
Titre:
Title:

Detection of hard faults in combinational logic circuits

Auteur:
Author:

David H. Stannard

Date: 1989

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Stannard, D. H. (1989). Detection of hard faults in combinational logic circuits
[Mémoire de maîtrise, École Polytechnique de Montréal]. PolyPublie.
https://publications.polymtl.ca/56720/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/56720/

Directeurs de
recherche:

Advisors:
Bozena Kaminska

Programme:
Program:

Génie électrique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/56720/
https://publications.polymtl.ca/56720/

Ci-^-gPf
^p ?

q Q 9

St

UNIVERSITE DE MONTREAL

DETECTION OF HARD FAULTS IN COMBINATIONAL LOGIC CIRCUITS

par

David H. STANNARD

DEPARTEMENT DE GENIE ELECTRIQUE

ECOLE POLYTECHNIQUE

MEM01RE PRESENTE EN VUE DE L'OBTENTION

DU GRADE DE MAITRE ES SCIENCES APPLIQUEES (M.Sc.A.)

DECEMBRE1989

© David H. Stannard 1989

National Library
of Canada

Bibliotheque nationale
du Canada

Canadian Theses Service Service des theses canadiennes

Ottawa, Canada
K1 A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accorde une licence irrevocable et
non exclusive permettant a la Bibliotheque
nationale du Canada de reproduire, preter,
distribuer ou vendre des copies de sa these
de quelque maniere et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des personnes
interessees.

L'auteur conserve la propriete du droit d'auteur
qui protege sa these. Ni la these ni des extraits
substantiels de celle-ci ne doivent etre
imprimes ou autrement reproduits sans son
autorisation.

ISBN 0-315-58199-9

CanadS

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE

Ce memoire intitul6

DETECTION OF HARD FAULTS IN COMBINATIONAL LOGIC CIRCUITS

est pr6sente par: David H. Stannard

en vue de I' obtention du grade de: Maitre es sciences appliquees (M.Sc.A.)

M. Bernard Lanctot, President, ing.

M. Jean-Charies Bernard, Ph.D.

Mme. Bozena Kaminska, Ph.D.

M. Yvon Savaria, Ph. D.

ABSTRACT

Integrated circuits have become increasingly complex while their users have

become more stringent in their quality requirements and simultaneously exhibidng a

larger appetite for newer products at a faster rate. Indeed, some integrated circuits

resemble the statement of systems on silicon and are being designed by systems

designers instead of the tradidonal 1C designer.

When one adds to these tough specifications the need for high reliability, the

ability to be manufacturable, and the desire to provide a product ready for volume

delivery within six months of defining of the circuit's objective specification, it

becomes apparent that the current tesdng bottleneck can no longer be tolerated. It is

desirable to provide a design environment which will allow the design team to

identify tesdng difficulties such as those logic faults, due to circuit fabrication, which

are hard to test. It is critical that these faults are identified as early in the design as

possible, and that the necessary infonnation describing their origins be provided to

the design team thus allowing the appropriate design corrections to be made given

knowledge of the design's constraints: cost, circuit performance, yield at the wafer

level, test time, and time to market; all of these are known from the original objective

specifications which form a contract on all the parties involved in the design process.

This thesis examines an approach to defining and indentifying hard to test

faults contained within a combinational logic circuit based upon the use of cost

constraints imposed upon the automatic test pattern generation (ATPG) process.

This approach was used since past heuristic-based methods such as testability

measures have not provided an accurate means of detecting the hard faults'

presence. By coupling the concept of cost constraints to a variant of an efficient and

extensible automatic test pattern generation tool (Fujiwara's FAN), it was hoped

that one of the heuristic's past problems, the lack of coupling to the test generation

effort, could be corrected.

In addition to creating this tool, a new circuit modelling method was

developed: graph binary decision diagrams (gBDD) which was created to provide a

means of including infonnation about the circuit's functionality and structural aspects.

A simple fault simulator, designed around the single stuck at fault model, was

incorporated into the hard fault identifier HUB. HUB also provides feedback indicating

the causes of the hard faults by indicadng which ATPG phase is the most costly

(according to time measurements), which ATPG phases cause backtracks to occur,

and which logic elements can be clearly defined as the originators of the backtracks.

The results of this research have indicated that this approach has merit, but a

problem is apparent: without circuit schemadcs for the circuit being evaluated, it is

difficult to verify the preciseness of HUB'S results and to allow meaningful analysis

of the circuit However, for the cu-cuits evaluated and for which schemadcs were

available, HUB provided infonnation about the reasons for the redundant logic faults

(not considered as hard faults in this thesis) identified by exhaustive searches of the

circuit whose correctness was verified by comparision with the circuit's schematics.

The cost informadon also shows the relative costs of the various ATPG phases and

clearly identified that the majority of the backtracks are caused by the net jusdficadon

phase.

The most significant result of this research is the creation of the new circuit

modelling technique gBDD that allows the vertical integration of a wide variety of

previous researchers' works in manipulating functional related circuit informadon and

structural based circuit data. The ability to generate funcdonal based tests (as

opposed to tests built around a fault model such as the traditional stuck at fault) is

made nossible bv the functional circuit information and is derived from the binary

decision diagram portion of the gBDD circuit model. The manipulation of graph portion

of the new circuit model, extracted from the circuit's structure, is useful for

determining the placement of diagnostic test points derived from knowledge about the

circuit's reconvergent fanout characteristics and for calculating testability metrics in

hierarchically described circuits.

SOMMAIRE

Une nouvclle mekhode a cte crcce afin de decouvrir la presence des defauts

dans un circuit logique, combinatoire sculement, qui sent difBciles a detecter

(TIFs) avec dcs cssais poiir la verification du circuit. On a propose de les

classer et de fairc lcur detection en utilisant des heuristiques fondees sur les

couts ct les budgets de verification pour 1c circuit pendant qu'un algorithme

tcnte de getiercr clcs tests pour les defauts choisis. C'ettc methode a ete choisie

afin de permettre 1'integration des contraintes de ressources, les heuristiques

qui decouleiit, les vrais efForts requis pour la generation des vecteurs, et de

ramasser dcs informations sur les causes de ces HFs. Grace a 1'algorithme de

generation automatique des vecteurs de test FAN, qui sert comme fondation

pour HUB (1c systcme poiir <lccoiivrir la presence des IIFs), on peut mcmc

clctecter s'il y a des Ill71s crces par la rcdondance lors de la conception du

circuit.

Pour supporter HUB, une nouvclle methode de modelisation du circuit

a ete creee - gBDD - (grapli binary decision diagram): cette modelisation

pcrmct de combiner Ics avantages dcs informations structurelles, decrites par

les graphes, ave les informations de comportement detaillees par les BDDs

(binary decision diagrams).

HUB est un ensemble dc logiciels qui pcrmet de traduire une description

du circuit cn moclelisation gBDD, qui genere clcs mcsures afin de les utillser

avcc des liciifiH l, i(|iics [x'lKla. iil, la. pliasc (tc gciicration clcs vecteurs de test, ct qui

tcnte d'identiFicr la presence de ccs defauts difficiles a. detecter par 1'algorithme

de generatioii cles vecteurs. HUB mcsure les couts de cette phase de generation

c(, 1c logiciel garde ccs cl()iiii('>cs da. ns un ficliier pour uii traitement ulterieur par

vu

1'usager. Les logiciels ont ete faits pour que 1'usager puisse modifier les con-

tenus avec les logiciels commerciaux et en utilisant des cominandes du systeme

d'exploitation de 1'ordinateur, surtout ceux d'UNIX. Done cette recherche a

cree un environnement de travail. L'usager peut se servir d'HUB comme simple

generateur de vecteurs ou meme pour apprendre cominent ce genre de logiciel

fonctionne.

HUB a ete utilise pour tenter d'identifier la presence des HFs dans des cir-

cults comblnatoires d'lSCAS 1985. Malgre que les prmcipes de base permettent

de decouvrir et de definir ces defauts, selon. la definition de cout et en absence

des retours en arriere (en anglais, backtracks}, HUB ne genere pas assez de

donnees pour bien identifier les causes de ces HFs. Les resultats indiquent que

HUB peut identifier les raisons pour les retours en arriere par 1'identification du

noeud responsable pour ce retour et que la majorite de ces retours sont causes

par la phase de justification des noeuds a 1'interieur du circuit. HUB a reussi

a. mesurer les couts de chaque phase majeure de la generation automatique

des vecteurs de test malgre que Ie systeme d'UNDC semble avoir un. probleme

a bien mesurer la quantite de temps. Pour permettre la future correction du

circuit, HUB iraprime des informations sur les heuristiques responsables des

difficultes pendant les phases majeures de la generations de ces vecteurs.

Par centre, Ie modele du circuit (gBDD) a fait ses preuves comme methode

pour aider la generation des vecteurs de test et est devenu Ie resultat Ie plus

important de cette recherche. Ce modele a permis la modification de la fa^on

de generer les vecteurs de test et d'ajbuter des nouveUes heuristiques. Ce

modele permet 1'utilisatiou d'autres modeles de defauts avec des modifications

au logiciel.

NOTES of THANKS

During this period of research, many people have been instrumental in

providing technical support, guidance, and the use of tools that would otherwise not

be available:

A special note of thanks to my supervisor and mentor, Mme. Bozena

Kaminska, for her support and efforts during the past two years. She has allowed me

to experiment with ideas and concepts that were foreign to me before embarking

down these paths and caused me to expand my horizons.

