known single-stuck-at-n, n € {0, 1} as
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shown in Figure 3.1.1.b.

In turn, the fault’s presence causes the introduction of an error at a functional
abstract level. As an example, if this inverter was one of an instructions ROM’s
outputs and was fed to the input of a signature register [Bardell er al. 86], one would

obtain a burst error [Stallings 88].

There are several advantages in using a fault model. The following are some

of those enumerated by [Miczo 86]:

» Create tests specifically for those faults most likely to occur;

« Compute a test quality metric by determining how many potential
faults are caught by the test stimulus;

+ Debug yield problems by relating defects to specific test patterns.

Considerable work has been done recently, using a technique known as
Inductive Fault Analysis (IFA), in relating the fabrication process kmowledge to the
circuit layout in order to determine the fault types most likely to occur [Shen 85]

[Ferguson 88].

3.1.1 Single stuck at fault model and 5 value logic.

A typical defect in the MOSFET (Metal Oxide Surface Field Effect Transistor)
technology occurs in the metallization [Galiay 80] e.g.: the bridging of two adjacent
metal runs. This might cause a transistors output to be shorted to the power supply.
Such a defect is typically represented by a fault such as the well known single stuck
at n, s-a-n where n € {0, 1} and it is assumed that only one such fault exists at any
given time. Figure 3.1.1a. represents an inverter, in CMOS (Complementary MOS),
which has its output shorted to the positive power supply. The corresponding fault at
transistor and gate abstraction levels, a s-a-I, are indicated in Figure 3.1.1b and
Figure 3.1.1.1.
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Figure 3.1.1a: CMOS inverter with output shorted to VDD.
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Figure 3.1.1b: CMOS inverter with output shorted to VDD.
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One wishes to detect the presence of improper circuit fabrication in an efficient
manner. The tendency has been to use a fault model - a wide variety exists -
'especially the single stuck at n fault model which was created around the late 1950s
[Eldred 59] and whose use, correctly or otherwise, has continued into this age of
CMOS and BiCMOS (Bipolar CMOS mixed technology process). It has been
suggested repeatedly that the stuck at model is insufficient for CMOS technology and
lead to the development of the stuck open [Wadsack 78]. However, simulators for
the single stuck at fault model are seemingly the dominant factor. Automatic test
pattern generation is typically constructed for s-az-n faults. It is important to note that
stuck open faults appear to be correctable through proper design approaches [Soden
89], are apparently detectable when a high single stuck at fault coverage exists
simultaneously with nodes that change states frequently - high toggle activity, and
that their occurrence is not as high as the literature had previously suggested [Shen
85].

Indeed, it has been suggested that certain structures such as PLAs may not
be adequately modelled by the s-a-n regardless of the process technology.

T stuck at 1.

IN ————] 1 —— ouT

Figure 3.1.1.1: CMOS inverter with output stuck at 1.

The presence of a stuck at fault is commonly indicated by the use of a 5 valued
logic system where any net / within the circuit, can have the value v € {0, 1, X, D,
Dbar}. The D signifies the presence of a Difference between a correctly fabricated
and an improperly manufactured circuit. The intersections producing D and Dbar are
shown in Table 3.1.1.1. This table shows 2 important concepts: (1) - the presence of
a fault can only be indicated by the detection of a difference; (2) - that the difference



30

is only specified for the logic values 0 and 1.

GOOD CIRCUIT
F ' 0 1
W .
U
.
v 0 0 D
C
I
R
ICJ —
I 1 D 1
T

Table 3.1.1.1: Rules for Difference intersection.

To successfully create a test for a given fault, it is essential to cause the
difference D or Dbar, to be visible on at least one of the unit under test’s primary
outputs. Thus the difference must exist at two levels: (1) locally - that is for the sub
element within the UUT which is the target for a fault and (2) globally - that is visible
external to the UUT. Failure to comply with either requirement will cause the fault to
be untestable.

Given a circuit to be tested, UUT, a set of faults can be created - typically this
is at a gate level representation. The faulr list or fault dictionary F(UUT) is generally
unranked [Shen 85] meaning that any relative importance for the different faults is
ignored. This fault dictionary may not be minimally sized since faults may be
collapsed (reduced) on local and global levels. Generally n-input logic primitives such
as AND and OR gates have their fault quantity reduced from 2n + 2 to n + 2 faults on
a local level [Miczo 86]. Further fault collapsirig can be obtained by using fault
dominance [McCluskey 86] and fault equivalence [Miczo 86] relationships. Indeed,
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at the local level, many n-inpur combinational logic functions can further reduce their

faultston + 1.

3.2  Single versus Multiple path sensitization.

For a given circuit, the difference value may arrive at a fanout stem (a net
which controls more than one destination logic element) as effort is expended, to
cause the difference to appear on a primary output (PO). This scenario is depicted in
Figure 3.2.1. One could chose to provide a path from this fanout stem to an PO by
selecting a unique path, known as single path sensitization (SPS), or by selecting
several paths, known as multiple path sensitization (MPS). In -the case of SPS,
““all’’ that one need do is to pick the best path - minimum effort (easiest) or least
costly - among the legitimate choices available. MPS typically attempts to drive the
error towards the UUT’s POs by all possible valid paths. Picking the winning route in
SPS is usually done with the aid of heuristics - indeed the use of testability
measures such as the COP observability measure. The original version of PODEM
[Goel 81] used a distance metric similar to SCOAP while Ivanov used COP in a later
version [Ivanov 85]. A gate with an ““X’’ on its output and having an error signal on
one of its inputs, is known as a D Frontier; this D Frontier is the starting point for

the path sensitization phase.

33 The Four ATPG phases of Deterministic Gate Level Test Generation.

Given an arbitrary unit under test for a given fault, such as shown in Figure
3.3.1, the objective is to generate a test assuming the presence of a fault - for this
example and the remainder of this thesis unless expressly stated to the contrary, all
test generation shall assume the single stuck at fault' model - which will detect its
presence in an improperly fabricated circuit. The element, an 2 input AND logic gate,
is selected as the target for a fault represented as D. Prior to the test all internal nets
are assumed to be Xs as are the UUT’s PIs and POs.

Any ATPG can be reduced to a set of four basic operations when generating a

test for a given fault. The sensitization (or error activation) of a fault for the element
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within the UUT is required to render the fault visible - by the presence of a difference.
Although for simple logic primitives, such as ANDs, ORs etc., this will only be done
once per trial due to the small fault sensitization set, the sensitization phase can
conceptually occur repeatedly if one cannot subsequently create an environment
within the UUT by which a valid test is created. Once the difference has been created,
the three other phases are engaged: the error propagation using either single or
multiple path sensitization; justification of the nets’ values which are set during the
various phases and the evaluation of net values or implication phase. These phases

may occur in a variety of sequences - this is an implementation issue.

Figure 3.2.1: Path sensitization example.

To sensitize the s-a-0 error on the AND gate’s output, Figure 3.3.1, it is first
necessary to generate the difference D requiring that the fault free AND gate produce
a logic 1 - refer to Table 3.1.1.1. This dictates that all the AND gate’s inputs must be
set to logic 1 for both the fault free and the faulted circuit. This step is referred to as

the error sensitization or activation phase.
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Once a net’s value has been uniquely assigned ( / € {0, 1}), an implication
phase may be invoked. Implication is simply an evaluation (simulation) of the net’s
effect on other logic elements within the circuit and within its cone of influence. Since
no fanout of the AND gate’s inputs occur in this example, no implication is required
due to the error sensitization. This simulation may occur whenever a list of nets,
whose values have changed, exists. This phase can discover the presence of

conflicts - a node that must take inconsistent values simultaneously: 0 and 1; D and
1 or Dbar and 0.

O = Q o r
o
O~ Qo

Figure 3.3.1: ATPG example.

It is necessary to propagate the error, using an error propagation phase, until
the error appears on at least one of the UUT’s POs. Either single or multiple path
sensitization may be used, and possibly a mixture of both. Figure 3.3.2 shows how

the error propagation might occur.
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Figure 3.3.2: Error propagation example.

It is also required to justify the assignment of net values. Net values are
assigned when the error is sensitized and as the error is propagated at each logic
primitive en route to an UUT PO. Figure 3.3.3 indicates how a typical justification

phase might occur.

Thus, in general, one could represent the ATPG’s actions by the pseudo code
of Figure 3.3.4. The simplified code does not consider how the search space is
created or how reversing previous decisions is handled. Also, it is not necessarily
true that this order is followed exactly as there may be a variety of implementations.
It is possible to add a fault simulation phase to identify other faults detectable by the
test vector (using the deterministically generated stimulus). Fault simulation is one
method that allows a more compact test set by targeting easier faults and without
reverting to the use of vector manipulation routines after the completion of the test

generation phase. Previous authors have indicated that a good percentage of the
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UUT’s fault set may be easily detectable by random vector generation - this is
suggested by the rapid rate of fault detection early in the ATPG; it has been
suggested that this is roughly in the 65% to 85% fault coverage region [Agrawal Seth
88]. Even in the case of sequential test pattern generation, one can find these central
phases [Marlett 88].

Figure 3.3.3: Net justification example.

The ATPG works backwards in the circuit graph to build the decision space or
the tree that represents the search space for the fault in question by a process known
as backtracing. While the circuit graph is immutable for the whole circuit during the
test generation process, the decision space depends upon the target fault and the
search algorithms (or procedure in the case of a non algorithmic program
implementation). Should a decision be unjustifiable or create a conflict, the decision
must be changed through a technique called backtracking. Although different methods
might be used, driven by complex heuristics, the general principle is to change the
last unchanged decision which will eliminate the pending conflict and which will not
generate any new conflicts. Should no choices remain, an explicit or implicit

exhaustive search of the decision space has occurred; this determines that the fault is
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untestable due to redundancy which was previously seen to be caused by the
presence of reconvergent fanout. Large backtracks usually trigger a limit and abort
the search for the targeted fault.

while (Faults remain in UUT){
Pick a fault.
Sensitize the fault.
while (No test && Choices remain){
Propagate fault to an UUT PO.
Justify all nets’ assignments.
Implication of nets’ assignments.

}

Simulate for other faults detected by this test.

Figure 3.3.4: A typical ATPG algorithm.

The decision space’s size, if one considers the UUT as a black box with n PlIs,
could consist of n nodes which are a 1:1 mapping of the PIs and their state. This is
precisely the case for PODEM [Goel 81] while the D algorithm’s size can potentially
include a node for every circuit net. A tuple placed on a stack can be effectively used

to represent the search space in a computer representation.

3.4 Random Test Pattern Generation and Hybrid Methods.

It has been suggested that the first portion of deterministic test generation,
where each vector may detect many additional faults (hence the use of fault
simulation), is due to the random easiness of these faults. Therefore these faults

could be detected by using randomly generated test vectors. Many authors have
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worked on such techniques [Bardell er al. 86] especially since much work in the Built
In Self Test (BIST) area is centered on the use of pseudo random stimulus created by
using LFSRs (Linear Feedback Shift Registers) such as that in Figure 3.4.1. Further
work on varying the outputs weighting has occurred in order to allow nearly 100%

fault detection.

/
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Figure 3.4.1: A typical LFSR circuit.

An additional approach has been to use a two phase methodology: detect the
random easy faults using randomly generated test vectors - performing fault
simulation on these vectors; then switch to a deterministic automatic test pattern
generator to detect the remaining faults. This method is depicted by the pseudo code
in Figure 3.4.2. A recent article [Abramovici 89] suggests that this hybrid technique
is of little or no use. Their research shows that random test vectors detect the same

faults found in the second phase.
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while (Faults remain in UUT){
while (Random easy){
Create a random test vector.
Perform fault simulation.
}
while (Not random easy){
Deterministic ATPG.

}

Figure 3.4.2: Random Test Pattern Generation.

~ Another approach to test pattern generation was suggested by Chang ef al. in
a hierarchical test generator CHIEFS [Chang et al. 86]. This ATPG used a
technology independent circuit representation called binary decision diagrams
(BDDs) [Akers 78a] which also allowed test generation for circuits about which no
detailed design knowledge was available. The tests were built around the ability of
the BDDs to represent the logical function of the circuit, readily constructed from the
circuit’s truth table. These experiments were designed to elicit stimulus that tested
for correct operation and to test that undesired functionality was not present.
Although obtaining good test coverage using this new fault model, the fault coverage
using the single stuck at fault model tended to suffer - albeit that from one
implementation method to another for the same circuit more consistency was
achieved than by predecessors [Abadir Reghbati 85] [Abadir Reghbati 86]. Chang
noted that this traditional fault coverage improved with increased implementation
knowledge. Note that a new simulator was required to support this circuit and fault
model. Until recently, this has been one of the few attempts to generate tests where

hierarchy has been exploited.
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MODEM [Calhoun Brglez 89] is a recent example of a modification to an
existing tool and methodology, that is PODEM, where an attempt to reduce the
ATPG effort is constructed around the use of hierarchy. Since hierarchical
representations will reduce the quantity n, the exponent in the computational
complexity equation, effort will probably continue along these lines during the coming
years. There has even been research into reuse of existing test stimulus for macros -
a larger circuit constructed recursively from instances of logic gates and other
macros - since one can amortize the test development effort for the macro over larger

amounts of designs; [Somenzi ez al. 85] is one such example.

3.5 Review of the FAN algorithm.

There have been three ATPGs whose names re-occur regularly in the test
literature: the D-algorithm, PODEM, and FAN. Roth’s D algorithm [Roth 67] is
based upon his D calculus and provides a complete method for generating test
vectors for digital circuits. Unfortunately his algorithm tends to be considered as
highly inefficient for certain classes of circuits [Miczo 86] such as EDACs (Error
Detecting And Correcting) where large number of modulo 2 logic primitives may be
found. The D-algorithm, when faced with a decision, did not use any heuristics and
very quickly became an explicit exhaustive search of the decision space due to the

poor choices made.

PODEM [Goel 81] uses heuristics and a different approach for combinational
logic circuits: a branch and bound algorithm. Goel’s method increased the ATPG’s
performance by simultaneously reducing the required computer run time - due to an
implicit enumeration methodology - and by reducing the amount of data retained by
the ATPG. This reduction in memory requirement was achieved by reducing the
number of nets involved in the ATPG decision process from potentially all internal
circuit nets (as is the case for the D algorithm) to only those of the UUT’s PIs. This
meant that a decision tree built from the UUT’s PIs was employed for the implicit
enumeration as opposed to a cube containing, potentially, the vertices of every circuit

net.
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Fujiwara made the astute observation that PODEM’s performance could be
further improved by reducing the backtrack quantity ( the re-evaluation of a previous
decision due to a conflict arising in the future) caused by the fanout contained within
the UUT [Fujiwara 83)]. Specifically, Fujiwara attacked the quantity of backtracks
generated during the ATPG process and the time needed to detect and process the
backtracks. The literature suggests a performance improvement of 5 to 6 times over
PODEM. A similar value with respect t© PODEM'’s improved performance over the
D algorithm may hold [Seth Agrawal 85]: It is important to note that one is referring

to linear improvements applied to an NP complete problem.

The resulting algorithm, FAN [Fujiwara 83][Fujiwara 85], is shown in Figure
3.5.2. One can find the four principal ATPG phases described earlier in section 3.3.
Three key types of net classes are identified in order to aid and regulate the various

test generation stages, shown in Figure 3.5.1:

« BOUND LINEs: those nets reachable from some fanout stem.
 FREE LINE: a net which is not bound.
« HEAD LINE: a free line adjacent to a bound line.
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BOUND
Figure 3.5.1: Types of nets in FAN.

The ATPG algorithm FAN [Fujiwara 83] [Fujiwara 85] is described in
pseudo code in Figure 3.5.2. Note that the four principal ATPG phases are found.

FAN traces backwards in the UUT towards the Pls - backtrace - until it
encounters a head line. Head lines and free lines are justified once all bound lines
have been justified since, due to their fanout free nature, they are guaranteed to be
justifiable. FAN constructs a decision space based upon head and free lines; this
decision space is used to control backtracks if and when a previously made decision

causes a conflict or a block propagation path to occur.
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while (Faults remain in UUT){
Pick a fault.
Sensitize the fault.
while (No test yet & Not exceeded backtracks){
Implication.
if (Error at UUT PO
if (No unjustified BOUND lines){
Justify FREE and HEAD lines.

Simulate for other faults detected by this test.

} else BackTrackE.

}
else if (Error not at UUT PO){

if (D Frontier > 1 gate){
Multiple BackTracE.

}

else if (D Frontier = 1 gate){
Unique Sensitization.
BackTracE.

}

else BacKtracK

Figure 3.5.2: FAN pseudo code.
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3.6 Backtrack reduction methods and the importance of heuristics.

Backtracks are an important consideration in the ATPG process: they can
cause a target fault to be classified as untestable or an HF by aborting the search for
the targeted fault; they also are a cause of performance degradation due to increased
processing time requirements. Backtrack reduction has been the subject of much
research and was the principle reason that PODEM and FAN were created. Some
authors, [Marlett 89] [Bell Taylor 88] have stated that it is important to make the
correct choices and thereby avoid or reduce the backtracks. They have heuristically
attacked the backtrack causes in order to increase the percentage of faults detected
by the ATPG and thus reduce the number of aborted faults. Ivanov has suggested
that the guidance heuristics employed by the automatic test patiern generator can
effect the problem; the use of COP TMs in setting PIs in the case of PODEM is an

example.

Another approach has been to target the search strategy since research on
the test generation algorithms suggests that there is no perfect general search
strategy. An example of a search strategy is in PODEM where the D Frontier
closest to a PO is selected for error propagation purposes. Patel tried multiple search
strategies based upon different testability measures [Patel Patel 86]. A recent article
has proposed that the use of switching search strategies based upon the ordering of
the ATPG phases while striving to maintain a low backtrack limit appears to be
successful in exploiting the characteristics of different circuit’s [Min Rogers 89]. This
was tested on the ISCAS 85 benchmark circuits using a modified version of FAN.

It was decided early in this research that the multiple backtrace option of
FAN would not be implemented. This decision would seem to be supported by the
experience of other researchers: for example [Marlett 89] indicated that from his
practical experience, little is gained from the extra work; Min further substantiates
this by his research which shows that the multiple backtrace is not better than single

backtrace - it is more CPU intensive though [Min Rogers 89].



3.7  Summary.

The basic concepts of detcmﬁnisﬁc automatic test pattern generation and the
associated fundamental definitions have been presented. The principles of fault
modelling and how they are typically represented, the single stuck at fault model,
were reviewed to show how the four principle ATPG phases function. Additional test
generation techniques were presented prior to summarizing Fujiwara’s FAN ATPG
algorithm which serves as the basis for the HUB hard fault identification tool. The
importance of the backtrack phase and the need to reduce these backtracks were

discussed.



4,0 Mixed Graph - Binary Decision Diagram (gBDD) Circuit
Model.

It is necessary to describe the circuit at various stages of the design. A netlist
is used to describe the components from which the circuit is constructed (AND, OR,
INVERTER gates for example) and define net connectivity information. Such
descriptions, while providing a convenient method to represent the circuit textually,
are not necessarily the internal representation employed by the various design tools:
electronic schematic capture, automatic test pattern generators (ATPG), and logic
and fault simulators. It was imperative to provide such a representation to the HUB

(Hard fault detection Using Budget constraints) system.

During the literature research on efficient ATPGs, one could determine how
the test vector generation algorithms and procedures worked and might be
implemented. There was, by comparison, no such definitive information on how the
circuit related data would best be modelled: circuit structural or connectivity data,
logic element functional modelling, fault modelling and fault dictionary representations

were apparently left to the devices of each team performing the implementation.

To support the desired objectives for HUB, it was felt that a circuit description
for this hard fault detection algorithm must provide certain key attributes if the
proposed method was to be successful: (1) include structural circuit information; (2)
allow functional intent and functional modelling to become an integral part of the
model; (3) support the faulting of nodes within the circuit; and (4) permit the logic
simulation phase of an ATPG. While one may conjecture that other similar work is
based upon graph techniques, such speculation is left to specific works researching

circuit modelling methodologies.

4.1 Introduction.

The UUT’s representation during the ATPG process can have an effect on its
efficiency. Too much detail, such as working at a transistor implementation level,

while providing much implementation related information will use an excessive
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amount of computer memory. This, when coupled by large decision spaces caused by
the backtrace algorithm, can cause the computer to spend much time on overhead
activities - swapping pages of memory or page faults. It is important therefore, to
choose an abstraction level which provides sufficient information but only that
required by the test generator. This knowledge should aid the decision making
heuristics, and given the hierarchical design environments proliferating to help
manage the design task, allow the introduction of hierarchy to reduce the unwanted

details.

Two techniques will be reviewed: a circuit graph representation that provide
information only about the circuit’s topological slructﬁre at the expense of any
functional knowledge. A complementary method, Einary decision diagrams, that hides
structural details but accurately models the circuit’s function is summarized. Both of

these methods may be used to model a circuit’s hierarchical nature very easily.

A hybrid circuit model - gBDD or graph binary decision diagram - which
combines the positive attributes of both modelling methods will be presented. Its
ability to aid the ATPG by explicit inclusion of guidance heuristics and structural

information will be described.

4.2 A Review of graph techniques.

Given that an extended version of FAN will be used to discover the presence -
of hard faults within the logic circuit, a circuit modelling method which efficiently
supports the test generation process is required. A more traditional approach is that

of graphs.
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Figure 4.2.1: Full adder.

Graphs provide an elegant method for describing a circuit’s structure. The full
adder in Figure 4.2.1 can be described by the graph of Figure 4.2.2. Each verrex
represents a functional logic primitive, such as a NOR or inverter logic gate, of the
logic circuit. Similarly, the circuit’s primary inputs and primary outputs are shown as
vertices. Directed edges, resulting in a directed graph or digraph, link the various
vertices and show the circuit’s interconnectivity. A graph G, is often summarized as
G(V, E) where V is the set of all vertices and E is the set of all edges. Although this
is the normal case, Bell interchanges the role of V and E in his 1988 paper [Bell
Taylor 88].
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Figure 4.2.2: Full adder’s graph.

Given the finite set, {A}, of elements contained in the UUT, such that {A} =

{PIs, POs, logic primitives}, the relations between the various elements can be

expressed using a matrix. Given that I{A}| = n, the'n X n matrix MR will contain a ‘1’
(aij = D)to indicate that there is a directed edge e from vertex a; to 2 iff (if and only if)
aiRaj. (A ‘0’ indicates that there is no edge from a to aj). R is the relation

expressing some information about how the two vertices are connected by some

path. The matrix of a relation My for the full adder is shown in Figure 4.2.3. It is
possible to determine if a path of length n exists from an arbitrary vertex a; to 3 by
constructing MRn ( a relation matrix indicating that a path of length n exists between

a; and aj) using the relation ‘‘s”’ described by [Kolman Busby 84].

Mg" = Mg + Mg « Mg ..+ My 4.2.1
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The knowledge is used recursively to generate aiR°°aj the connectivity

relation, which indicates that there is some path from a; to 2. The corresponding

relation matrix can be calculated from the relation 4.2.1. A more efficient technique for
generating these matrices has been created. Warshall’s algorithm [Warshall 62] is

one such method.

1

M" = Mg u Mgl U M2 U .. 4.2.2

Despite the mathematical preciseness of a pure graphical representation, the
lack of functional information precludes helping the automatic test pattern generator,
in the case of an automated design environment, on propagating through the graph
even though knowledge about the shortest path may be determined. Also,
calculations using matrices tend to be exponential in the number of vertices contained
by the graph. However, authors such as Bell propose using graph representations in
determining TMs [Bell Taylor 88] which consider the effect of reconvergent fanout.
Bell develops a methodology to detect the. presence of this reconvergence and to
detail information about each reconvergent path. His technique includes the ability to

work with hierarchically described circuits.

4.3 A Review of binary decision diagrams (BDDs) techniques.

Akers proposed that one could replace traditional functional descriptions of
logic circuits - truth tables, Boolean equations, and Karnaugh maps - by a concise
technology implementation free description [Akers 78a] known as binary decision
diagrams. The former have the undesirable side effect of growing at an exponential
rate; they are exponential in n the number of variables that describe the function. This
diagrammatic technique shares many of a binary decision tree’s properties, however
the BDDs may have more than one branch directed into it - an in degree (id) > 1.

BDDs tend to contain a number of nodes, corresponding to the n variables, that grow
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linearly with # although this can degrade to O(2%/n).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1/0 o 0 1 1 1 1 0 O O O O O O O

o o o o o 0 o 0 1 0 O 1 O O O
11{0 0 0 0 0 0 0 0 0 O O O 1 O O
210 0 0 0 0 0 0 0 00 0 0 0 1 O
B3(o o 0 0 0 0O 0 0 00 O O O 0 1
4]0 0 0 0 0 0O O O O O O O O O O

150 0 0 0 0 0 0O O O O O O O O O

Figure 4.2.3: Full adder’s relation matrix.

Figure 4.3.1 depicts the BDD for an n-inpur AND logic gate whose inputs are
(X1 Xy ooy Xn}. Each variable is found in at least one BDD node; the variable is

referred to as the node variable. The node variable name describes the value
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assigned to this BDD node and is € {0,1}. A node variable of O activates the 0-
branch ( the left branch leaving the BDD node); a value of 1 activates the I-branch; X
indicates that no path has been activated and that the current setting of the variable

is don’t care.

£(X1, Xp, - X))

0o 1
Figure 4.3.1: n - input AND gate’s BDD.