My wife and children also deserve an enomious recognition for their support

and encouragement during the hectic times of university, full time employement, and

the daily requu-ements of being a father in a fainily unit.

My employer, MFTEL S.C.C. has graciously provided me with access to a

muldtude of computer and software tools, absences from my employment, and

encouragement to forge ahead in the wonderful domain of integrated circuit

technology.

To all the professors, administradve staff too numerous to list; you all know

who you are -1 thank you too.

Table of Contents

Abstract... "..""."""".."-"""""--"^

Sommaire... "--""".-..."-"""--"-VI

Notes of Thanks.. """""""""."."."."'^1"

List of Tables... "... "....... "" x"

List of Figures.. "......... "...... """"""""..".- x iv

List of Graphs.. """"""."......"" " xvii

List of Acronyms.. """...".......... xviii

Table of Appendices.. -""..-"".""-- n x

1.0 Introduction... ".."--".--"""" 1

2.0 Previous Work in Identifying Hard to Test Faults (HFs). 5

2.1 The effect of reconvergent fanout and redundancy...................... 5

2.2 Testability Measures (TMs)... " 8

2.2.1 SCOAP - Sandia Controllability Observability Analysis
Program.

2.2.2 COP - Controllability Observability Program............................ 14

2.3 Using of ATPGs to detect HFs... 17

2.4 Previous use of cost in Testability Analysis.................................. 20

2.4.1 Breuer's Sensitivity Functions... 20

2.4.2 Random Test Cost Functions... 21

2.4.3 Sequential Test Cost Functions. .. 23

2.4.4 Summary of Cost Functions. ... 24

x

3.0 Review of Automatic Test Pattern Generation (ATPG)............. 26

3.1 Fault modelling... 26

3. 1.1 Single stuck at fault model and 5 value logic. 27

3.2 Single versus Multiple path sensitization..................................... 31

3.3 The Four ATPG phases of Deterministic Gate Level Test
Generation.

31

3.4 Random Test Pattern Generation and Hybrid Methods............ 36

3.5 Review of the FAN algorithm.. 39

3.6 Backtrack reduction methods and the importance of heuristics.
... 43

3.7 Summary... 44

4.0 Mixed Graph - Binary Decision Diagram (gBDD) Circuit
Model.

45

4. 1 Introduction.. 45

4.2 A Review of graph techniques... 46

4.3 A Review of binary decision diagrams (BDDs) techniques......... 49

4.4 gBDD - Graph Binary Decision Diagrams................................... 54

4.5 Summary... 58

5.0 Detection of Hard Faults using HUB.. 59

5.1 Introduction to budgetary constraints.. 59

5.2 The HUB algorithm.. 64

5.3 Important HUB attributes... 71

5.3.1 ATPG control by Graph Node (GN)... 72

Xl

5.3.2 pdcf Personality File... 74

5.3.3 Fault model, fault collapsing and simulation............................... 75

5J.4 Interactive Mode and Information Feedback.............................. 78

5.3.5 Other HUB features.. 80

5.3.6 Hierarchy Provisions.. 81

5.3.7 Summary... 82

6.0 Results.. 83

6.1 Circuit characteristics of used for results..................................... 85

6.2 Comparison of gBDD... 85

6.2.1 gBDD Temporal performance... 85

6.2.2 File sizes... 88

6.3 ATPG related results.. 90

6.4 Fault Simulation related results. ... 91

6.5 Hard Fault Detection.. 93

6.5.1 Extended example using Image... 93

6.5.2 General Results... 107

6.6 Summary... 112

7.0 Conclusions.. 114

8.0 Bibliography.. 117

List of Tables

Table 2.2.1.1: SCOAP initial conditions. .. 13

Table 2. 1.1.2: SCOAP values for the full adder circuit......................... 15

Table 2.2.2.1: COP initial conditions. ... 16

Table 2.2.2.2: COP values for the full adder circuit.............................. 19

Table 3. 1.1.1: Rules for Difference intersection..................................... 30

Table 6.1.1: ISCAS and other test circuit characteristics..................... 86

Table 6.2.1.1: gBDD time distributions... 88

Table 6.2.2.1: Circuit Model File Requirements (k bytes).................... 89

Table 6.3.1: Partial ATPG results - no simulation................................. 90

Table 6.4.1: ATPG results with simulation vs fault simulation............ 92

Table 6.5.1.1: Cumulative total cost distribution................................. 104

Table 6.5.1.2: Cumulative propagation distribution. 105

Table 6.5.1.3: Cumulative justification cost distribution.................... 105

Table 6.5.2.1: Justification backtrack information. 108

Table 6.5.2.2: Mean of backtracks.. 109

Table 6. 5.2.3: Mean and standard deviation of total costs.................. 109

Table 6.5.2.4: Mean and standard deviation of propagation total
costs.. 110

Table 6.5.2.5: Mean and standard deviation of justification total
costs.. 110

Table 6.5.2.6: Mean and standard deviation of backtrack total costs.
Ill

Xlll

Table 6.5.2.7: Mean and standard deviation of backtrace total costs.
..^

Table 6.5.2.8: Mean and standard deviation of implication total
costs.. 112

List of Figures

Figure 2. 1.1: Example of reconvergent fanout... 7

Figure 2. 1.2a: Graph with reconvergent fanout...................................... 8

Figure 2. 1.2b: Graph without reconvergent fanout................................. 8

Figure 2.2.1: Blocking condition example. ... 10

Figure 2.2.2: Line justification example. ... 11

Figure 2.2. 1.1: SCOAP pseudo code. ... 12

Figure 2.2. 1.2: Some elements and their SCOAP relations................... 13

Figure 2.2.1.3: Full adder circuit... 14

Figure 2.2.2. 1: COP pseudo code... 16

Figure 2.2.2.2: Some elements and their COP relations........................ 17

Figure 2.4.2.1: ESPRIT pseudo code... 21

Figure 2.4.2.2: Fault Coverage function. .. 23

Figure 3.1.1a: CMOS inverter with output shorted to VDD................ 28

Figure 3. 1. 1b: CMOS inverter with output shorted to VDD................ 28

Figure 3. 1. 1.1: CMOS inverter with output stuck at 1.......................... 29

Figure 3.2. 1: Path sensitization example... 32

Figure 3.3. 1: ATPG example.. 33

Figure 3.3.2: Error propagation example... 34

Figure 3.3.3: Net justification example... 35

Figure 3.3. 4: A typical ATPG algorithm.. 36

Figure 3.4. 1: A typical LFSR circuit... 37

XV

Figure 3.4.2: Random Test Pattern Generation..................................... 38

Figure 3.5. 1: Types of nets in FAN.. 41

Figure 3.5.2: FAN pseudo code.. 42

Figure 4.2.1: Full adder.. 47

Figure 4.2.2: Full adder's graph.. 48

Figure 4.2.3: Full adder's relation matrix.. 50

Figure 4.3.1: n - input AND gate's BDD... 51

Figure 4.3.2: Activated modulo 2 BDD... 52

Figure 4.3.3: Typical BDDs.. 53

Figure 4.4.1: Modified BDD for AND gate... 56

Figure 4.4.2: gBDD for full adder circuit... 57

Figure 4.4.3: Graph node and mBDD node data structures................. 58

Figure 5. 1.1: Design phases.. 62

Figure 5.1.2: Budget importance... 63

Figure 5. 1.3: Budget formulae... 64

Figure 5.2.1: Creation ofgBDD circuit... 65

Figure 5.2.2: HUB'S inputs and outputs... 66

Figure 5.2.3: Fault coverage curve.. 67

Figure 5.2.4: HUB'S pseudo code. ... 68

Figure 5.2.5: HUB ATPG's pseudo code.. 69

Figure 5.2.6: HUB Cost Accounting Data Structure............................. 70

Figure 5.3. 1.1: HUB'S graph node pointer list....................................... 73

Figure 5.3. 2.1: 2-input AND gate's pdcf personality file....................... 74

XVI

Figure 5.3.3.1: Fault collapsing.. 76

Figure 5.3.3.2: Fault simulation using lists... 77

Figure 5.3.3.3: Fault simulation sample output data............................. 79

Figure 6.5. 1.1: Image circuit subsection ... 95

Figure 6.5.1.2: Partial HUB hard fault data... 107

Figure A.1: HUB?s options and syntax... 124

Figure A.2: HUB'S data output. .. 125

Figure A.3b: HUB'S SILOS II(vector output...................................... 126

Figure A.3a: HUB'S documented vector output................................... 126

Figure A.4: Neutral netlist syntax. .. 127

Figure A.5: Permissible element list.. 127

Figure A.6: Full adder netlist example... 128

Figure B. l: Listing of Image's graph node output names................... 129

Figure B.2: Example of HUB'S accounting data.................................. 130

List of Graphs

Graph 6.2. 1.1: gBDD file storage time.. 87

Graph 6.5. 1.1: Primary Backtrack Phases... 96

Graph 6.5. 1.2: Secondary Backtrack Phases. .. 96

Graph 6.5. 1.3: Graph Node causing Backtrack Phase.......................... 97

Graph 6.5. 1.4: Graph node number (reduced fault dictionary)........... 98

Graph 6.5. 1.5: Propagation phase cost histogram................................. 99

Graph 6.5.1.6: Justification phase cost istogram................................... 99

Graph 6.5. 1.7: Backtrace phase cost histogram................................... 100

Graph 6.5. 1.8: Backtrack phase cost histogram.................................. 100

Graph 6.5. 1.9: Implication phase cost histogram................................ 101

Graph 6.5. 1. 10: Total cost histogram.. 101

Graph 6.5. 1. 11: Budget histogram.. 102

Graph 6.5. 1.12: Total cost histogram (fault simulation)..................... 102

Graph C. l: C17 total cost histogram.. 131

Graph C.3: C880 total cost histogram.. 132

Graph C.2: C95 total cost histogram.. 132

Graph C.5: C2670 total cost histogram.. 133

Graph C.4: C1908 total cost histogram.. 133

Graph C.6: Full adder total cost histogram... 134

ListofAcron ms

ATPG
BDD
COP

CDP.
D

FAN
FCE
gBDD
HUB
HF
mBDD

pdcf

pdh-
PI
PO
PODEM
SCOAP

TM
UUT
UUT_PI
UUT_PO
VICTOR

Automatic Test Pattern Generation.

Binary Decision Diagram.
Controllability Observability Program.
Cuinmulative detection probability.

Difference.

FANout oriented ATPG.

Fault Coverage Estimate.
graph BDD.
Hard fault detecdon Using Budgetary constraints.
Hard Faults.

modified BDD.

primitive d cube of failure.
Probability of detecting net / stuck at i.

Primary Input.
Primary Output.
Path Oriented DEcisioin Making.

Sandia Controllability Observability Analysis
Program.

Testability Measure.
Unit Under Test.

UUT's Primary Input.
UUT's Primary Output.

Vlsi Identifier of Controllabillity, Testability,
Observability and Redundancy.

List of Appendices

9.0 Appendix A.. 124

10.0 Appendix B.. 129

11.0 Appendix C.. 131

1.0 Introduction.

The continued increase in integrated circuit (1C) complexity, the tremendous

pressure on reducing the dme to market for these dense products coupled with the

mmultuous drive to design products having inherently better quality and

manufacturabUity with the first product revision has resulted - once again - in a

heightened awareness of the testing bottleneck. Test and design engineers

understand from their first hand experience, the conflicting interests caused by the

requirements of high quality (expressed as a test metric), short test application

dmes, the need for high yields - an ambiguously defined term - and reduced test

costs.

The literature mendons that high test quality, such as 95% fault coverage

metric using Ac ^rn^/c sruc^ at fault model, provides for more reliable products

[McCluskey 88]. All testing, and hence the ensuing high quality, requires the ability

to control the testing stimuli and observe the determinisdc results. An 1C design's

controllability and observability are key aspects that have been addressed through

the design methodology and grouped loosely under the monicker of Design For Test

(DFT). Ad hoc techniques, such as those listed by Bardell [Bardell et al. 86], and the

more formal DFT ideas, examples are listed in [McCluskey 86][Bardell et al. 86],

have been suggested as means to approach the testing problem from the hardware

perspective. Even more recently, researchers have been working on synthesis which

includes the designing of testable hardware as demonstrated in papers from

[Devadas et a/.][Sangio 88a] [Beenker et al. 89]. There has been a tendency to use

these methods as Ae proverbial "silver bullet" intended to slay the testing monster.

The negative effect of some DFT solutions on product yield, die size and even circuit

performance has led to its use on an as needed basis in more recent years - as

exemplified by Ac work on partial scan path [Agrawal et al. 88].

At the 1989 International Test Conference, the invited speaker. Dr. Tom Williams of

the IBM corporation stressed the need for quality by stating that achieving the 100

ppm (parts per million) of defecdve units requires a minimum of 100% single stuck at

fault coverage and that the integrated circuits must be tested for delay faults. With

the increasing demand of the computationally intense software verification activides

such as fault simulation, one must design testable, manufacturable ICs using

methods that relieve this tool-related burden [D&T 89] [Miczo 86].

Therein lies one of the fundamental problems facing the testing community -

identificadon of what is hard to test and what is easily tested. Much work in Ae field

of estimating circuit testability, using the concept of testability measures (TMs), has

met with limited success. Despite the introducdon of many different TMs-SCOAP

[Goldstein 79], COP [Brglez 85], VICTOR [Ratiu 82] - subsequent authors have

shown that there is little confidence in the ability to correlate these static TMs with

the reality of testing the circuits; this despite their use in guiding automatic test

pattern generation (ATPG) for pruning the algorithm's decision search space. Even

Ivanov's work using dynamic TMs pvanov 85] provided little extra benefit once the

added computational loading was considered. The underlying difficulty appears to be

the use of heurisdcs to create linear algorithms to approxunate an NP complete

problem.

The use of ATPGs to detect faults which are hard to test (HFs) is a definite

possibility since, when an algorithm is employed, an exhaustive search will posidvely

identify the presence of redundant logic and other HFs. ATPGs are known to be NP

complete and their indiscrmunate use can result in large computer mn dmes.

Guidance heuristics, such as TMs and backtrack limits, were introduced as attempts

to reduce this excessive computer usage. However, as Fujiwara [Fujiwara 85] and

Marlett [Marlett 89] indicate, it is important to reduce backtracks by making the

correct decision and thus try to avoid labelling testable faults as HFs due to

erroneous decisions. Ivanov suggested that the use of TMs acmally causes the

ATPG's failure pvanov 85] for certain conditions.

ATPGs and TMs suffer another limitation: they indicate that a fault is hard to

test but fail to indicate the cause other than the fact that the backtrack limit has been

exceeded (ATPG) or that the testability is deteriorating. In order to correct the

underlying problem, it is desirable to understand the HF's origins - is there no error

propagation path? - is there a conflict due to the assignment of logic values to the

nets?

This thesis proposes to identify the existence of HFs in logic circuits

(restricted to combinational logic) based upon some new concepts which will be used

to extend the previous work of oAer researchers. The concept of costs - and the

budgetary constraints which arise from the cost of work - will be applied as a true

measure of what type of fault is a hard fault. This is the primary direction taken by

this paper. Cost accounting techniques will be applied to the various phases of an

extended version of a well known ATPG CFujiwara's FAN [Fujiwara 85]): these

phases are the error propagation (difference or D propagadon), net justificadon, the

net implication (the simuladon due to application of known values to the logic

circuit's nets), the decision space creation (backtracing) and the re-evaluation of

previous decisions (backtracking).

The concept of cost will be used to de in design related knowledge - i.e.

how much emphasis the designer wishes to place on the thorough testing of a given

design - by allowmg the designer to specify the total cost constraints for the unit

under test (UUT). This will allow the use of an efficient algorithm to perform an

exhaustive search in the worst case or unlimited budget, and to also examine the

impact of severe budget considerations. Recent estimates indicate that fully one half

of a large 1C's development cost may be due to the impact of the IC's testing

[Henckels 88a] [Henckels 88b].

In order to support this method, new heuristics have been developed and

coupled with a new circuit modelling technique. These aid an extended FAN

algorithm in arriving at a solution. The novel circuit model provides help in guiding the

decision making process and provides for the future use of hierarchical circuit

descripdon in order to reduce the test generation time. It also pemiits the removal of

the single stuck at fault model restriction.

This thesis is divided into 7 Chapters and has the following organization:

. Chapter 2.0 reviews previous research on identifymg hard to test

faults (HFs). Testability Measures (TMs), specifically SCOAP and

COP, are discussed; the effect of reconvergence and fanout in

circuits, and the previous use of cost in Testability Analysis are

reviewed; and the means by which automatic test pattern generation

have all been used to attempt to discover the presence of HFs at the

various phases of circuit design are described.

. Chapter 3.0 provides a review of the key concepts involved with

automatic test pattern generation (ATPG) required to introduce our

method of hard fault identification - HUB. A summary of the basic

single stuck at fault model, the internals of ATPG algorithms

(specifically Fujiwara' s FAN since this has served as a basis for

HUB), and the basic framework of defmidons is undertaken.

. Chapter 4.0 details the mixed graph and binary decision diagram

circuit model which is required by HUB. Its ability to describe the

circuit's funcdonahty and structure, to provide hierarchical modellmg

of mixed combinational and sequential circuits, and to allow different

fault models to be employed are presented.

. HUB - Hard fault detection Using Budgetary constraints - is

explained in depth in Chapter 5.0.

. HUB'S heuristics, the introduction of the budgetary constraint

concept that is central to our HF identification tool, and a preview of

how the circuit modelling technique will be closely coupled wiA to

HUB, are described in Chapters 4.0 and 5.0

. The results of measurements obtained from HUB on some of the 1985

ISCAS combinational benchmark circuits are provided in Chapter 6.0;

this data is also analysed and explained in this same chapter.

Chapter 7.0 provides the conclusions.

2.0 Previous Work in Identifying Hard to Test Faults (HFs).

This chapter will provide msight into the existence of hard to test logic faults

caused by the nature of the design methodologies and how various techniques have

been employed to attempt the detecdon of their existence at various stages of the

circuit design cycle.

The important effects of reconvergent fanout and logic redundancy in a logic

circuit provides a review of some basic definidons and leads into the use of tools;

specifically tools used to manipulate this infomiadon. Additional heuristic tools, used

to estimate the vaguely defined circuit testability, are presented using two traditional

testability measure sets: (1) SCOAP; and (2) COP which are linear approximation

approaches to the NP complete test generation problem. Subsequently, the use of

automatic test pattern generadon tools in detecting HFs will be described including

addidonal explications as to how the tool and its circuit environment can cause faults

to become hard to test.