BDD nodes having two leaves are called exit variables. The logic 0 and logic
1 associated with a node’s leaf are the exit value and define the value of the
evaluated function when an activated path - a path leading from the root of the BDD
to one of the BDD’s exit value exists under a given set of input conditions. Figure
4.3.2 shows a binary decision diagram for a 2 input modulo logic primitive (exclusive
or gate). The activated path is indicated by the heavy line and corresponds to the
input cube {Xl’ X2} = {0,1}. Note that the ‘‘*’’ indicates that parity is involved. For

even parity, the function is simply the exit value; an odd parity requires the inversion

of the exit value.
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£(X1, X5)

/3
SX

Figure 4.3.2: Activated moduio 2 BDD.

Any path that causes f to be a ‘‘1”’ is an implicant of f - thus one can
generate the sum of products (SP) form for f by tracing all paths that go from f to a
““1*. The product of sums (PS) form is derived by selecting all the paths which go
from fto a ‘“0”’. Note that the implicants are not necessarily prime implicants [Akers
78a].

Binary decision diagrams are not limited to describing only combinational
circuits. Akers described flip-flops (D F/F, T F/F, J-K F/F), priority encoders, shift
registers, addressable latches and an ALU (arithmetic logic unit): some are shown in
Figure 4.3.3. Thus BDDs offer a great deal of versatility in modelling a circuit’s
functionality. This model also supports a circuit hierarchy by using auxiliary

functions. The replacement of a node variable by an auxiliary variable a;, requires
that the function described by a; be evaluated before the respective 0- or I-branch

may be taken. Akers uses this techniques to describe a 14-input, 8 output ALU with
a 35 node binary decision diagram [Akers 78b] while a truth table representation

requires 217 entries to provide the same information.
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Figure 4.3.3: Typical BDDs.
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BDDs can also be used to for obtaining information about the Boolean logic
expressions used to describe a logic function. Branch labelling procedures can
determine the number of product terms by counting the number of 1-exit values. Sum
terms can be enumerated similarly from the nunﬁber of O-exit values. Akers states

that similar procedures exist to:

« count the number of literals in 2 level form;

» count the number of minterms;

« count the number of maxterms.

BDDs have also been used to develop test stimulus built upon the circuit’s
functionality instead of the more traditional single stuck at fault model. Functional
testing - in the sense of verifying that the device functions according to its objective
specifications - may be tested using BDDs [Akers 78b]. Akers suggested that one
approach to ease the testing problem is to use a set of experiments. An experiment
is defined as a path from f to an exit value. Following this initial work, other
researchers extended the concepts with perhaps the most definitive - to date - from

a testing perspective being the work by Chang ez al. [Chang et al. 86].

Functional based test highlights the two major disadvantages of the binary
decision diagram circuit model. As Chang noted, implementation independent test
generation can result in a varied single stuck at fault coverage quality when the
different circuits are simulated using a traditional fault simulation tool. It was also
necessary to create a new fault simulator to support the new fault model. Chang also
noted that it is not sufficient to test that a circuit does as intended, but that no

undesired functions exist due to the manufacturing process.

44  ¢BDD - Graph Binary Decision Diagrams.

The graph and binary decision diagram circuit models have major
disadvantages but ones that would effectively cancel out should a hybrid method be
created. The graph lacks functional details, which are easily supplied by the BDDs;

binary decision diagrams provide no structural knowledge - this can be overcome by
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the graph structural modelling. A hybrid circuit representation would reinforce the
positive aspects of both modelling methods. Previous researchers’ work have created
methods, procedures and algorithms for manipulating graphs: (1) to extract structural
based testability measures [Bell Taylor 88] derived from knowledge about
reconvergent fanout and path lengths;” and (2) for improving fault diagnostic
capabilities for the network [Russell Kime 71]. This previous research can be
vertically integrated into a hybrid approach. Similar test related work, built around
BDDs, developed to permit functional test generation, functional fault modelling and
fault simulation procedures [Chang er al. 86] may also be reused. Both techniques
support multiple output circuit elements and allow hierarchy. The ability to support
hierarchical circuit descriptions is made more powerful by containing structural and
functional knowledge down to the flattest schematic representation level
(traditionally that of the gate level for ATPGs).

Thus a graph binary decision diagram (gBDD) circuit model was created by
adding a modified BDD at each graph vertex for each of the vertex’s corresponding
circuit outputs since the BDD describes the output function as controlled by the

setting of its input variables.

The modifications to the binary decision diagram allow the addition of
propagation guidance heuristics. This permits guidance knowledge, that is a function
of implementation aspects, to be directly embedded into the circuit representation/
For an n-input AND gate, the modified BDD [Stannard Kaminska 89b] is shown in
Figure 4.4.1. Intuitively, the test engineer knows that all the AND gate’s inputs,
except for that with the error signal, need to be set to a logic ‘1’ before the error will
be propagated to the AND gate’s output: this corresponds to choosing the I-branch
or the right branch. This data is automatically inserted into the mBDD structure at
the time of the gBDD’s creation. This mBDD structure, at the primitive level, lends
itself nicely to several heuristics during the justification phase: the mBDD’s nodes
can be explicitly ordered by decreasing difficulty of setting a logic ‘1’ on the input
variables by using the COP C; TM while implicitly stating the Cgs. Other orderings



56

could also be used, however since TMs do not always correlate with the actual
difficulty in detecting a fault, it was arbitrarily decided to choose the latter and hope
that, on average, the tradition of trying to justify the hardest net value first will allow

quick identification of conflicts and backtrack situations.

fAp Bp Gl p)

Modified BDD for Graph Node 6

Figure 4.4.1: Modified BDD for AND gate.

The graph binary decision diagram approach requires that each directed edge
corresponding to a unique logic element output have a modified BDD *‘attached’’ to
it. Also, a graph node’s (GN) out degree is no longer the traditional number of
directed edges emanating from the corresponding vertex; it is now the quantity of
unique logic element primary outputs or GN_POs. For the purposes of this thésis,
only single output logic primitives have been considered since handling multiple

outputs is an implementation issue and not central to this research.

Conceptually, the 3 input AND gate’s modified binary decision diagram is
added to the appropriate graph node edge such as at graph node 6 in Figure 4.4.2.

This was implemented in the ‘‘C’’ language version using data structures for the
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graph nodes which included a vector of pointers for every unique (i.e. one per logic

element output) mBDD.

Figure 4.4.2: gBDD for full adder circuit.

Figure 4.4.3 demonstrates simplified versions of the graph node and modified
binary decision diagram data structures used in modelling the unit under test (UUT).
Every mBDD node has a pointer to its corresponding input variable.

Each of the graph and the binary decision’s advantages are reinforced by the
this hybrid circuit modelling method. The net advantages are:

« Functional and structural information;
+ Supports hierarchy;
+ Sequential logic elements supported;

o Structural (that is the single stuck at fault model) and functional
faults may be used;
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» Can integrate the work of previous researchers;

« Can build function verification tests once the blocks and their
functionality are known - following the objective specification for the
UUT.

GRAPH_Node{
PI_data_Vector{GN_PI_quantity];
PO_data_Vector[GN_PO_quantity];
PI_to_mBDD_node_pointers[GN_PI_quantity];
PO_to_mBDD_Root_pointersf GN_PO_gquantity];
GN _identification_Data_Structure;
GN_Simulation_Data_Structure;
GN_Fault_Sim_Data_Structure;

}

mBDD_Node{
GN_PI_pointer;
Value;
Propagation_Rules;
mBDD_identification_Data_Structure;
mBDD_Branch_pointers[Up, Down, Left, Right, Previous]

Figure 4.4.3: Graph node and mBDD node data structures.

4.5 Summary.

Two traditional circuit models were reviewed and their attributes were
explored briefly: the graph model with its lack of functional data, and the binary
decsion diagram which compensates for the lack of functional information at the
expense os structural knowledge. A new circuit model, graph binary decision
diagrams consisting of a hybrid of these two techniques, was introduced. This circuit
model was required to allow HUB to detect the presence of hard to test faults and
support the various phases of this algorithm.



5.0 Detection of Hard Faults using HUB.

5.1 Introduction to budgetary constraints.

Despite the use of testability measures and the other techniques reviewed in
Chapter 2, there does not appear to be a valid method to detect the presence of hard
to test faults (HFs) in a logic circuit. The use of an algorithmic automatic test pattern
generator, while being the definitive method for finding redundant faults, is generally
considered to be too unrealistic to be considered a valid approach when large number
of UUT_PIs are encountered. Thus for larger circuits, it is unacceptable to run an
ATPG with unlimited backtracks allowed and no time limit. Detecting HFs with an
algorithm is also a function of the choice of algorithm, heuristics and the search

strategy [Min Rogers 89].

Additional problems associated with using ATPGs and TMs to detect HFs may also
surface: .

» the backtrack’s cause is not known;

« the actual elements involved in the aborted test generation effort are
not known. That is the structural and functional information is not
available;

« the phase that initiated a backtrack is unidentified;

« the ATPG or TM calculation effort is essentially lost since most tools
need to be rerun for the whole circuit once modifications have been
selected and implemented.

Therefore it was decided that another approach was required, one that allows
a more practical attack on the problem - that is the identification of the HF and,
hopefully providing some guiding information that would be useful to the design team
in determining a solution set to correct the HF’s root cause. Thus a new set of
metrics, founded upon the concepts of circuit budget constraints [Stannard Kaminska
88a], was developed; they were suggested as a means by which the loop between

the designer’s circuit knowledge and the chip’s inherent testability could be closed.
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Usually, a project has a budget for all engineering related costs - usually
referred to as Non Recurring Engineering (NRE) costs since they should happen only
once per product - for the phases of a new product’s introduction. A typical integrated
circuit design process flow is presented in Figure 5.1.1. There are many variations of
this theme, often catering to an organization’s internal requirements. Henckels
presented a graph showing the test NRE component for test generation, relative to
the total design NRE [Henckels 88a]. As circuits continue to become more complex,
the tendency appears that test NRE may approach 50%. Henckels also indicated that
ASIC (application specific integrated circuits) do not appear to be heavy SCAN
method users due a variety of reasons. In today’s marketplace, cost effectiveness
and time to market are key ingredients to a product’s success. Thus, budget
considerations will be applied to the UUT in order to couple a circuit’s testability to
the reality. Budgets, time, and costs tend to be known items for the company due to
its past experience in project management and its understanding of its market. The
feasibility study will allow knowledge of whether the project is worth the effort and is
potentially profitable; the prior lack of testability for a class of circuit will probably
result in the project stopping before a major effort and difficulties are expended.

Before explaining how the system HUB (Hard fault detection Using Budget
constraints) monitors costs during its hard fault identification efforts, it is necessary
to introduce three circuit compartementalization concepts: (1) the pdef and its
associated pdcf fault; (2) the graph node (GN); and (3) the UUT. The pdcf (primitive
D cube of failure) describes the input condition to a combinational logic element in
order to sensitize the element for the presence of a single stuck at fault. In general,
there are n+2 pdcfs for an » - input logic element. The pdcf is able to detect a fault,
and sometimes two faults (always under the assumption of a single fault at any given

time) and these enumerated faults have been labelled as pdcf faults.

The GN corresponds to a single logic element primitive and has »n + 2 pdcfs
associated with it in the case of the single output logic primitive as is the case for all

the circuits examined during this thesis.
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The UUT, or unit under test, is the whole circuit as viewed from the highest
level of hierarchy. The UUT is composed of all the internal building components
(AND gates etc.) which are represented in the gBDD circuit model by an associated
GN. All of these items have costs and budgets assigned to them and the increasing
degree of resolution as one procedes from the UUT level to the pdcf level allows for
the accounting to be controlled at various degrees. The UUT’s budget is static, but all
costs and budgets are dynamic within the global UUT constraints.

HUB monitors costs at three separate levels: (1) per pdcf fault, the fauli(s)
associated with the error sensitization of the targeted GN for the graph node’s fault
dictionary; (2j per graph node; and (3) for the UUT. These costs are then compared
dynamically against a set of static and dynamic budgets and consist of:

+ propagation cost (CPU - central processing unit - time);

« justification cost;

» implication (simulation) cost;

* backtrace cost; -

» backtrack cost;

« total cost - the total of the above 5 items.

The UUT’s budger is defined by the program’s user and is szatic for the
duration of HUB’s run time; this budget is distributed over the UUT’s fault set. As
hard fault detection program proceeds from graph node to graph node, local dynamic
budgets are created as a function of the potentially detectable faults at that GN or the
node under test (NUT). At the pdcf level, a budget is created for the number of
potential faults that will be detected if the pdcf can be justified and the error
propagated to at least one UUT_PO
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Figure 5.1.1: Design phases.

The budgets must be respected, given the algorithm’s and the computer’s
ability to resolve time differences; thus each major ATPG phase charges its
execution cost (CPU time) for each invocation. Therefore all pdcfs must remain within
their budget constraints for the total pdcf time while simultaneously requiring that the
GNs and the UUT also remain within their respective budgets. The UUT’s budget
takes precedence over the individual GN’s budget which in turn is of higher ordering
than the individual pdcfs. The order of precedence for the various budgets are

summarized in Figure 5.1.2.
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UUT budget

|

GNs’ budgets

|

PDCFs’' budgets

Figure 5.1.2: Budget importance.

Failure to meet a budget has repercussions depending upon which budget is
not respected. Overspending of a pdcf budget results in potential HFs; if subsequent
test vectors generated for the other pdcfs of other graph nodes are not capable of
detecting these faults during a fault simulation phase, then these potential hard faults
become HFs. HUB will continue with any remaining pdcfs for this same graph node
provided that the GN’s and circuit’s (UUT) budgets are respected. Should the graph
node have no pdcfs remaining, HUB will select the next GN to become the Node
Under Test (NUT) providing resources (time) at and circuit levels permit. Thus, as
one proceeds from the top to the bottom, of Figure 5.1.2, the implications of being

over budget have a more localised effect.

Overspending at the GN level results in all undetected faults at the GN
becoming potential HFs which are subject to the same fate as stated above. HUB
will continue with another GN should any remain and the UUT’s budget be respected.
Overspending at the UUT level causes the immediate classification of remaining

faults in the valid fault dictionary as hard faults. A definition of hard faults based upon
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cost constraints follows from this hierarchy. Figure 5.1.3 presents some of the

formulae used to administer the costs and budgets.

Hard Fault -+ a fault that can not be detected within the cost
constraints and that is contained in the fault
dictionary. The costs are those imposed by time,
backtracks limits, and the exhaustive search
nature of the underlying algorithm.

Fault_count = Desired_fault_coverage * Total_fault_count

Resource per fault =  1otal_resources$

Fault_count

PDCF_budget = PDCF_faults * Resource_per_fault

GN_budget = GN_faults * Resource_per_fault

PDCF_costs = Z(ATPG_phases’ costs for PDCF)

GN_costs = Z(GN’s PDCF costs)

UUT _cost = Z(GN costs)

Figure 5.1.3: Budget formulae.

5.2 The HUB algorithm,

HUB strives to identify hard to test faults by using a deterministic algorithmic
test generator controlled by sets of cost constraints and guided by a mixture of
traditional heuristics (COP based testability measures) and heuristics embedded
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into the gBDD circuit description. The algorithm is a modified version of Fujiwara’s
FAN algorithm with several differences in its implementation and methodology. The
test generator is augmented by a fault simulator,‘ which currently supports only the
single stuck at fault model, that helps reduce the test generation effort; these will be
described in more detail. Before HUB can be invoked, the circuit must be converted
from its original description, in a TEGAS like language, to a file containing the
information about the gBDD structure. It is during this phase that the COP TMs are
calculated; this data is also stored in the file. These tasks were consigned to a
separate phase specifically to reduced the cost of running the test generator: since all
the data is static during the automatic test generation, there is little to be gained by
repeating these tasks needlessly each time that the ATPG is used for the same
circuit. Figure 5.2.1 indicates this data flow.

file.tegas
gBDD
file.gBDD file related data
Figure 5.2.1: Creation of gBDD circuit.

The ATPG based approach was adopted since teatability measures have
yielded the desired level of confidence and since it has been suggested that it is
important to link the testability to the test generation process [Bell Taylor 88].
Algorithms also provide redundant fault detection in the case of an exhaustive
search. The ATPG, if controlled, should provide a wealth of insight through its stored
information generated during test generation about the HF’s cause. Use of HUB

requires that its user provide a set of 3 cost related constraints that will be used to
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define and detect a HF. Specifically, the program requires:

« the minimum desired fault coverage [0.0% ... 100%];

« the total budget for the UUT;
« the backtrack limit per target fault.
file.gBDD
options
— mp———
HUB
cost
constraints
test feedback cost
vectors data = data
Figure 5.2.2: HUB’s inputs and outputs.

All 3 data are considered to be important: the traditional backtrack limit was
kept since prior researchers indicated that there is some merit in specifying a
reasonable ceiling, perhaps 10 backtracks [Fujiwara 85][Ivanov 85]. The minimum
fault coverage provides the user with the ability to accept ‘‘poorer’’ test coverage as
defined by the metric. In the eventuality of tight budget constraints the user can try to
pick this fault coverage to arrive at the desired point on the typical fault coverage
curve; a typical fault coverage curve is shown in Figure 5.2.3. The budget refers to the
CPU (computer time) resource that will be allocated to the UUT. This resource is
distributed evenly over the circuit on a per fault basis: that is the time will be
amortized over the total potential fault quantity to be detected. This potential fault
volume will be a function of whether the faults were collapsed or not. While for this
thesis the resource is uniformly distributed, weighting of the budget would provide

the ability for the design team to emphasize the important circuitry, in their opinion,
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instead of based upon grouping of potential faults.

A

100%

%

vector quantity —_—
Figure 5.2.3: Fault coverage curve.

A budget of $0.00 provides the immediate and obvious result that the UUT is
untestable for all the faults. An unlimited budget reverts to the backtrack limit criteria
or an exhaustive search of the decision space depending upon the backtrack limit’s
magnitude, the size of the decision space, and the efficiency of the underlying

algorithm and the heuristics.

The pseudo code for HUB, presented in Figure 5.2.4, represents the major
functional blocks executed by the algorithm. Initially, the circuit is read into the
computer’s memory using a linear algorithm where it is stored as the internal gBDD
circuit model. The user supplied constraints are obtained and the reference metrics
are calculated: the total valid potential fault quantity using fault collapsing should this
option be specified; the CPU resource allocation per fault is then determined knowing
the fault dictionary’s volume. Dynamic metrics such as the pdcf budger and the GN
budget are calculated at each GN as required and only if there are undetected faults
remaining at the> targeted GN. If the next pdcf sensitizes faults already detected,
HUB looks for the next possible pdef which has undetected faults associated with it;

when no pdcfs remain, HUB proceeds to the next GN among the remaining valid
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choices.

Restore_gBDD(circuit);

if (fault collapsing required)
Fault_Collapse(circuit);

Count_Potential_Faults(circuit);

Query_User();

Define_Budget_Metrics();

HUB_atpg(circuit);
Figure 5.2.4: HUB’s pseudo code.

The ATPG process is the most important and time consuming portion of HUB.
It is this function, described by the pseudo code shown in Figure 5.2.5, that risks
have exponential run times when faced by hard to test circuitry. Attempts have been
made to make the automatic test generator an efficient one; thus FAN serves as its
basis and heuristics and implementation related features have been added above the
basic concepts of directing HUB by cost controls. The primary goal was not to
reproduce an ATPG, thus it was not considered essential that the implementation be
the most efficient available nor the most compact coding and sophisticated use of

heuristics.
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while (Faults remain in UUT){

Pick a fault.
Sensitize the fault.

while (No test yet & Not exceeded backtracks){
Implication.
if (Error at UUT POY
if (No unjustified BOUND lines){
Justify FREE and HEAD lines.
Simulate for other faults detected by this test.
} else BackTracE.

}
else if (Error not at UUT PO){

else if (D Frontier = 1 gate){

- Unique Sensitization.
BackTracE.

}

else BacKtracK

Figure 5.2.5: HUB ATPG’s pseudo code.

Hard faults are only those faults which were not detectable from the set of
targeted faults. If a 0% fault coverage target is chosen, there are no HFs although
there is 100% undetectable faults. However if a 100% fault coverage value is chosen
but O resources allocated, all the undetected faults are hard faults even though they

may be detectable.
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Unlike FAN, no multiple backtrace phase was generated since this was
thought to be an unnecessary phase and since initial effort suggested that there was
no clear advantage in implementing it. [Marlett 89] and [Min Rogers 89] would

appear to support this decision.

The time cost of each of the 5 importapt phases (of the FAN based test
generation algorithm) are timed and these times are charged to the respective
account at the pdcf (lowest), graph node, and unit under test (highest) levels. The
total effort required at each level is monitored for adherence to the respective
budgets. Costs are accounted for using the data structure shown in Figure 5.2.6. At

Accounting->Propagation_time
Accounting->Justification_time
Accounting->Implication_time
Accounting->BacktracE_time
Accounting->BacKTracK_time
Accounting->Total_time

Accounting->Budgeted_time

Figure 5.2.6: HUB Cost Accounting Data Structure.

the end of each pdcf’s ATPG effort, the pdcf accounting structure data is used to
update that of the NUT’s (at the graph node level) and that of the UUT. The pdcf
accounting structure is then re-initialized. Upon completing the NUT’s ATPG work,
the GN and the pdef’s accounting structures are re-initialized. Note that the budget
is the product of the resource_per fault and the fault_quantity. For the UUT, this is
simply the user specified budget constraint value.
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Although this was not implemented, one could weight the various cost groups
at the graph node and the pdcf level. This would allow more resources to be allocated

to critical faults and circuitry.

When HUB chooses a path for error propagation, if there is more than one
gate in the D Frontier, by performing an X-path check [Goel 81]. Essentially this
starts with the fanout branch having the largest observability (all values are kept
separately instead of heuristically setting all fanout branches with the same value)
and that is not blocked before reaching an UUT_PO. Should none remain, a backtrack

condition occurs.

5.3 Important HUB attributes.

HUB has some features that are discussed in futher detail in the following
paragraphs. (1) The algorithm’s progression through the circuit is controlled by the
list of graph nodes and not by the list of faults as is typically the case. (2)
Sensitization of the target fault(s) at the GN is dictated by the use of information
contained in a pdcf personality file and which currently supports only the single stuck
at fault model and not by faulting every node with each of the single stuck at faults.
(3) A provision for simplified method (heuristically based) of single stuck at fault
model fault collapsing is provided. Also provided are an interactive mode for selective
ATPG or HF identification that is controlled by specifying this option upon program
startup with the number of the desired GN and one of its pdcfs. (4) HUB produces a
wealth of information that is output to the user for use in solving hard faults, for
program devlopment purposes, and for educational purposes. (35) Also included, but
not currently used, is the provision for the introduction of hierarchy at a future date.
Each of these attributes is explained below. HUB also retains a wealth of other
information acquired during the ATPG phase; this retained data will be briefly
introduced but, due their planned usage at a future time, no in depth details will be
provided.



72

5.3.1 ATPG control by Graph Node (GN).

Typically, a fault dﬁctiona.ry is created for the circuit and this fault dictionary
contains unranked faults [Shen 85]. Commercial simulators such as SIMUCAD’s
SILOS II™ do not explain or make readily available any information on how this fault
dictionary is created, its structure, how it is accessed, or how it is maintained during
simulation. One supposes that, upon creating this fault dictionary, faults are accessed
in a sequential order and that one might find the next targeted fault in a totally
different region of the unit under test. A version of PODEM, used at Ecole
Polytechnique, seems to create a fault dictionary dictated by the order in which the
circuit is processed starting from the UUT’s Pls.

HUB functions by attempting to complete the test generation at a rargeted
Graph Node for all the faults required to be detected at this GN before selecting
another graph node. If the fault simulator option- was invoked, the additional faults
detected, which must occur for GNs other than the current GN, will be identified at
their respective graph node.

The gBDD circuit model does not attempt to flatten the circuit by element
depth. Rather the circuit is stored starting with all the UUT_PIs and then is tried in
an order determined by the way that the gBDD is traversed from the UUT_PIs
towards the UUT_POs in a sequence dictated by the circuit’s structure and a depth
first algorithm; pointers to each graph node are stored in a simple linked list shown in
Figure 5.3.1.1. A list of graph node pointers, each pointer is represented by a
rectangle in Figure 5.3.1.1, is created when the gBDD circuit model is generated.
This list is ordered starting with pointers to the graph nodes of the circuit’s primary
inputs and corresponds to the entries 0 ... n in the pointer list; these pointers are
strictly for primary inputs. Graph node pointers n+1 through m point to graph nodes
which represent either logic elements or a primary output for the circuit. Although this
list of pointers is guaranteed to start with the UUT_PIs’ pointers after which one can
find UUT_PO pointers interspersed with those of the logic elements. The presence of

an UUT_PO pointer may indicate a cone of influence but this is not guaranteed since
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the UUT_PI ordering is a direct consequence of the circuit’s netlist and may not
reflect any cone of influence; their ordering is only a function of the individual (or

algorithm) who created the original circuit netlist,

Y > 0 > UUT__PIS

— . n —— UUT_Pls.

—> n+1 ——  UUT_POs or gates.

- m —  UUT_POs or gates.
Graph node Graph node Circuit element
pointer pointer represented by
position list (linked a graph node.
index. list).

Figure 5.3.1.1: HUB’s graph node pointer list.