A review of sensidvity cost funcdons, random test cost functions, and

sequential test cost funcdons introduce more fully the concept of applying cost

measures in improving a cu-cuit's testability. These sections will also provide

insights into the diversity of techniques, metrics, and heuristics employed in

testability analysis.

2.1 The effect of reconvergent fanout and redundancy.

The presence of reconvergent fanout definitely causes difficult to test faults -

HFs. Bell states that backtracking operadons within ATPGs, caused by redundancy

and the decision making process, are caused by reconvergent fanout [Bell Taylor 88].

He also quotes Savir as indicadng that reconvergent fanout [Savir 83] may cause the

inability of TMs to correlate with the difficulty that ATPGs can experience in trying to

generate a soludon. Reconvergent fanout also prompted Fujiwara to develop the

FAN ATPG algorithm [Fujiwara 85]. These HFs have driven several researchers to

develop techniques which analyse the circuit's structure and indicate either the

points at which test points (used to increase the observability within a circuit) need

to be inserted or whether the circuit is difficult to test - TMs.

Russell provided techniques, based upon graph Aeory, for determining the

diagnosdc resolution of faults within combinational logic circuits with application to

the insertion of test points [Russell Kime 71]. These techniques only examined the

circuit's stmcture without any consideration of the UUT's function or the function of

the individual modules from which the UUT is composed. This work was specifically

aimed at determining where test points - a structural change - could be inserted.

They also wished to evaluate the network structure's contribution to the UUT's fault

diagnosis properties. Batni later extended these principles to diagnostic test

generation techniques [Batni Kime 76].

Reconvergence in a circuit exists when a signal, emanating from a common

point known as the fanout stem, flows along more than one path each of which are

referred to as fanout branches, and then amve at a common circuit primitive - the

reconvergence point [Kirkland Mercer 88]. Figure 2. 1. 1 shows a simple example with

the appropriate points aimotated. Note that the introduction of reconvergence alters

the tree like structure of the circuit's associated graph. Figure 2. 1.2a shows the

circuit graph in the presence of reconvergent fanout and Figure 2.1.2h demonstrates

the effect of replacing the fanout branches with two independent signal sources.

Redundancy can generate HFs also. A redundant fault is caused by a

redundant connection - a connection, which when removed and replaced by a fixed

logic value ofO or 1 - does not alter the output functions of a circuit. A circuit that
contains no redundant connections is called irredundant. A Aeorem [Miczo 86]

follows from this definition.

THEOREM 2. 1: All stuck at 0 and stuck at 1 faults contained in the

combinational circuit UUT, are detectable if and only

if the circuit is irredundant.

&

&

t
fanout branches

&

fanout stem

point of reconvergence

Figure 2.1.1: Example of reconvergent fanout.

[Russell Kime 71] state that reconvergence is a necessary condition for

redundancy. They extend theorem 2. 1 to state the sufficient condition for detecdng

every fault within an irredundant circuit.

TtffiOREM 2.2: If a circuit is irredundant, then every stuck at 0 and

stuck at 1 fault on a net and at a module's inputs

and outputs in the network is detectable. If a

network is irredundant, then the existence of a

directed path from an element fault to a PO is a

sufficient condition for that fault to be detectable at

that PO

VICTOR (Vlsi Identifier of Controllability, TestabUity, Observability and

Redundancy) [Ratiu 82] is an example of a 4 pass linear algorithm for combinational

logic circuits which endeavours to detennine an UUT's testability, identify
redundancy, and attempt to generate test vectors. VICTOR flattens (levels) the

circuit, calculates the zero and one controllabilides, obtains the observability values

and then indicates redundancies while performing test generadon. However

McCluskey notes that VICTOR [McCluskey 86] tends to be a pessimisdc procedure,

identifying many nodes as bemg potentially redundant even if this is not the case.

Figure 2. 1.2a: Graph with reconvergent fanout.

Figure 2. 1.2b: Graph without reconvergent fanout.

2.2 Testability Measures (TMs).

Several researchers have tned to identify the presence of faults which will be

hard to test, (HFs), by establishing testability measures CTMs). The testability of a
design is evaluated using these TMs prior to generating the set of test vectors used
to detect a faulty circuit. Efforts have focused on the creation of linear algorithms

based upon heurisdcs in order to quantify the relative difficulty m generating the

subsequent testing sdmuli. These TMs are derived, in general, from metrics designed

to quantify the controllability and the observability of the individual nets or lines

within the UUT. The controllability is the ability to set a given net I to a known logic

value v e {0, 1} from values placed on the UUT's primary inputs (Pis). Observability,

the counterpart of controllability, is the ability to observe the logic value on net I

(typically with an en-or value impressed on it and not a logic 0 or logic 1) at a given

UUT's primary output (PO). Observability is also a function of the nets'

controllabilities as is shown below.

Poor controllability or observability hinders the ability to generate a test for a

faulty circuit element. Lack of control can cause one or more of Ae following problems

to occur:

. propagation of the error, caused by the faulty element, may be

blocked due to a blocking condition on a logic gate: such as a logic 0

on one or more of an AND gate's inputs as shown in Figure 2.2. 1;

. line justificadon may not be possible. Figure 2.2. 2 shows a net with

the current value of 'X' (don't care) and which requires setting to

logic 1. In this example, a zero is more easily generated than a one,

since only 1 of the 24 input combinations provides this logic 1;

. the actual sensitization of the error, local to the faulty logic element,

may be difficult The inability to generate an envu-onment whereby

the error condition is clearly evident may preclude Ae possibility of

detecting the faulty circuitry.

10

x

L

0

G

I

c

1 D
&

1

0

L

&
0

Blocking condition.

Figure 2.2.1: Blocking condition example.

Lack of observability can be related to the inability to control a net which would allow

the error signal to be propagated to an UUT PO. The terms, propagation,

sensitization and justification, will be explained in more detail as automatic test

pattern generation is covered in Chapter 3.

Two examples of widely discussed TMs are presented: (1) SCOAP - Sandia

Controllability Observability Analysis Program - which uses heuristics related to a

circuit element's relative depA within the UUT; and (2) COP - Controllability

Observability Program - that applies signal probability under the assumption of

independent fanout branches for reconvergent fanout conditions. The overall

advantage of these TMs is that they are 0(n), linear, where n is the number of logic

11

gates contained by the circuit being examined.

x

x

x

x

L

0

G

I

c

0 Dbar
&

1

&

&

Must be set to 1.

Figure 2.2.2: Line justification example.

2.2.1 SCOAP - Sandia Controllability Observability Analysis Program.

Goldstein suggested that the reladve depth of a logic gate within the UUT

would provide a measure of the ease in testing a fault on a net associated with this

gate. SCOAP [Goldstein 79] [Goldstein 80] was the computer implementation of the

algorithm which calculates the 6 TMs. These 6 metrics are used to gauge the

testability of the combinational and sequential circuitry; only the 3 combinational

TMs will be described. Essendally the controllability is decreased, indicated by an

integer value which increases by an fixed quantity (tending towards infinity or poor

control), as one proceeds from the UUT's primary inputs (Pis) heading towards the

UUT's primary outputs (POs) through the various gates in its cone of influence.

12

SCOAP first detemiines the nets' zero, CQ(net /), and one, C^(net /),

controllabilides. This information is required for calculating the nets' observability on

the second pass. The observability also decreases as the TM's magnitude increases

Initialize all Pis, POs and internal nets.

CO and C1 for Pis set to 1.

CO and C1 for POs and nets set to oo.

Obs for Pis and nets set to oo.

Obs for POs set to 0.

for all logic elements in UUT {
Calculate CO.

Calculate C1.

}
for all logic elements in UUT {

Calculate Observability.

}

Figure 2. 2. 1. 1: SCOAP pseudo code.

and is denoted by Obs(/); observabilides are independent of the value being

obser/ed. The SCOAP program's pseudo code is presented in Figure 2.2. 1. 1 makes

use of the following reladonships, only some are shown, and initial conditions in order

to predict the testability. Some simple logic primidves, with their corresponding

combinational controllability and observability equations, are shown in Figure 2.2. 1.2.

The same figure also provide the information for fanout stems, the net driving a

fanout, and fanout branches. The initial conditions for the unit under test's primary

inputs (Pis) and primary outputs (POs) are listed in Table 2.2. 1. 1. Agrawal has

indicated in a past paper [Agrawal Mercer 82] the poor correlation between the

predicted ease of testability and the reality.

A simple circuit, the full adder of Figure 2. 2. 1.3, is used as an example to

show the combinadonal controllabilities and observabilities for every net in the

13

circuit; these values are found in Table 2.2. 1.2. This same circuit is reused in the next

section, where a different set of testability- measures is calculated. Note that the

values within the accolades are for the fanout branches. The value chosen is the

minimum of the set.

Parameters

co

C1

Primary Inputs Primary Outputs

Obs 0

Table 2.2.1.1: SCOAP initial conditions.