HUB proceeds from GN to GN starting at the first graph node which is not an
UUT_PI or an UUT_PO. For this research, all of the UUT_PIs’ graph nodes are
skipped since the fault collapsing routine and the ATPG assumes that the faults
possible on these inputs will be equivalent to other faults on the nets to which they

are attached. This assumption can be incorrect when the primary inputs fanout.
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UUT_POs are also skipped since it is assumed that their faults will be equivalent to

those of the logic element’s output controlling them.

5.3.2 pdcf Personality File.

Each unique logic primitive has a pdcf personality file associated with it. This
file, for this thesis, contains the primitive d cube 6f failure associated with the n + 2
single stuck at faults which are detectable at the gdte (with the notable exceptions of
the modulo 2 function with 2n + 2 single stuck at faults and the inverter/buffer
functions with 2 single stuck at faults). Additional information describes how many
and which faults are detectable by this pdcf. This approach was used so that the
flexibility of using precomputed test stimulus was permitted. There is a desire to cut
test costs by reusing previous work and this was designed into HUB from the
beginning to allow for its use in hierarchical test generation. An example of the pdecf
personality file is shown in Figure 5.3.2.1. Information includes the number of faults
that can be detected by all the pdcfs contained within the file, the number of pdcfs in
the personality file, and which faults cannot be resolved due to fault dominance. Each
pdcf which shows the error free output value, the output value when a fault is
present, the number of faults and which faults are detectable by the pdef: “i1/1”

refers to input 1 stuck at 1 while the “‘o’’ indicates an output node.

4 faults

2 inputs

i@0

3 pdcfs

01 0d:2i1A, 01/1;
100d:2 i2/1, o1/1;
111D :1 01/0;

Figure 5.3.2.1: 2-input AND gate’s pdcf personality file.
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While a graph node is within budget, HUB is controlled by this pdcf file. The
file, as shown, could have its fault dictionary ranked according to some predetermined
importance: this ranking could be by consideration of the relative probability that this
fault will occur compared to the remaining faults or, as is the case above, by the
number of potential faults detectable. Thus pdcf personality files provide the ability of
allowing further control of the ATPG process external to the underlying FAN based
algorithm.

By using an appropriate fault identification method, independent of the
underlying fault model, the pdcf file would permit precomputed test vectors to be
used; these vectors could be built for the desired fault model. Obviously, the
implementation will require changes to permit vector sequences however adding this
feature was not considered since it is not within the principle scope of this thesis.
However, the author would probably suggest a technique such as Marlett’s EBT
(extended time backtrace) [Marlett 86]. '

5.3.3 Fault model, fault collapsing and simulation.

HUB uses the single stuck at fault model; all fault quantity calculations, fault
collapsing, and fault simulation are constructed under this assumption. (This was a
question of time efficiency since the desire was to make these features independent
of the fault model employed, but this will be left as a research subject for others.) The
UUT fault dictionary’s size is dictated, when no fault collapsing is desired, by the
number of faults in the pdcf personality files; this is determined by assuming n + 2
single stuck at faults per logic gate (except the exclusive OR/NOR functions with 2n
+ 2 faults and inverters/buffers with 2 single stuck at faults) given an n-input logic
function. This » + 2 quantity is based upon faulr dominance principles [Miczo 86].

One method of calculating the circuit fault dictionary’s size is to simply
assume that every net in the UUT can be faulted with a stuck at one and stuck at
zero; thus for k nets, one would have 2k potential faults. This would be an upper
bound and in general should be subject to reduction due to the ability to fault collapse

given the circuit’s topological nature. At a local level, that is at an individual gate
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having n + 2 faults, one can typically reduce the fault quantity to n + I faults due to
the ability to generate tests which can resolve between 2 specific faults. Fault
equivalence and fault dominance can be used to further reduce the resolvable fault
quantity across the entire UUT. Judging by the comments that different fault
simulators using the same circuit and test patterns can yield a variety of fault
coverage values, it would appear as if the fault dictionary of single stuck at faults is
far from being clearly defined.

HUB provides for 2 operation modes: (1) no fault collapsing requested except
for the inherent fault reduction due to the pdcf personality files and ignoring UUT_PIs
and UUT_POs; and (2) fault reduction based upon the following criteria:

- the faults on logic gate’s outputs are subtracted if the net to which it
is attached can detect these faults. This is demonstrated in Figure

53.3.1;
4 4 4 Unreduced: 6 faults.
’— v
4
4 A Reduced: 4 faults.

Figure 5.3.3.1: Fault collapsing.

« the faults on logic gate’s outputs are subtracted if the net to which it
is attached can not be resolved (detected) at the destination logic
element’s input;

« the faults on a fanout stem are subtracted if the fanout branches to
which it is attached can detect these faults singularly or collectively;

+ the faults on a fanout stem are subtracted if the fanout branches to
which it is attached cannot be detected collectively.

A simple single stuck at fault simulator was created by a student under the
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limiting case of combinational only circuits. Once the test vector has been generated,
the fault simulator takes the values at the UUT_PIs and works towards the
UUT_POs building lists of faults detected. Figure 5.3.3.2 indicates the underlying
simulation philosophy which is essentially a list processing mechanism. This
technique was adopted primarily to (1) aid the development process and to generate
vectors with a list of fault attached for use in building new pdcf personality files, since
pdcfs have a list of faults associated with them. This is also a simple intuitive
approach although limited to combinational logic circuits only. The use of list was also
an attempt to decouple the fault model from the fault simulation routine although no
effort was spent on this line of research. The fault model decoupling concept was not
successful since it was necessary to use a simple mechanism, at each graph node, to
indicate that a given fault had already been detected: thus bits within a vector were
used to indicate that a fault had been detected, resulting in a method equivalent to
stuck at n pin faults [Chang et al. 86], instead of a true list. This plus some other
implementation aspects has resulted in the simulator being dedicated as a single

stuck at fault simulator.

Figure 5.3.3.2: Fault simulation using lists.
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Fault simulation is performed using a breadth first algorithm which constructs
concatenated fault list using the information about logic elements blocking conditions.
Each list is reduced by removing redundant entries and memory size is controlled by
dropping lists which can not be propagated to an UUT_PO. An indepth analysis of the
fault simulation routine will not be undertaken at this time, and will be the subject of

a separate report.

In the example of Figure 5.3.3.2, the boolean values represent the nets’
values for the fault free circuit. The list {A} will be propagated onto the output of the
first (from the left) AND gate’s output while list {B} will be blocked. List {C} is
formed by concatenating any faults, as yet undetected, which are potentially
detectable at this AND gate to the list {A}. List {D} is formed by repeating this
operation at the OR gate. If a sensitized path exists from the second AND gate to a
UUT_PO, then list {E} (plus any other non redundant concatenations) will represent
the list of faults detected by the input vector.

A file containing the detected fault list and the quantity of faults detected by
each test vector is produced when the fault simulator option of HUB is invoked. For
the full adder shown above, one would have the data shown in Figure 5.3.3.3, which
is a partial sample of the fault simulator’s output file.

5.3.4 Interactive Mode and Information Feedback.

To permit the user to retry specific HFs, HUB has the ability to choose to
attempt ATPG at a specific graph node for one of the GN’s pdcfs. By selecting this
interactive mode and simultaneously invoking the verbose option, HUB provide
information on its progress as it tries to find a test vector; this provides information
about the reasons that conflicts occur during the error propagation, net justification,
and net implication phases. This was intended to aid the development process and

provide knowledge about why HUB is not able to detect a fault.
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SIMULATION (reduit)
Date : Mon Nov 6 16:55:31 1989

Fichier d’entree : fadd.bdd
Nombre de defaut : 38 Nombre de defaut reduit : 22

Vecteur d’entree : 101

Liste :

D :i1/0

J :i1/0
~ CARRY :01/0
Liste :

K :i2/1

G :i2n

SUM :o1/1

Nombre de nouveaux defauts : 6

Vecteur d’entree : 011
Liste :
D :i2/0
Liste :
G i1
Nombre de nouveaux defauts : 2

Figure 5.3.3.3: Fault simulation sample output data.

HUB provides feedback about its performahce on a per pdcf basis, a per graph
node basis and for the UUT. The type of information provided is listed below and is
intended to explain how the hard fault identifier expends its time and effort:

« total backtrack quantity;
« backtrack quantity for each major ATPG phase;

» total cost expenditures;
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+ individual cost expenditures per major ATPG phase;
» resource allocation information; '
« fault target quantities;

« the identification number for the graph node causing the backtrack, if
it can be clearly assigned;

+ the primary and secondary phases (propagation, justification,
implication, other) causing the backtrack;

« if an exhaustive search has occurred, this will be indicated;
» a list of rules violated due a conflict.

The justification for this information is that it is not sufficient to state that a
fault cannot be detected due to an aborted process or due to HUB’s heuristics; one
must have information about the root causes in order to permit the design team to
effect the necessary and required changes. Presently this information is generated in
an ASCI format to permits its manipulation by UNIX™ utilities (grep for example)
and to allow the data to be easily imported into sophisticated data analysis tools
such as BBN’s RS/I™[BBN Software Products Corporation].

Other information is generated and kept by HUB although not currently
employed for this research. HUB indicates at each graph node the causes of why its
GN_POs and GN_PIs have been set; this is by the identifying graph node number
and the ATPG phase. It was intended that, given a means to couple this circuit model
to the schematic representation, the designer could visualize the test generation
process in order to understand how he might modify his circuit in order to remove any
hard faults. HUB also records the number of failures in setting an GN_PO to a zero
and to a one in order to provide a list of troublesome graph nodes without this

integration to the schematic environment.

5.3.5 Other HUB features.

There are some other features embedded into HUB, although they might not
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be used to their fullest potential: (1) the observability (from COP) at a fanout stem is
not simply the minimum as is typical with COP, but the mean of all the fanout
branches; (2) all the fanout branches’ observability values are kept; (3) the fanout
destinations are ordered according to COP observability values; (4) each graph
node’s output records the quantity of zeros and ones that were not justifiable, this
was based on discussions with Marlett at the 1989 IEEE VLSI Test Workshop; (5)
the multiple backtrace option was written and tried with smaller circuits, but was not

completely verified; and (6) provisions for multiple path sensitization were made.

A major feature of HUB and its underlying circuit modelling method, is that
one could complete HUB as an ATPG and use it to generate circuit verification
stimulus before the complete circuit has been implemented. This is an area of
research that has been neglected by most researchers although it is very important to
those who need to verify a circuits completeness from a functional aspect. Instead of
generating tests for structural faults, one could use the intrinsic ability of binary
decision diagrams to create function tests. These vectors could then be reused once
the circuit has been implemented and the implementation details are available for
fault grading. The remaining faults could then have tests created for them specifically.
This use of HUB could also permit the identification of hard to simulate logic allowing
the designer to consider circuit modifications before detailed implementation has

begun and which might aid in reducing the number of structure related hard faults.

5.3.6 Hierarchy Provisions.

The gBDD circuit model provides the ability to permit hierarchical circuit
descriptions. When coupled with the pdcf personality file concept, it is felt that one
should be able to work with hierarchically defined circuits and use (re use)
precomputed test stimulus for circuit elements described at higher abstraction levels:
ie. and ALU cell instead of its gate level equivalent. This could provide future
researchers with the ability to examine the time complexity of ATPG using data base
look up methods for large portions of circuitry while using the gBDD to aid in the
error propagation and net justification phases. The inherent ability of this hybrid
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model to support hierarchical descriptions should permit the user to work at the
highest level desired while retaining the ability to descend to the lowest abstraction

permitted by the design environment’s resources.

5.3.7 Summary.

The algorithm HUB, its use of cost based ATPG constraints and its various
features and attributes were explained. The decision to use an automatic test
generation based algorithm to identify hard faults was based on the concepts that an
algorithm is capable of detecting redundancies and that the test generation would be
directly coupled to the measure of test difficulty. FAN, an efficient and extensible
algorithm, was choose as the starting algorithm ‘and uses a new circuit modelling
technique gBDD. The use of cost based metrics provides a means to link the real
cost constraints to test generation and to provide data on which ATPG phases are
having difficulty in test generation; an algorithm is also not a decoupled heuristically
based approach. Information is fed back to HUB’s user permitting the most
appropriate corrective actions, based upon the cost constraints imposed by device

yield and performance parameters.



6.0 Results.

Several types of results will be examined in this thesis. Although the major
thrust was to have been the detection of hard to detect faults within digital
combinational logic circuits, it has been expaned to the following 3 areas of research.
(1) Some measure that reflect upon the efficiency of the gBDD circuit modelling
method; (2) the charactersitics of HUB’s ATPG, although not HUB does not contain
a complete implementation of FAN; and (3) the verficiation of the hard fault detection
process. It is necessary to detail some of the problems encountered during the

measurement process in order to forewarn the reader.

Some of the comparisons have been made against a copy of the PODEM
ATPG program that was developed by [Ivanov 85] (and which was developed from a
version that originated from Hideo Fujiwara’s work during his stay at the University
of McGill). Unfortunately, there is a minimum of documentation available for this
program and its performance in a SUN workstation environment for the larger ISCAS
combinational circuits resulted in run time errors (known as ‘‘CORE DUMPs™’).

Thus some comparisons will be limited in their scope due to this.

The ISCAS circuits are described by their neutral netlist; there does not
appear to be readily available complete schematic sets. It is this author’s belief that
for hard fault detection to be truly effective will require that the design’s
documentation be available (as is currently the case in industry when testability
analysis or test pattern generation would be attempted, and the effect of circuit
modifications on performance versus objective specifications could be subjectively
compared). Although [Marlett 89] suggests that circuit modifications can be
performed without the circuit’s schematics, this author’s beliefs are that hard fault
detection and their removal for specific circuits is simply one step in the design
process; the long term goal is (should be) to understand the underlying weakness in
the design methodology to avoid or eliminate the problem as a natural part of the
design methodology. Thus the demonstration of HUB’s current ability to detect hard

faults will be limited to a small class of circuits for which schematics existed.
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Additional measurements will be shown and analysed however.

The ATPG ability of HUB is used as a means to couple the hard fault
definition metric to the test generation process (as [Bell Taylor 88] suggest is
Tequired) and was not meant to be the development of a new test pattern generator.
The programming environment was chosen to ensure that (1) robust code was
generated, (2) the primary premise of research could be verified and (3) that a
minimum of programming should be performed since this was not an exercise in
developing computer science skills. It was assumed that the FAN based ATPG
algorithm’s time performance would not be seriously degraded by the implementation
issues and that, while FAN had been reported to provide a 5 to 6 times improvement
over PODEM, small loses of linear improvements in an NP complete problem would

not be a significant problem for the purposes of this research.

One final implementation problem was discovered during the final stages of
the HUB’s development and measurement phases. The original version was started
on an IBM PC AT which allowed access to a precise hardware clock contained in the
system and which showed the ability to repeat time difference measurements with a
high level of confidence. The final version of HUB was developed in the SUN

workstation environment to facilitate its creation. However, the UNIX™ operation
system does not provide a precise and reproducible time difference with the systems
calls that were available. (This was also noticed with a commercial logic simulator
that for the same circuit, the same stimulus, and when run on the SUNs provided a
factor of 2 for the different run times that it calculated internally.) This appears to be
an intrinsic weakness of the UNIX™ operating system which has not appeared to be
subjected to the usual cost accounting requirements of an MIS (management of
information systems) environment where computer users are charged for their

computer resource usage.
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6.1 Circuit characteristics of used for results.

Table 6.1.1 provides a summary of the circuit characteristics for the set of
combinational circuits that were involved in the measurement process. While not all
the circuits were used for each measurement, all of the circuits listed are used at

least once.

6.2  Comparison of gBDD.

The program gBDD that is used to create the gBDD circuit model is called
once per unique circuit net list; this was done to save needless calculations and effort
every time that HUB would be used and required only that HUB read in the
appropriate circuit data directly into the memory. The translation of the TEGAS like
neutral netlist by which the ISCAS and other circuits were described consists of 6
phases: (1) open the original file description, parse the file while verifying the
circuit’s connectivity, and indicate any errors detected; (2) create a supervisory
structure containing centralized data about circuit function and structure; (3) create
the graph structure portion of the gBDD circuit model to reflect the circuit’s structure;
(4) attach the mBDDs for every non UUT_PI and non UUT_PO (currently limited to
one output logic elements); (5) calculate the controllabilities and observabilities
based upon the COP testability measures and sort the mBDD nodes and fanout
branches based upon these values - the fanout stem’s observability is the mean of
the its branches; and (6) store this data into a file. In this section, the creation of the
gBDD’s circuit model will be analysed from a generation view point (its time

behaviour), and from memory considerations.

6.2.1 gBDD Temporal performance.

The algorithms used to create the gBDD circuit model from the neutral netlist
are essentially linear in performance characteristics. The following graph summarizes
the performance of the gBDD algorithms. Once again it is important to remind the
reader that the time measurements do not show a high degree of consistency from

use to use.



Circuit Name

C17

Cg5

c880
C1908
C2670
C3540
C5315
C6288
C7552
IMAGE
ADDER

Gates Nets Pis POs
6 17 5 2
27 95 5 7
383 880 60 26
718 1908 33 25
1003 2670 157 54
1446 3540 50 22
1994 5315 178 117
2416 6288 32 32
2980 7552 206 102
31 80 10 1
22 80 3 2

Table 6.1.1: ISCAS and other test circuit characteristics.

86

The performance for the file storage and reading in the file is linear in the

number of gates, equivalent to being linear in the number of graph nodes in the gBDD

circuit model, which is a reflection of the one pass required to store and read the

circuit elements.
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Graph 6.2.1.1: gBDD file storage time.

Table 6.2.1.1 summarizes the time spent in the major phase of the gBDD
circuit model generation program and for the restore( ) function used by HUB to
reconstruct the circuit in memory from the ASCII gBDD file. The parse phase is seen
to consume the largest portion of the generation time: it is during this phase that all
the network checks, hash table construction, and the majority of the file input

operations occur.
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Circuit Name

C17

C95

C880

C1908

C2670

C3540

C5315

Ce288

C7552

Time in seconds (s)

Parse gBDD() | mBDD() | OBS() Store Restore
0.07 0.02 0.02 0.00 0.07 0.20
0.23 0.10 0.02 0.03 0.32 1.00
4.00 1.63 0.38 0.30 3.13 15.50

10.05 3.76 0.80 0.57 5.62 33.40
16.83 6.30 1.12 0.80 8.68 48.80
32.13 7.15 2.22 1.15 11.12 83.30

113.55 23.43 2.55 -1.88 16.92 237.20
59.18 28.47 5.88 1.98 20.12 165.00

132.70 28.27 3.65 2.33 24.48 291.60

6.2.2 File sizes.

Table 6.2.1.1: gBDD time distributions.

HUB uses an ASCI input file format that was selected for ease of

development and not based upon efficient or optimal file structures as would be the

case for a commercial product. The files’ size are compared against 2 different file

formats used by PODEM: the first file format, PODEMI, is an ASCII file format; the

second file format is unspecified but appears to be a compressed format for use by

PODEM only.
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Circuit Name gBDD (kb) PODEM1 (kb) PODEMz(kb)
C17 1.9 2.2 1.1
C95 7.7 9.9 5.2

C880 88.9 88.0 49.0
C1908 152.8 151.7 85.9
C2670 229.5 218.0 125.2
C3540 307.6 293.9 167.7
C5315 469.4 456.8 266.8
C6288 535.7 627.5 351.9
C7552 661.9 631.2 366.0
IMAGE 7.8 8.3 4.1
ADDER 25 3.0 1.5

PODEM'- ASCIl Format.
PODEM? - Unspecified Format.

Table 6.2.2.1: Circuit Model File Requirements (k bytes).

Basically PODEM! and the gBDD file size are of comparable sizes and are of

the same order of magnitude. There is approximately a factor of 2 between the

PODEMZ and the gBDD file sizes although, once again, they are of the same order

of magnitude.
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6.3 ATPG related results.

HUB will perform its own fault simulation, if requested upon invocation, and
operates in two basic modes whether or not fault simulation is used: (1) with fault
reduction or (2) without fault reduction. As a basic verification of HUB’s instrinsic
automatic test pattern generation, its performance against PODEM (without using
fault simulation and without fault reduction) was verified for four of the smaller
circuits. These four were selected due to the available schematics and since two of
the four circuits have known and readily identifiable redundancies (C95 and Image)
included. A secondary reason for selecting these four was due to reduced amount of
UUT_PIs; HUB does not attempt to maximize the number of these primary inputs
which can be set during the generation of a test vector while PODEM appears to
provide dynamic vector compression by maximizing the number of the unit under

test’s primary inputs that can be set without causing a conflict for the target fault.

Vector Total Fault
Circuit Quantity Time (sec) Coverage (%)
PODEM*| HUB PODEM* HUB | PODEM* HUB
C17 38 15 0.6 0.3 100 100
C95 199 63 6.2 4.3 97.5 97.5
Adder 56 30 1.0 0.8 100 100
image 149 64 7.1 4.9 92.0 92.0

Table 6.3.1: Partial ATPG results - no simulation.
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Table 6.3.1 summarizes the results of this basic comparison. The fault
coverage and the execution times are comparable while the quantity of vectors
generated tends to be different. This is due to a fundamental difference in the way
that HUB works; HUB generates a vector per pdcf, from the pdcf personality file
described in Chapter 4, as opposed to PODEM which generated a vector per targeted
fault when no fault simulation is used. Since the pdcf personality files contain far
fewer pdcfs than PODEM contains faults, due to the localized fault quantity reduction
used in building the pdcf personality files, HUB will attempt to build less test vectors.

As previously stated, HUB does not attempt to perform any form of dynamic
vector compression during automatic test pattern generation for hard fault detection.
The amount of logic affected by the UUT_PIs define a cone of influence and this will
be circuit dependent. Since HUB’s primary objective is to detect the presenece of
hard faults and not simply provide test pattern generation, an explicit objective of the
alogorithm was to set and justifiy only the nodes (and hence eventually only the
UUT_PIs) necessary. When the number of UUT_PIs is large, but the number of these
inputs which are involved in the cone of influence for which HUB is evaluating, HUB
can have an undesired side effect. HUB is expected to generate more vectors than
PODEM, due to the lack of this feature as the ratio of the number of UUT_PIs in the
cone of influence for the current targeted fault to the total number of UUT_PIs

decreases.

Although no attempt was made to determine a heuristic for this test vector

reduction effect, the preceding four circuits see a reduction of roughly 2 to 3 times.

6.4 Fault Simulation related results.

The same four circuits were retried but using HUB’s fault simulation mode
with the fault reduction option activated. For comparison purposes, a commercial
logic and fault simulator SILOS II™ was used to perform the fault simulation. SILOS

II™’s data net list requirements and input pattern requirements required that a small

translator (a simple linear algorithm) be built and that the test vectors generated be
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time stamped (have a time value associated with it). It was discovered, using the
circuits in Table 6.4.1, that where 100% fault detection was achieved with HUB, that
SILOS I™ concurred. For the other cases, SILOS II'™ provides different fault
coverage than HUB determines. This was also found to be the case with larger
circuits, notably the C880 and C1908 circuits, and appears to be due to the fault
simulation/fault reduction methodology used by HUB. The cause is felt to be

implementation based and non critical to the underlying research.

Vector Total Fault
Circuit Quantity Time (s) Coverage (%)
HUB FSIM HUB FSIM HUB FSIM
C17 10 10 0.6 0.4 100 100
C95 20 20 2.5 4.5 o1 97
Adder 8 8 0.7 0.6 100 100
Image 48 48 5.5 4.3 o1 94

Table 6.4.1: ATPG results with simulation vs fault simulation.

It should also be noted that PODEM and SILOS II™ did not always agree
with their fault coverage determination, although PODEM was much closer to SILOS

II’s™ values. SILOS II’s™ fault reduction and fault simulation algorithms are not

documented and are not available for comparison purposes.

HUB, PODEM, and SILOS II'™ did not agree on the total potential fault
quantities present for either the reduced (not shown by PODEM) or the total fault
count. SILOS II™ provides for some fault reduction, removal of redundant faults; no
precise definition is provided although they are apparently based upon topological

considerations. SILOS II™ faults every net, at input and output pins, as stuck ar 0
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and stuck ar 1; PODEM also faults every net with these same faults. The differences

appear to be part of a more global standardization problem.

6.5 Hard Fault Detection.

Four circuits were examined in detail given the readily availability of their
schematics and the relatively small size which permitted to determine whether HUB
provides a useful function in identifying the presence of HFs (and redundancies) and

presenting information about the reasons that these faults exist.

~ The underlying premise of this research is the use of cost based constraints
coupled with an efficient algorithmic automatic test pattern generation tool to detect
the presence of hard faults, as defined by the cost constraints, and the presence of
redundant faults as identified by exhaustve sca'_zrches (as opposed to a heuristic
approach such as was used in VICTOR). To avoid the problems created by the lack
of reproducibility in the timing of HUB’s major ATPG phases when it would be
invoked several times for the same circuit but with different cost constraint values,
HUB was used with a backtrack limit of 10, previously suggested as a reasonable
limit for both PODEM and FAN, but with an unlimited time budget. The data for the
circuits was logged and then subsequently it could be manipulated by the RS/1™ tool

in order to see the effect of the tighter cost constraints.

Specifically, the graph of the total costs will provide information about how the
costs are distributed for a given circuit allowing the ability to compare the effect of

tighter and relaxed cost budgets.