SCOAP's sequential TMs are not discussed here as many other techniques

have been proposed and since this thesis is primarily concerned with combinational

logic HF identification. The TMs based upon sequential path length, as established

from a graph representation seem to be a more favoured approach.

x
COO") = C1(X) + 1
C1Q') = CO(X) + 1
Obs(X) = Obs(Y) + 1

Yl

Yn

COQ") = min(CO(X^)) + 1
cim = ci(x^) + i
Obs(Xp=Sj^Cl(Xj)+l

coc^p = CQ(X) + i
ClC^p = C1(X) + 1
Obs(X) = min(Obs(Yp) + 1

Figure 2.2.1.2: Some elements and their SCOAP relations.

A1 B1 CIN1

&

&

D

&

&

H

K

14

Figure 2.2. 1.3: Full adder circuit.

2.2.2 COP - Controllability Observability Program.

Brglez suggested that a more correct method [Brglez 83] [Brglez 85] for

determining a cu-cuit's testability is to use signal probabilities in calculating the TMs.

COP'S controllability and observability metrics are restricted to only combinational

circuitry resulting in a total of 3 measures. COP [Brglez 85] also requires two

passes, highlighted in Figure 2. 2. 2. 1, through a UUT to accomplish the testability

analysis: the fu-st pass is initiated from the UUT Pis and determines Ae

controllabilities, Co(net /) and C^ (net /) as the algorithm proceeds through the UUT

towards the UUT POs; the second iteration determines the observability Obs(0

starting at the UUT POs and working towards the UUT Pis using the previously

determined Co(net /) and C^ (net I). The initial conditions are stated in Table 2.2.2.1

and some formulae are shown in Figure 2.2.2.2. The COP TMs, for the full adder

circuit of Chapter 2.2. 1, have been calculated and are found in Table 2. 2.2. 2.

15

NET NAME CO

Al

Bl

CIN1

D

E

G

H

J

K

CARRY

SUM

1

1

1

3

2

2

4

5

Cl

1

1

1

2

4

4

5

8

8

Obs

6 {8, 6, 13, 10}

6 {8, 6, 13, 10}

7 {7, 13, 10}

6

10

7

4

1

4

0

0

Table 2.1.1.2: SCOAP values for the full adder circuit.

16

Parameters

co

Primary Inputs

0.5

Primary Outputs

C1 0.5

Obs

Table 2.2.2.1: COP initial conditions.

Other TMs have been suggested, but Huissman has indicated in a recent

paper that there is sdll a great deal of difficulty in predicting a circuit's testability

[Huissman 88]. He also notes that despite the lack of a definitive TM, and their lack

of success, that work should condnue in this area.

Initialize all Pis and POs.

CO and C1 for Pis set to 0. 5.

CO and C1 for POs and nets set to oo.

Obs for Pis and nets set to oo.

Obs for POs set to 1.

for all logic elements in UUT {
Calculate CO.

Calculate C1.

}
for all logic elements in UUT {

Calculate Observability.
}

Figure 2.2.2.1: COP pseudo code.

17

CO(Y) = C1(X)
C1(Y) = CO(X)
Obs(X) = ObsQ")

CO(Y) = 1 - C1Q')
C1(Y) = nC l(X^) + 1

Obs(?q) = Hj^ ci(Xj) x obscy)

CO(Y^) = CO(X)
Cl(Yp = C1(X)
Obs(X) = min(Obs(Yp)

Figure 2.2.2.2: Some elements and their COP relations.

Despite the inherent limitations of these TMs caused by the use of heuristics,

their use in guiding automatic test generators has become coinmonplace. These

guidance heurisdcs have not been Umited to the COP and SCOAP TMs.

2.3 Using of ATPGs to detect HFs.

Automadc Test Pattern Generation (ATPG) algorithms and procedures have

been created to generate test vectors for a given fault set for a given circuit requmng

testing. Algorithms, by theu- very nature, guarantee a solution (providing that there is

at least one solution possible) if they are allowed to work until their natural

tennination point. However brute force methods such as the D-algorithm [Roth 67]

may have a tendency to be highly inefficient for classes of logic circuits - and degrade

to a time consuming exhausdve search of all the circuit's vector space. The assigning

of decisions in a totally random manner lead to the development of improved

techniques that prune the decision space: PODEM [Gael 81]. FAN [Fujiwara 83]

used topological heuristics to reduce the decision space's size. PODEM and FAN

18

will become exhaustive searches in the limit should their pruning heuristics be

useless, or of poor quality, for a particular circuit. Thus, an algorithmic ATPG can be

used to decisively indicate an HF's presence.

As the ATPG works towards constructing a solution, it may encounter

simations where a decision (arbitrary) is required; an incorrect choice is a cosdy

effort as indicated by Fujiwara in his work on developing FAN [Fujiwara 83]

[Fujiwara 85]. Reversing a previous decision - a backtrack operation on the decision

space - requires that the ATPG perform much extra work. As such, many ATPGs
will declare a fault as hard to test when the number of "backtracks", generated in

the search for a soludon, exceeds an arbitrary limit - such as 10. The fault may be

incorrectly labelled since a generic heuristic has been arbitrarily imposed. This is,

none the less, one additional method (above an exhaustive search) by which an

ATPG can identify HFs - the metric of cost of effort. While the heuristic based result

is not always precise, the exhaustive search is and one can safely assume that the

cause is redundancy. A limit of 10 backtracks per test generation exercise for a

selected fault appears to be a useful figure of merit. Researchers, such as Fujiwara,

found that increasing this liinit by 2 orders of magnitude does not significandy

increase the quandty of detected faults. It would seem Aat the heurisdcs may be

causing the ATPG failure. [Agrawal Seth 89] suggest that test generation is made

difficult by factors other than the quantity of gates, the quantity of memory elements

(sequendal logic elements) and the circuit's sequential depth. Their list is augmented

by Ivanov's suggestion that the heuristics [Ivanov 85] also compound the automatic

test generator's quandary in finding a soludon:

. poor inidalizability.

. poor controllability and observability for memory elements.

. structural dependencies (reconvergent fanout for example).

. cycles within the circuit.

. the guidance heuristics.

19

NET NAME CO Cl

Al 0.500 0.500

Bl 0.500 0.500

CIN1 0.500 0.500

D 0.250 0.750

E 0.750 0.250

F 0.125 0.875

G 0.875 0. 125

H 0.625 0.375

J 0.531 0.469

K 0.590 0.410

L 0.484 0.516

CARRY 0.469 0.531

SUM 0.516 0.484

Obs

0.312

0.312

0.562

0.375

0.625

0.410

0.560

0.750

1.000

0.875

1.000

1.000

1.000

Table 2.2.2.2: COP values for the full adder circuit.

20

2.4 Previous use of cost in Testability Analysis.

2.4.1 Breuer's Sensitivity Functions.

Breuer used the concept of cost [Breuer 83] in extending the testabUity

measure concepts. His specific goal was to idendfy points within the UUT for the

optimal and automatic insertion of test points for improved observability and gates for

increased controllability (addition of AND gates for improving the zero controllability

and OR gates for facilitating the one controllability). He identified the cost of

controlling nets and obsendng nets by heurisdcs that had served as the basis for

SCOAP. Breuer labels the zero controllability as ^(1), the one controllability as

0^(/), and the observability as 0^(0, for a given circuit net /. The UUT's costs are

totalled by first summing each individual cost for L - the set of nets contained by the

UUT - providing $Q, $p and $^ as shown in equations 2.4. 1. 1 - 2.4. 1.3. The total

testability cost, $', is the result of the weighted sum of these addends.

= StiQW
leL

$1= £0i(0
l L

$2= £02</)
leL

$'= £^$;

2.4. 1.1

2.4. 1.2

2.4. 1.3

2.4. 1.4

Breuer then specified a sensitivity function used to calculate the reduction in

costs (such as the improved zero controllability of a net / obtained by insertmg an

AND gate) generated by adding a test point at an arbitrary circuit net. Equadon

21

2. 4. 1.5 specifies the sensidvity for a single modification to a net /. S, is a binary

variable used to indicate that the test point is activated (S, = 1) or that normal cu-cuit

funcdonality occurs (S, = 0). Breuer [Breuer 83] [Chen Breuer 85] implemented a

program by which constraints could be applied - the maximum cost of modifications;

upper bounds on individual nets within the UUT - to the UUT while automatically

applying DFT.

a$i

a$i(i)

$^(S. (/) = 1) - $^(S. (0 = 0)
1 - 0

2.4. 1.5

2.4.2 Random Test Cost Functions.

Lisanke et al. also use a cost function - a testability cost function - while

generating tests from randomly created patterns [Lisanke et al. 86] [Lisanke et al.

87]. Their program, ESPRFT, consists of the five modules indicated in the pseudo

code shown in Figiu-e 2.4.2. 1.

do{

Compute Input Signal Probabilities. /* 1 */

do{

Generate Vectors. /* 2 */

Fault Simulation. /* 3 */

Update Fault List. /* 4 */

Evaluate Fault Covemge Slope. /* 5 */

} until Fault Coverage Slope < User's Value.

Evaluate Fault Coverage Slope.

} until Fault Coverage Slope < User's Value.

Figure 2.4.2.1: ESPRIT pseudo code.