A more detailed analysis is provided for a smaller circuit, Image, to

demonstrate HUB’s instrinsic capabilities.

6.5.1 Extended example using Image.

A portion of the Image circuit was used to examine whether HUB would
detect the presence of the hard to test faults using the single stuck at fault model

based upon the pdcf personality file fault dictionary and provide accurate information
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about their causes. This circuit contains untestable faults caused by intentional
design redundancies. There are 3 sections to the results for this circuit: (1) the cost
accounting information in histogram form showing how the costs for the major
automatic test generation phases are distributed plus the budget distributions on a
per pdcf basis for HUB without fault simulation and without fault reduction; (2)
histograms for the primary and secondary backtrack phases (the phases which
caused the backtrack to occur) and for the graph nodes instigating the backtrack; and
(3) an indication of the data provided by HUB as to what was occurring when the
backtrack situation developed - what heuristics and rules were involved. Please note
that the frequency for cost/budgets is in terms of pdcfs; for the backtrack histograms,

frequency is in terms of backtrack quantity.

Figure 6.5.1.1 is the circuit representation of the Image circuit. The nets are
identified as per the names given in the neutral netlist circuit description. Appendix B

contains a cross reference of the graph node to the logic elements’ output net name.

Graph 6.5.1.1 summarizes the primary ATPG phase in which HUB was
involved and that caused a backtrack to occur. Both the primary and secondary
phases (Graph 6.5.1.2) were found to occur principally due to net justification phases.
The possibility of difference between the two phases was allowed since the major
phase might be net justification but the conflict occurs during the implication phase of
the net justification and not due only to net justification. For Image, the propagation
phase was also responsible for generating backtracks but these backtrack represent
only 25% of the total backtracks which occurred. It is important to remember that
HUB keeps track of total unique backtracks and the totals for all the phases. The
total backtrack quantity is not simply the addition of the individual phases’
backtracks. It was found that the majority of the backtracks occurred in the

justification phase.
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Figure 6.5.1.1: Image circuit subsection
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Phases:
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Graph 6.5.1.1: Primary Backtrack Phases.
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Graph 6.5.1.2: Secondary Backtrack Phases.
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Graph 6.5.1.3: Graph Node causing Backtrack Phase.

The histogram in Graph 6.5.1.3 summarizes the information about which graph
nodes caused backtracks to occur when this could be uniquely determined and based

upon the following simple rules:

« the graph node’s number that can not be justified;

« the graph node’s number that blocks the error propagation during the
propagation phase at that node;

» the graph node’s number that stops the back trace.

If the graph node’s identity is not known, then a default value is set t0 -999 to be
certain that none of the GNs in the range [0 ... n] is incorrectly identified.

When the UUT’s fault dictionary was reduced for Image, the unknown graph
nodes were eliminated, Graph 6.5.1.4, while retaining the remaining 6 graph nodes of
Graph 6.5.1.3.
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As mentioned, these results (summarizing the various causes of the
backtracks encountered) are on a pdcf basis. HUB does not maintain a summary of
the backtrack phases (the phases causing a backtrack condition to occur) on a graph
node basis as it does for the cost accounting aspécts. The author felt that backtracks
could possibly occur in different phases for the different pdcfs of a given graph node.
Collecting the backtrack causes on a per pdcf basis also allows the association of a
fault’s identity with the backtrack causes by virtue of the pdcf’s data content. This
was considered to be an efficient implementation..

Histogram of graph node causing backtracks.

6.6+

L 00 3 @M@ C O m 3 N

8.2+

8.8
13 17 18 21 25 33

Graph 6.5.1.4: Graph node number (reduced fault dictionary).

The cost monitoring is done for the propagation, justification, backtrace,
backirack, and implication phases on a pdcf and a graph node basis. This is also the
case for the total cost monitoring and for the dynamic budget constraints. The next 8
histograms summarize this information for the Image circuit: the first 7 histograms
are for HUB when no fault simulation or reduction was allowed; the eighth histogram

is the total cost when HUB’s fault simulator, using fault reduction, was used.



= 0O 3O C QO T ™M

“<« O0O3JocCcom@TT™™M

18+

B-l-

4t

2=

@
6.000

9.5 ©.918 8.015 0.020 0.825 ©6.030 B.935 6.040

Costin A.
Graph 6.5.1.5: Propagation phase cost histogram.
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Graph 6.5.1.7: Backtrace phase cost histogram.
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The cost A, is related to the microsecond value returned by the program’s call

to a UNIX™ system routine. (The absolute value of the time units is 10 of
microseconds.) The times are not normalized and are therefore not valid for

comparisons between histograms.

The budget reflects that the fault quantity is discrete and, for this circuit,
based on either 1 or 2 target faults per pdcf. HUB assigned 10 time units per fault,
resulting in the value of 10 and 20 time units. Note that while for this circuit the
budgeted time is an integer, this need not be the case when there is a large number of
faults. The cumulative frequency of this histogram is the total potential faults for the
UUT when no fault simulation is used. The remaining histograms should, and do
show a more continuous spectrum of values which mirror the relative degrees of
difficulty in each ATPG phase. For Image, it the propagation and implication phases

are the most costly test generation phases that were invoked.

Looking at the cumulative cost accounting data (for the propagation and
implication phases) and for the total of all the major ATPG phases, one can see the
effect as to how many pdcfs would be aborted and result in potential HFs if the
budget constraints were modified from their unlimited (but respecting a maximum of
10 backtracks) values. This per pdcf data includes thé pdefs for which no test could be
completed due to the presence of redundancies. Thus if the budget constraints are
sufficiently severe, even redundant faults would be classified as potential hard faults
and become hard faults if not detected by test stimulus which respected the more
stringent cost constraints. Table 6.5.1.1 details the cumulative costs and the number
of pdcfs which respect the various thresholds for the total of the circuit costs. Tables
6.5.1.2 and 6.5.1.3 provide the individual information for the propagation and

justification phases respectively.



_Time Threshold
(time units * 1000)

Quantity of pdcf respecting Time Threshold

130 58
120 55
110 50
100 46
90 40
80 36
70 31
60 27
50 23
40 16
30 11 -
20 7
10 2

Table 6.5.1.1: Cumulative total cost distribution.
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Time Threshold Quantity of pdcf respecting Time Threshold
(A * 1000)
40 58
35 46
30 44
25 36
20 29
15 26
10 19
5 11

Table 6.5.1.2: Cumulative propagation distribution.

Time Threshold Quantity of pdcf respecting Time Threshold
(A * 1000)

55 58
50 55
45 50
40 46
35 40
30 36
25 31
20 27
15 23
10 16

5 11

Table 6.5.1.3: Cumulative justification cost distribution.



106

The lower bound of 1 fault per pdcf is 1 and the upper bound is 2 faults per pdecf
for the circuits used in this research. Thus one can equate this knowledge into lower

and upper bounds for the potential hard fauits.

Figure 6.5.1.2 is a portion of the information logged by HUB for the Image
circuit. An exhaustive search has been performed for graph node 10 (the inverter with
output net GATI7, from the list in Appendix B), specifically for the inverter pdcf 0
(output s-a-1). HUB provides data on the failure to generate a test using this pdef; in
this case the failure is due to the inability to propagate the difference value at the 2-
input OR gate, GN 40 having the output net TMR. HUB prints the number of the rule
violated and explains this rule: P.8.5 meaning that one of the mBDD’s nodes blocked
the error propagation phase - /R. I leaf & picked R indicating that the rule required
the left branch to be picked but that the previously set value causes the right leaf to
be picked at a node which has one branch and one leaf. Since for FAN, the search
space is a function of the number of head lines, HUB will tried to provide a solution by

retrying all the possibilities associated with the search space.

It is important to note that HUB will always create data about the costs
incurred as it tries to create a test from the pdcf used to sensitize a fault even if no
backtracks occur. Thus, in the presence of resistant faults due to non redundancies,
the cost information identifies which phase is the most costly: the basis of this
approach was that one could then implement a more global improvement in making
faults testable by the appropriate and cost effective method (an internal testability
bus to allow isolation, improved controllability and observability of the basic circuit
building blocks). Hooks have been placed into HUB which would allow visualization
of the activated paths back into a design environment when such a tool exists; this

would probably be more useful than the simple cost accounting information.
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RULEP.8.5

Error in propagation of BDD

GNODE OR2 PO_num 40. BDDi.d. 1
for NUT 10

IR: 1 leaf and picked R.

RULEP.8.5

Error in propagation of BDD

GNODE OR2 PO_num40. BDDi.d. 1
for NUT 10

IR: 1 leaf and picked R.

RULEP.8.5

Error in propagation of BDD

GNODE OR2 PO_num40. BDDi.d. 1
for NUT 10

IR: 1 leaf and picked R.

RULEP.8.5

Error in propagation of BDD

GNODE OR2 PO_num40. BDD i.d. 1
for NUT 10

IR: 1 leaf and picked R.

Exhaustively searched! Redundancy!
(10 : 0) No Success
Determine_Reasons not yet implemented

Figure 6.5.1.2: Partial HUB hard fault data.

6.5.2 General Results.

HUB was used on 5 of the 1985 ISCAS combinational circuits (C17, C95,
880, C1908, and C2670) plus the full adder cell and the Image circuit cell. The
following tables and histograms summarize the costs, budgets, backtrack information

and general data resulting from these measurements.

The measurements show that the biggest cause of backtracks is the net
justification phase, and that HUB had equal quantities of justification induced

backtracks for the primary and secondary causes. Table 6.5.2.1 summarizes these
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results and also includes data on the number of unique graph nodes involved in
generating the backtrack condition. No work was undertaken to determine the effect
of modifying the graph node to allow easier justification although Marlett has used
the concept of T-cells to automatically modify the circuit based upon the most frequent
element involved in stopping test generation and then allowing the continuation of the
ATPG process [Marlett 89].

Circuit Name Primary1 Seoondary1 GN Quantity2
C17 N/A N/A N/A
Co5 6 6 6
€880 28 28 11
c1208 140 140 12
C2670 580 580 580
IMAGE 250 250 98
ADDER N/A N/A N/A
Notes:

1) The number of justification caused backtracks. These represent
the amount of backtracks which occurred in as the result of
line justification being either the primary or secondary cause.

2) The quantity of graph nodes which were identifiable as the source
of the conflict that originated the backtrack process. A given node
can cause more than one backtrack.

Table 6.5.2.1: Justification backtrack information.

In general, for these circuits, it was found that propagation induced backtracks
were the only other major backtrack component; implication, backtrace, and backtrack
induced backtracks were virtually non existent. Tables 6.5.2.2 and 6.5.2.3 presents
the average number of backtracks for each of the circuits tried: the full adder and the
C17 circuit are fully testable and did not cause any backtracks: any backtracks would

have been due to poor guidance heuristics since there is no topological reasons for
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backtracks.
Backtrack Quantity
Circuit Name Total Justification Propagation implication
C17 N/A N/A N/A N/A
Csb 0.558 0.474 0.032 N/A
880 1.184 0.249 0.002 N/A
C1908 5.916 1.565 0.065 N/A
C2670 2.194 0.464 0.136 N/A
IMAGE 0.931 0.345 0.138 N/A
ADDER N/A N/A N/A N/A

N/A - not applicable.

Table 6.5.2.2: Mean of backtracks.

Tables 6.5.2.4 through 6.5.2.8 summarize the means for the cost of the various

ATPG phases in HUB for the 7 circuits evaluated. It is interesting to note that all but

2 of the costs do not exhibit a monotonically increasing cost with complexity function.

However, the error propagation and implication phases do seem to possess this

monotonicity. The time or cost is in A units for this thesis.

Circuit Name

c17

Cc95

c880
C1908
C2670
IMAGE
ADDER

Mean (A) Standard Deviation
10 000 6172
85 891 47 551
2 266 207 1 609 804
16 393 475 12 282 399
10 155 143 7 338 218
66 808 35 482
4 583 3 622

Table 6.5.2.3: Mean and standard deviation of total costs.
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The standard deviation in many cases is as large if not larger than the mean.
This is not surprising considering the data distributions of these cost components:
the histograms for the total ATPG costs of the seven circuit examined using HUB are
found in Appendix C.

Circuit Name Mean (A) Standard Deviation

C17 3 444 3 241

Ce5 9 193 4 650

880 291 018 177 310
€1908 418 582 648 307
C2670 518 490 333 983
IMAGE 19 913 12 080
ADDER Not Defined Not Defined

Table 6.5.2.4: Mean and standard deviation of propagation total costs.

Circuit Name

Cc17
Co5
c880

C1908
C2670
IMAGE
ADDER

Mean (A) Standard Deviation
Not Defined Not Defined
13 298 8 258
97 866 68 549
42 994 12 403
516 629 281 879
1 667 1 561
Not Defined Not Defined

Table 6.5.2.5: Mean and standard deviation of justification total costs.




Circuit Name

c17
Co5
c880
C1908
C2670
IMAGE
ADDER

Mean (A) Standard Deviation
Not Defined Not Defined
15 192 15 549
81728 58 130
7 044 623 7 582 245
886 330 789 318
546 2032
Not Defined Not Defined

Table 6.5.2.6: Mean and standard deviation of backtrack total costs.

Circuit Name

C17
C95
c8s80

C1908
C2670
IMAGE
ADDER

Mean (A) Standard Deviation
6 555 3 301
24 788 13 358
660 862 477 866
4 465 937 2 714 843
2 887 644 2 114 447
14 166 7 100
3 083 1733

Table 6.5.2.7: Mean and standard deviation of backtrace total costs.
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Circuit Name Mean (A) Standard Deviation
Cc17 Not Defined Not Defined
Co5 23 420 7 998
Cc880 1 134 732 834 495

C1908 4 421 338 2 261 968

C2670 5 346 050 3 851 943

IMAGE 30 516 14 746

ADDER 1 083 1 555
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Table 6.5.2.8: Mean and standard deviation of implication total costs.

Although HUB is able to generate the cost information as a means to identify
hard to test faults, even when there are no -backtracks and the fault is non redundant,
it will be necessary to produce additional information which would indicate how circuit
modifications could be implemented and cause the fault to become easily testable.
One possible method would be to indicate on the circuit’s schematics, at the high
abstraction level possible, which circuit macros and nets have been activated and
manipulated; this would allow human intervention. This is a major weakness to HUB

at present.

From an implementational aspect, HUB requires many extra tools to provide

manipulation of the large amounts of data that HUB is capable of producing; BBN’s

RS/1™ statistical package was used - a tool that would be non trival to construct
during the process of a M.Sc.A.. Even with this tool, HUB may produce a surplus of

data which could be pruned into a more useful quantity.

6.6  Summary.

A variety of measurements were made using the HUB environment; the
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gBDD circuit model, the characteristics of HUB’s automatic test pattern generator
and its fault simulator, and to indicate HUB’s ability to produce detailed information
about the existence and causes of hard to test faults with a combinational logic
circuit. The results were obtained by using a subset of the 1985 ISCAS combinational
logic circuits and two additional circuits: a full adder cell and a portion of the Image

circuit, a circuit developed at Ecole Polytechnique.

HUB succeeds in providing useful information for the design team and in
coupling the concept of testability measurement to the ATPG process, but additional
information and efforts will be required before the detection of hard to test faults is

completely solved.



7.0 Conclusions.

An attempt to identify the presence of hard to test faults in a digital
combinational circuit by a new method was tried The underlying concepts of the this
method involved the idea of coupling cost constraints with an efficient automatic
pattern generator (ATPG). The cost constraints are in the form of budgets and they
can be compared dynamically with the ATPG costs; the costs are obtained by
monitoring the important phases of an ATPG phase that is based upon the FAN
algorithm. A secondary set of concepts consists of identifying which ATPG phases
cause backtracks to occur, and the quantity of each, plus determining the logic
element which is clearly responsable in initiating the backtrack condition. A computer
implementation, HUB (hard fault detection using budget constraints), was used to

evaluate the basic principles of these concepts.

HUB consists of a modified version of the FAN ATPG algorithm which allows
the monitoring of the ATPG phases’ costs. HUB uses traditional testability
measures (COP) to provide partial aid in selecting nodes during the error propagation
and net justification phases, in addition to error propagation heuristics included in a
new circuit modelling technique created to aid HUB’s automatic test generation
process. An environment for HUB’s use was also created and consits of: (1) a circuit
netlist translator (from a neutral netlist format) to the new gBDD (graph binary
decision diagram) circuit model used by HUB; (2) a simple single stuck at fault
simulator; (3) translation tools that permit HUB’s test vectors and gBDD’s circuit
description to be converted into the input format required by a commercial logic and

fault simulator (SIMUCAD’s SILOS II™); and (4) output data files, from HUB, in an
ASCII format which were used by BBN’s RS/1I™ statistical analysis package in

providing meaningful data.

Some measurements were effected using circuits from the 1985 ISCAS
combinational benchmark circuits plus two additional circuits. The measurements
centered upon 3 arenas: the gBDD circuit model’s characteristics; HUB’s ATPG and

fault simulation characteristics; and HUB’s hard fault detection abilities.
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The gBDD circuit modelling method would appear to be the single most useful
result of this research albeit that the thesis’ thrust was to find a method to detect
HFs based upon cost considerations. The gBDD circuit model has provided a method
to combine a circuit’s structural and functional information in a reasonably compact
format which did not cause performance problems for the ATPG process. This model
reinforces the positive aspects of the previously uncombined graph model and the
binary decision diagram circuit (BDD) descriptions which each have major handicaps:
graph modelling do not provide any functional details while the binary decision
diagrams preclude structural knowledge at the cost of poor single stuck at fault

coverage.

The resulting gBDD model permits the ability to describe a circuit in a
hierarchical manner, to generate tests based upon non traditional fault models (that
is a functionality based fault model referred to as an experiment), and to incorporate
previous research based upon graph models and BDDs. This model was invented
expressly to aid the test pattern generation process and allow the future expansion of
the HUB tool to mixed sequential combinational logic circuits. Further advantages of
the modelling method will allow the construction of test stimulus before the full
implementation details of the circuit are known - in particular shortly after the basic
circuit’s building blocks and the interconnecting data paths are known - so that
efforts at detecting hard faults, from a functional testing aspect, can be identified
before the design has proceeded a great length.

HUB’s ATPG capabilities, although not a complete implementation of
Fujiwara’s FAN algorithm and without dynamic vector compaction, has performance
characteristics similar to those of a university copy of PODEM. Due to the lack of
dynamic vector compression, HUB will tend to generate more test vectors for circuits

having large numbers of primary inputs, but few primary inputs per cone of influence.

HUB’s hard fault detection mechanisms were seen to be functional, although
they may not be sufficiently useful when no backtracks occur. If one can reduce the

amount of backtracks by efficient algorithms and valid heuristics, then HUB’s cost
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accounting information will need to be augmented by additional data to provide useful

feedback to the design team.

HUB was seen to generate correct test vectors for circuits and its information
did provide accurate data about the cause of hard to test faults for the circuits for
which schematics could be used to verify HUB’s results. The cost information did not
show that one particular phase was generally responsible for the majority of resource
usage although, for all the circuits evaluated, it was seen that HUB clearly identified

that the majority of backtracks occurring were initiated by the net justification phase.

There are several next steps which HUB and the gBDD circuit model could
naturally be extended to encompass. The circuit model should allow the design team
to evaluate testability aspects without having the complete implementation specified

due to its functional modelling aspects.

HUB has other abilities as yet unexplored and it would be desirable to
incorporate this tool into an integrated design evironment such as the CADENCE
company has attempted to do by integrating electronic schematic capture
environment with links to logic simulators and analog simulation tools from within the
one tool. Adding a testability analyzer would be of use especially in a paradigm that
supports hierarchical circuit descriptions. (Note that CADENCE supports 'SCOAP

whose limitations as a testability metric were previously described.)
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9.0 Appendix A

HUB is invoked using the following command syntax, detailed in Figure A.l,

and consisting of three main argument components.

hub [- option list] Input_file_name Accounting_file_name

When the fault simulation option is used, an additional file faultsdetecter.sim is
created and which contains summarized data about the fault simulation results. The
file input_file.extension must be in the gBDD file format; a simple check is made and

HUB aborts if this requirement is ignored.

hub [-f -i -1 -n -r -s -v -2] Input_file_name Accounting_file_name

f - Function names printed.

i - Interactive mode.

| - seLected list of function names printed.
n - graph Nodes’ net values printed.

r - fault Reduction activated.

s - fault Simulator activated.

v - Verbose: print gBDD circuit data.

z - silos ii vector output.

Figure A.1: HUB’s options and syntax.

Figure A.2 shows a portion of the accounting file’s data output. Reasonable

effort was made to provide uniqueness of information to allow filtering by means of
the UNIX™ udlities grep() and egrep(). These were used extensively in preparing

data for use by BBN’s RS/1™ statistical analysis program.
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HUB’s data output.
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Test vectors are generated in one of two formats: a time stamped (the vector

has time related information included with it) version, Figure A.3a, is created with

the -z option; otherwise the docuemented version of Figure A.3b is output which

includes the graph node and pdcf identification numbers plus the input and output

values. The documented vector is separated into 3 fields of information: (1) data on

which graph node and which pdcf at that graph node for which the vector was created;

(2) the primary input cube consisting of I, 0s, and Xs; (3) and the primary output cube

which may have any value from the 5 value logic set {0, 1, X, d, D}.

Output_Test(11:1)
Output_Test(12:0)
Qutput_Test(12:1)
Output_Test(12:2)
Output_Test(13:0)
Output_Test(13:1)
Output_Test(13:2)
Output_Test(14:0)
Output_Test(14:1)

1011 XXXXXX
11010X0X0X
11100X0X0X
11110X0X0X
110X010X0X
110X100X0X
110X110X0X
110X0X010X
110X0X100X

Figure A.3a: HUB’s documented vector output.

100 1011 XXXXXX
200  11010X0X0X
300 11100X0X0X
400 11110X0X0X
500 110X010X0X
600  110X100X0X
700  110X110X0X
800 110X0X010X
900 110X0X100X

Figure A.3b: HUB’s SILOS IT™ vector output.

D

oogoagaa

To facilitate the file parsing phase, the follwing fixed circuit net list format is
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used. The inputs and outputs may use either one of the formats, and may be a
mixture for the same file. All statements start with a space. The order in which the
netlist is written is important; failure to respect this sequence may result in
unpredictable behavoir. The elements, except the inverter and buffer functions, must
have a minimum of 2 inputs. (This required that the ISCAS list be modifed since they
use 1-input NAND and AND gates to achieve these functions) Figure A.5 shows a

IN/inputt, input2, ...//

OUT/output1, output2, ...//
ELEMENTSs/input1, input2, .../output/
FOUT/input/outputi, output2, output3/
END

Figure A.4: Neutral netlist syntax.

list of the elements, and the neutral netlist for a full adder is shown in Figure A.6.
Comments may be used, and are indicated by a ““**’ in the first column of any line.
There is also a continuation symbol, the ‘‘="" which must also be in the first column

of any line.

AND
NAND
OR
NOR
NOT
BUF

Figure A.5: Permissible element list.




IN/A1// <~ Circuit’s primary inputs.

IN/B1//
IN/CIN//

* INT/TMP//
OUT/CARRY//
OouT/SUM/

OR/A11, B11/D/

AND/A12, B12/E/ _

AND/D, CIN1/H/ E Logic elements.
NOR/H, E//

NOT/J1/CARRY/

OR/A13, B13, CIN2/F/
AND/A14, B14, CIN3/G/
AND/F, J2/K/

NOR/K, G/L/
NOT/L/SUM/

FOUT/A1/A11, A12, A13, Al4/
FOUT/B1/B11, B12, B13, B14/
FOUT/CIN/CIN1, CIN2, CIN3/
FOUTN/, J2/

END = Indicate end of netlist.

Figure A.6: Full adder netlist example.

< Circuit’s primary outputs.

* A comment starts in col 1.
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10.0 Appendix B.

Figure B.1 describes the relation between a graph node’s output names (its
lexemes) and its graph node identification number as used by HUB. This list does not
include the circuit’s primary outputs since they are the first graph nodes in the graph
node list maintained by HUB. All other graph nodes, that is the logic elements and
the primary outputs, are listed. Figure B.2 shows some of the data HUB produces.

Program: node_lister ( 33):GAT22
Date : Wed Oct 18 12:04:32 1989 ( 34): GAT31
Fichier d’entree : image.bdd ( 35):GAT9
ready to go to hub_ATPG() ( 36): GAT30
( 37): GATS
( 38):GAT25
( 39):GAT24
( 40): TMR

(Graph Node Number) : Net name

10) : GAT17
11) : GAT1
12) : GAT2
13) : GAT3
14) : GAT4
15) : GATS
16) : GAT10
17) : GATI11
18) : GAT12
19) : GAT13
20) : GAT18
21) : GAT19
22) : GAT20
23) : GAT21
24) : GAT26
25) : GAT27
26) : GAT28
27) : GAT7
28) : GAT15
29) : GAT23
30) : GAT29
31) : GAT6
32) : GAT14

AAAAAAAAAAAAAAAAAAAAAAA

Figure B.1: Listing of Image’s graph node output names.
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11.0 Appendix C.

The following 6 histograms are the total cost histograms for the ISCAS
circuits (C17, C95, C880, C1908, and C2670) and for the full adder cell. The cost is
expressed in A, the basic time units used by HUB. These histograms provide the

visualization of the tabular data presented in the general results section of Chapter
6.
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Graph C.1: C17 total cost histogram.
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