22

Costs are used for 2 of ESPRIT's "funcdons": (1) - the computadon of input

signal probabilities and (2) - by the decision making process for continuing to

attempt to generate tests. The former is the most important part of ESPRIT and is

based upon COP [Brglez 84]. Remembering that the probability of detecting a fault

on a net / is:

Pd//o=C^l)*Obs(l)

Pd//i=(l-Ci(l))*Obs(l)

2.4.2.1

2.4.2.2

One can then determine the cumulative detection probability CPd,, by random

patterns, given n independent trials, with the expression:

n

CPd. (/) =!-(!- Pd.) 2.4.2.3

Lisanke et al. defined a fault coverage estimate (FCE) as a means to predict random

test pattern generation costs for an UUT about which one knows the net list, fault set

and input signal probabilities. The estimated fault coverage curve, a funcdon of the

number of independent trials is shown in Figure 2. 4. 2.2 and is the average of the

cumuladve detecdon probabilities over the fault set F as defined by:

FCE(n) =
1

F
S CPd, (/)

J=l
2.4.2.4

That the esdmated fault coverage approaches unity with an increasing number of

trials is intuitive - as n approaches 2 (m primary inputs on the UUT) the testing
becomes exhaustive.

The area above the curve described by FCE is proportional to the amount of

effort required by the fault simulation phase. Since ESPRIT's run time costs

(computer processing unit's - CPU - time or cost) is dominated by the fault

23

simulation phase, Ae authors created a cost function $ that represents this area $.

This area is defmed by the equation:

$= £ [1 - FCE(n)]
n=0

2.4. 10

100%

%

vector quantity

Figure 2.4.2.2: Fault Coverage function.

The authors minimize the cost function $ m order to produce the optimal input

signal probabilities used during the vector generation phase. This is achieved by
using a gradient opdmizarion technique that provides information on how $ changes

due to input signal probability modifications.

2.4.3 Sequential Test Cost Functions.

Agrawal et al., in creating a new ATPG [Agrawal et al. 89], defined three (3)

cost functions used m developing a generalized directed search methodology. (1) An

initialization cost function is used during the circuit initialization phase of their

ATPG. (2) A concurrent test generation cost function is employed for simultaneously

24

testing several faults, and (3) a single fault test generation cost junction is used

when testing a single fault while generating vectors. Each of these cost functions is

applicable to one of the three independent ATPG phases.

The initialization phase is required to generate an inidalization vector

sequence where the number of unknown signals on flip flop logic elements increases

the initialization cost. The user may specify a non-zero initialization target value

instead of the default target of zero cost.

A distance metric, the shortest distance from any fault effect of that fault to

any primary output, is used in selecting whether a vector candidate is. to be accepted

after its trial. Agrawal et al. contend that Ac smaller Ae cost, the closer the fault is

to being detected - thus a detected fault has zero cost.

The third cost function - single fault test generation cost function - is similar

to the concepts proposed by the SCOAP TM. This dynainic cost reflects the

minimum number of primary inputs that must be changed and the minimum number of
additional vectors to control a node's value. This cost must describe both the effort to

sensitize the fault and to nronaeate the fault to a primary output. A weighting penalty

may be assigned to the dynamic sequendal controllability (DSC).

2.4.4 Summary of Cost Functions.

The above three methods are indicative of the segregated approach to the use

of cost in the testability arena. Breuer used his cost metrics to indicate how design

for testabiUty could be automatically added to the UUT. However, Breuer's metrics

were based upon SCOAP's predecessor and Agrawal [Agrawal Mercer 82] has

previously demonstrated the limitadons of SCOAP TMs. [Agrawal et al. 89] also
rely heavily on heuristic cost measures although attempts were made to vertically
integrate these measures into an ATPG system. Lisanke et al. attempted to unify
the cost of test pattern generation, albeit randomly created test patterns, with TMs.

An improved technique would appear to be a properly formulated

amalgamation of these seemingly disparate methods; testability measures,

25

heuristics, costs, automadc test pattern generation and user supplied constraints.

Cost is a primordial consideration given that one cannot:

. increase the circuit size without reasonable justification;

. degrade system performance;

. monopolize computer capacity for ATPG;

. cause excessive test application times due to excessively long test

patterns;

. allow poor quality product, detennined by lower fault coverage

values, to reach clients.

Many of these, if not aU, cost related parameters can be used to define a more

precise definition of device testabiUty and may be applicable on a varying product by

product basis. This shall be the thrust of this thesis - the identification of HFs based

upon budgetary (cost) constraints.

3.0 Review of Automatic Test Pattern Generation (ATPG).

ATPG principles are reviewed in depth in this section, providing the

foundadon for the HF identification algorithm HUB. The traditional fault model, the

single stuck at fault, and the use of the five valued logic - at the heart of the D

calculus used for the D algorithm - are also presented. This section also reviews the

differences between the single path and multiple path sensitizadon methodologies.

The definitions of basic terms are interspersed throughout Ac section. An ATPG's

use of heurisdcs is explained as are the trade-offs and additional features

encountered during the creadon of an automatic test pattern generator.

3.1 Fault modelling.

Dr. Tom Williams noted that the concept of testing structure instead of

funcdon, as proposed by R. Eldred, was responsible for the literal explosion of

research into fault models and the accompanying automatic test pattern generation

tools [Williams 89a]. Eldred described how structure could be verified based upon

tests for specific faults under a fault model which accurately describes the realistic

set of physical defects that occur within the structure [Eldred 59]. An underlying

theme of fault models is the 3 abstraction levels associated with the concepts of

defects, faults, and errors.

Defects refer to the physical aberration or anomaly which occurs during the

manufacturing process. For integrated circuits, these may correspond to

contaminants, metallization problems (voids or bridging), contact problems, etc..

These defects can have different defect densities and are often a function of the

particular process [Galiay 80] . The defects may be modelled as having an influence

over a reladvely large area - known as global or clustered defects - or as very

localized defects - point defects [Shen 85]. A metal bridging defect between the

positive power supply and an inverter's output is shown at a layout representation

level in Figure 3. 1. 1.a. This defect's effect could be represented at the transistor

abstraction level by a fault such as the well known single-stuck-at-n, n 6 {0, 1} as

27

shown in Figure S. l. l.b.

In turn, the fault's presence causes the introduction of an error at a functional

abstract level. As an example, if this inverter was one of an instructions ROM'S

outputs and was fed to the input of a signature register [Bardell et al. 86], one would

obtain a burst error [Stallings 88].

There are several advantages in using a fault model. The following are some

of those enumerated by [Miczo 86]:

. Create tests specifically for those faults most likely to occur;

. Compute a test quality metric by determining how many potendal
faults are caught by the test stimulus;

. Debug yield problems by relating defects to specific test patterns.

Considerable work has been done recendy, using a technique known as

Inductive Fault Analysis (IFA), in relating the fabrication process knowledge to the

cu-cuit layout in order to determine the fault types most likely to occur [Shen 85]

[Ferguson 88].

3.1.1 Single stuck at fault model and 5 value logic.

A typical defect in the MOSFET (Metal Oxide Surface Field Effect Transistor)

technology occurs in the metallization [Galiay 80] e.g. : the bridging of two adjacent

metal runs. This might cause a transistors output to be shoned to the power supply.

Such a defect is typically represented by a fault such as the well known single stuck

at n, s-a-n where n e {0, 1} and it is assumed that only one such fault exists at any

given time. Figure 3. 1. 1a. represents an inverter, in CMOS (Complementary MOS),

which has its output shorted to the positive power supply. The corresponding fault at

transistor and gate abstraction levels, a s-a-1, are indicated in Figure 3. 1. 1b and

Figure 3. 1. 1. 1.

28

VDD

P-^l-l^NNEL

IN

metal
short

by
bridging

OUT

N-CHANNEL

GND

Figure 3. 1.1a: CMOS inverter with output shorted to VDD.

VDD

P-CHANNEL

IN OUT

N-CHANNEL

GND

Figure 3.1. 1b: CMOS inverter with output shorted to VDD.

29

One wishes to detect the presence of improper circuit fabrication in an efficient

manner. The tendency has been to use a fault- model - a wide variety exists -

especially the single stuck at n fault model which was created around the late 1950s

[Eldred 59] and whose use, correctly or otherwise, has condnued into this age of

CMOS and BiCMOS (Bipolar CMOS mixed technology process). It has been

suggested repeatedly that the stuck at model is insufficient for CMOS technology and

lead to the development of the stuck open [Wadsack 78]. However, sunulators for

the single stuck at fault model are seemingly the dominant factor. Automadc test

pattern generadon is typically constructed for s-at-n faults. It is important to note that

stuck open faults appear to be correctable through proper design approaches [Soden

89], are apparently detectable when a high single stuck at fault coverage exists

simultaneously with nodes that change states frequendy - high toggle activity, and

that their occurrence is not as high as the literature had previously suggested [Shen

85].

Indeed, it has been suggested that certain structures such as PLAs may not

be adequately modelled by the s-a-n regardless of the process technology.

stuck at 1.

IN OUT

Figure 3. 1. 1.1: CMOS inverter with output stuck at 1.

The presence of a stuck at fault is commonly indicated by the use of a 5 valued

logic system where any net / within the circuit, can have the value v e {0, 1, X, D,

Dbar). The D signifies the presence of a Difference between a correcdy fabncated

and an improperly manufactured circuit. The intersections producing D and Dbar are

shown in Table 3. 1. 1. 1. This table shows 2 important concepts: (1) - the presence of

a fault can only be indicated by the detection of a difference; (2) - that the difference

30

is only specified for the logic values 0 and 1.

F
A
u
L
T
Y

c
I
R
c
u
I
T

0

GOOD CIRCUIT

0

0

Table 3. 1.1.1: Rules for Difference intersection.

To successfully create a test for a given fault, it is essential to cause the

difference D or Dbar, to be visible on at least one of the unit under test's primary

outputs. Thus the difference must exist at two levels: (1) locally - that is for the sub

element within the UUT which is the target for a fault and (2) globally - that is visible

external to the UUT. Failure to comply with either requu-ement will cause the fault to

be untestable.

Given a circuit to be tested, UUT, a set of faults can be created - typically this

is at a gate level representation. The fault list or fault dictionary F(UUT) is generaUy

unranked [Shen 85] meaning that any relative importance for the different faults is

ignored. This fault dictionary may not be minimally sized smce faults xnay be

collapsed (reduced) on local and global levels. Generally n-input logic primitives such

as AND and OR gates have their fault quantity reduced from 2n +2 to n+2 faults on

a local level [Miczo 86]. Further fault collapsing can be obtained by using fault

dominance [McCluskey 86] and fault equivalence [Miczo 86] reladonships. Indeed,

31

at the local level, many n-input combinational logic functions can further reduce their

faults to n + 7.

3.2 Single versus Multiple path sensitization.

For a given circuit, the difference value may arrive at a fanout stem (a net

which controls more than one destination logic element) as effort is expended, to

cause the difference to appear on a primary output (PO). This scenario is depicted in

Figure 3. 2. 1. One could chose to provide a path from this fanout stem to an PO by

selecting a unique path, known as single path sensitization (SPS), or by selecting

several paths, known as multiple path sensitization (MPS). In -the case of SPS,

"all" that one need do is to pick the best path - minimum effort (easiest) or least

costly - among the legitimate choices available. MPS typically attempts to drive the

error towards the UUT's POs by all possible valid paths. Picking the winning route in

SPS is usually done with the aid of heuristics - indeed the use of testability

measures such as the COP observability measure. The original version of PODEM.

[Goel 81] used a distance metric similar to SCOAP whUe Ivanov used COP in a later

version [Ivanov 85]. A gate with an "X" on its output and having an error signal on

one of its inputs, is known as a D Frontier, this D Frontier is the starting point for

the path sensidzation phase.

3.3 The Four ATPG phases of Deterministic Gate Level Test Generation.

Given an arbitrary unit under test for a given fault, such as shown in Figure

3. 3. 1, the objecdve is to generate a test assuming the presence of a fault - for this

example and the remainder of this thesis unless expressly stated to the contrary, all

test generation shall assume the single stuck at fault model - which will detect its

presence in an improperly fabricated circuit. The element, an 2 input AND logic gate,
is selected as the target for a fault represented as D. Prior to the test all internal nets
are assumed to be Xs as are the UUT's Pis and POs.

Any ATPG can be reduced to a set of four basic operations when generating a

test for a given fault. The sensitization (or error acdvation) of a fault for the element

32

within the UUT is required to render the fault visible - by the presence of a difference.

Although for simple logic primitives, such as ANDs, ORs etc., this will only be done

once per trial due to the small fault sensidzation set, the sensidzadon phase can

conceptually occur repeatedly if one cannot subsequently create an environment

within the UUT by which a valid test is created. Once the difference has been created,

the three other phases are engaged: the error propagation using either single or

muldple path sensitization; justification of the nets' values which are set during the

various phases and the evaluation of net values or implication phase. These phases

may occur in a variety of sequences-this is an implementadon issue.

L

0

G

I

c

& D

'///////.

L

0

G

I

c

T
.//^/.

Figure 3.2. 1: Path sensitization example.

To sensitize the s-a-0 error on the AND gate's output, Figure 3.3. 1, it is first

necessary to generate the difference D requiring that the fault free AND gate produce

a logic 1 - refer to Table 3. 1. 1. 1. This dictates that all the AND gate's inputs must be

set to logic 1 for both the fault free and the faulted cu-cuit. This step is rcfen-ed to as

the error sensitization or activation phase.

33

Once a net's value has been uniquely assigned (/ e {0, 1}), an implication

phase may be invoked. Implication is simply an evaluadon (simulation) of the net's

effect on oAer logic elements within the circuit and within its cone of influence. Since

no fanout of the AND gate's inputs occur in this example, no implication is required

due to the error sensitization. This simulation may occur whenever a list of nets,

whose values have changed, exists. This phase can discover the presence of

conflicts - a node that must take inconsistent values sunultaneously: 0 and 1; D and

1 or Dbar and 0.

L

0

G

I

c

& D

L

0

G

I

c

D

0

Figure 3.3. 1: ATPG example.

It is necessary to propagate the error, using an error propagation phase, undl

the error appears on at least one of the UUT's POs. Either single or muldple path

sensitization may be used, and possibly a mixture of both. Figure 3. 3. 2 shows how

the error propagation might occur.

34

1

X-

x-^

&

1

0

D
&

Figure 3.3.2: Error propagation example.

It is also required to justify the assignment of net values. Net values are

assigned when Ae error is sensitized and as the error is propagated at each logic

primitive en route to an UUT PO. Figure 3.3.3 indicates how a typical jusdficadon

phase might occur.

Thus, in general, one could represent the ATPG's actions by the pseudo code

of Figure 3.3.4. The simplified code does not consider how the search space is

created or how reversing previous decisions is handled. Also, it is not necessarily

tme that this order is followed exacdy as there may be a variety of implementadons.

It is possible to add a fault sunulation phase to identify other faults detectable by the

test vector (using the detemunistically generated stimulus). Fault simuladon is one

method that allows a more compact test set by targeting easier faults and without

reverting to the use of vector manipulation routines after the completion of the test

generadon phase. Previous authors have indicated that a good percentage of the

35

UUT's fault set may be easily detectable by random vector generation - this is

suggested by the rapid rate of fault detecdon early in the ATPG; it has been

suggested that this is roughly in the 65% to 85% fault coverage region [Agrawal Seth

88]. Even in the case of sequential test pattern generation, one can find these central

phases [Marlett 88].

X-^ 0

&

1 I-I

X- 1

X-*- 1

0

.+

&

Figure 3.3.3: Net justification example.

The ATPG works backwards in the cu-cuit graph to build the decision space or

the tree that represents the search space for the fault m question by a process known

as backtracing. While the circuit graph is immutable for the whole circuit during the

test generation process, the decision space depends upon the target fault and the

search algorithms (or procedure in the case of a non algorithmic program

implementation). Should a decision be unjustifiable or create a conflict, the decision

must be changed through a technique called backtracking. Although different methods

might be used, driven by complex heuristics, the general principle is to change the

last unchanged decision which will eliminate the pending conflict and which will not

generate any new conflicts. Should no choices remain, an explicit or implicit
exhaustive search of the decision space has occurred; this determines that the fault is

36

untestable due to redundancy which was previously seen to be caused by the

presence of reconvergent fanout. Large backtracks usually trigger a limit and abort

the search for the targeted fault.

while (Faults remain in UUT){

Pick a fault.

Sensitize the fault.

while (No test && Choices remain){

Propagate fault to an UUT PO.

Justify all nets' assignments.

Implication of nets' assignments.

}

Simulate for other faults detected by this test.

}

Figure 3.3.4: A typical ATPG algorithm.

The decision space's size, if one considers the UUT as a black box with n Pis,

could consist of n nodes which are a 1:1 mapping of the Pis and their state. This is

precisely the case for PODEM [Gael 81] while the D algorithm's size can potentially

include a node for every circuit net. A tuple placed on a stack can be effecdvely used

to represent the search space in a computer representation.

3.4 Random Test Pattern Generation and Hybrid Methods.

It has been suggested that the first portion of deterministic test generation,

where each vector may detect many additional faults (hence the use of fault

simulation), is due to the random easiness of these faults. Therefore these faults

could be detected by using randomly generated test vectors. Many authors have

37

worked on such techniques FBardell et al. 86] especially since much work in the Built

In Self Test (BIST) area is centered on the use of pseudo random sdmulus created by

using LFSRs (Linear Feedback Shift Registers) such as that in Figure 3.4. 1. Further

work on varying the outputs weighdng has occurred in order to allow nearly 100%

fault detection.

+ =

000

0 1 0

1 0 0
1 1 0

X"

P(X) =X5+ X3 + 1

Latch

Figure 3.4. 1: A typical LFSR circuit.

An additional approach has been to use a two phase methodology: detect the

random easy faults using randomly generated test vectors - performing fault

simulation on these vectors; then switch to a detemunistic autoinatic test panem

generator to detect the remaining faults. This meAod is depicted by the pseudo code

in Figure 3. 4.2. A recent article [Abramovici 89] suggests that this hybrid technique

is of litde or no use. Their research shows that random test vectors detect the same

faults found in the second phase.

38

white (Faults remain in UUT){

while (Random easy){

Create a random test vector.

Perform fault simulation.

}

while (Not random easy){

Deterministic ATPG.

}

}

Figure 3.4.2: Random Test Pattern Generation.

Another approach to test pattern generation was suggested by .Chang et al. in

a hierarchical test generator CHIEFS [Chang et al. 86]. This ATPG used a

technology independent circuit representation called binary decision diagrams

(BDDs) [Akers 78a] which also allowed test generation for circuits about which no

detailed design knowledge was available. The tests were built around the ability of

the BDDs to represent the logical function of the circuit, readily constructed from the

circuit's tmth table. These experiments were designed to elicit stimulus that tested

for correct operation and to test that undesired functionality was not present.

Although obtaining good test coverage using this new fault model, the fault coverage

using the single stuck at fault model tended to suffer - albeit that from one

implementation method to another for the same circuit more consistency was

achieved than by predecessors [Abadir Reghbad 85] [Abadir Reghbad 86]. Chang

noted that this traditional fault coverage improved with increased implementation

knowledge. Note that a new simulator was required to support this circuit and fault

model. Undl recendy, this has been one of the few attempts to generate tests where

hierarchy has been exploited.

39

MODEM [Calhoun Brglez 89] is a recent example of a modification to an

exisdng tool and methodology, that is PODEM, where an attempt to reduce the

ATPG effort is constructed around the use of hierarchy. Since hierarchical

representadons will reduce the quantity n, the exponent in the computational

complexity equation, effort will probably continue along these lines during the coming

years. There has even been research into reuse of existing test stimulus for macros -

a larger circuit constructed recursively from instances of logic gates and other

macros - since one can amortize Ac test development effort for the macro over larger

amounts of designs; [Somenzi et al. 85] is one such example.

3.5 Review of the FAN algorithm.

There have been three ATPGs whose names re-occur regularly in the test

literature: the D-algorithm, PODEM, and FAN. Roth's D algorithm [Roth 67] is

based upon his D calculus and provides a complete meAod for generadng test

vectors for digital cu-cuits. Unfortunately his algorithm tends to be considered as

highly inefficient for certain classes of circuits [Miczo 86] such as BDACs (Error

Detecting And Correcdng) where large number of modulo 2 logic prunitives may be

found. The D-algorithm, when faced with a decision, did not use any heuristics and

very quickly became an explicit exhaustive search of the decision space due to the

poor choices made.

PODEM [Gael 81] uses heuristics and a different approach for combinational

logic circuits: a branch and bound algorithm. Gael's method increased the ATPG's

performance by simultaneously reducing the required computer run time - due to an

implicit enumeration meAodology - and by reducing the amount of data retained by

the ATPG. This reduction m memory requirement was achieved by reducing the

number of nets involved in the ATPG decision process from potentially all internal

circuit nets (as is the case for the D algoriAm) to only those of the UUT's Pis. This

meant that a decision tree built from the UUT's Pis was employed for the implicit

enumeration as opposed to a cube containing, potentially, the vertices of every circuit

net.

40

Fujiwara made the astute observation that PODEM's performance could be

further improved by reducing the backtrack quandty (the re-evaluation of a previous

decision due to a conflict arising in the future) caused by the fanout contained within

the UUT [Fujiwara 83]. Specifically, Fujiwara attacked the quantity of backtracks

generated during the ATPG process and the time needed to detect and process the

backtracks. The literature suggests a performance improvement of 5 to 6 times over

PODEM. A similar value with respect to PODEM's improved performaiice over the

D algorithm may hold [Seth Agrawal 85]; It is important to note that one is referring

to linear improvements applied to an NP complete problem.

The resulting algorithm, FAN [Fujiwara 83][Fujiwara 85], is shown in Figure

3.5.2. One can find the four principal ATPG phases described earlier in secdon 3.3.

Three key types of net classes are identified in order to aid and regulate the various

test generation stages, shown in Figure 3.5. 1:

. BOUND LINEs: those nets reachable from some fanout stem.

. FREE LINE: a net which is not bound.

. HEAD LINE: a free line adjacent to a bound line.

41

&

&

&

L

0
G
I

c

&

FREE

HEAD

BOUND

Figure 3.5.1: Types of nets in FAN.

The ATPG algorithm FAN [Fujiwara 83] [Fujiwara 85] is described in

pseudo code in Figure 3.5.2. Note that the four principal ATPG phases are found.

FAN traces backwards in the UUT towards Ae Pis - backtrace - until it

encounters a head line. Head lines and free lines are justified once all bound lines

have been justified since, due to their fanout free nature, they are guaranteed to be

justifiable. FAN constructs a decision space based upon head and free lines; this

decision space is used to control backtracks if and when a previously made decision

causes a conflict or a block propagation path to occur.

42

while (Faults remain in UUT){

Pick a fault.

Sensitize the fault.

while (No test yet & Not exceeded backtracks){

Implication.

if (Error at UUT P0){
if (No unjustified BOUND lines){

Justify FREE and HEAD lines.

Simulate for other faults detected by this test.

} else BackTracE.

}

else if (Error not at UUT P0){

if (D Frontier > 1 gate){

Multiple BackTracE.

}

else if (D Frontier = 1 gate){

Unique Sensitization.

BackTracE.

}

else BacKtracK

}

}

Figure 3.5.2: FAN pseudo code.

43

3.6 Backtrack reduction methods and the importance of heuristics.

Backtracks are an important consideration in the ATPG process: they can

cause a target fault to be classified as untestable or an HF by abordng the search for

the targeted fault; they also are a cause of performance degradation due to increased

processing time requirements. Backtrack reducdon has been the subject of much

research and was the principle reason that PODEM and FAN were created. Some

authors, [Marlett 89] [Bell Taylor 88] have stated that it is important to make the

correct choices and thereby avoid or reduce the backtracks. They have heurisdcally

attacked the backtrack causes in order to increase the percentage of faults detected

by the ATPG and thus reduce the number of aborted faults. Ivanov has suggested

that the guidance heuristics employed by the automatic test pattern generator can

effect the problem; the use of COP TMs in setting Pis in the case of PODEM is an

example.

Another approach has been to target the search strategy since research on

the test generation algorithms suggests that there is no perfect general search

strategy. An example of a search strategy is in PODEM where the D Frontier

closest to a PO is selected for error propagation purposes. Patel tried multiple search

strategies based upon different testabiUty measures [Patel Patel 86]. A recent article

has proposed that the use of switching search strategies based upon the ordering of

the ATPG phases while staving to mainmin a low backtrack liimt appears to be

successful in exploiting the characteristics of different circuit's [Min Rogers 89]. This

was tested on the ISCAS 85 benchmark circuits usmg a modified version of FAN.

It was decided early in this research that the muldple backtrace option of

FAN would not be implemented. This decision would seem to be supported by the

experience of other researchers: for example [Marlett 89] indicated that from his

practical experience, little is gained from the extra work; Min further substandates
this by his research which shows that the multiple backtrace is not better than single

backtrace - it is more CPU intensive though [Mm Rogers 89].

44

3.7 Summary.

The basic concepts of detemiinisdc automadc test pattern generation and the

associated fundamental definitions have been presented. The principles of fault

modelling and how they are typically represented, the single stuck at fault model,

were reviewed to show how the four principle ATPG phases function. Additional test

generation techniques were presented prior to summarizing Fujiwara's FAN ATPG

algorithm which serves as the basis for the HUB hard fault identification tool. The

importance of the backtrack phase and the need to reduce these backtracks were
discussed.

4.0 Mked Graph - Binary Decision Diagram (gBDD) Circuit
Model.

It is necessary to describe the circuit at various stages of the design. A netlist

is used to describe the components from which the cu-cuit is constructed (AND, OR,

INVERTER gates for example) and define net connectivity information. Such

descriptions, while providing a convenient method to represent the circuit textually,

are not necessarily Ae internal representadon employed by the various design tools:

electronic schematic capture, automatic test pattern generators (ATPG), and logic

and fault simulators. It was imperadve to provide such a representation to the HUB

(Hard fault detection Using Budget constraints) system.

During the literature research on efficient ATPGs, one could determine how

the test vector generation algorithms and procedures worked and might be

implemented. There was, by comparison, no such definitive informadon on how the

circuit related data would best be modelled: circuit structural or connectivity data,

logic element funcdonal modelling, fault modelling and fault dictionary representations

were apparendy left to the devices of each team performing the implementadon.

To support the desired objectives for HUB, it was felt that a circuit description

for this hard fault detecdon algorithm must provide certain key attributes if the

proposed method was to be successful: (1) include structural circuit information; (2)

allow funcdonal intent and functional modelling to become an integral pan of the

model; (3) support the faulting of nodes within the circuit; and (4) permit the logic

simulation phase of an ATPG. While one may conjecture that other similar work is

based upon graph techniques, such speculation is left to specific works researching

circuit modelling methodologies.

4.1 Introduction.

The UUT's representation during the ATPG process can have an effect on its

efficiency. Too much detail, such as working at a transistor implementation level,

while providing much implementation related informadon will use an excessive

46

amount of computer memory. This, when coupled by large decision spaces caused by

the backtrace algorithm, can cause the computer to spend much time on overhead

activities - swapping pages of memory or page faults. It is important therefore, to

choose an abstracdon level which provides sufficient information but only that

required by the test generator. This knowledge should aid the decision making

heuristics, and given the hierarchical design environments proliferating to help

manage the design task, allow the introduction of hierarchy to reduce the unwanted

details.

Two techniques will be reviewed: a circuit graph representation that provide

information only about the circuit's topological stmcture at the expense of any

funcdonal knowledge. A complementary method, binary decision diagrams, that hides

structural details but accurately models the cu-cuit's function is summarized. Both of

these methods may be used to model a circuit's hierarchical nature very easily.

A hybrid circuit model - gBDD or graph binary decision diagram - which

combines the posidve attributes of both modelling methods will . be presented. Its

ability to aid the ATPG by explicit inclusion of guidance heuristics and structural
information will be described.

4.2 A Review of graph techniques.

Given that an extended version of FAN will be used to discover the presence

of hard faults wiAin the logic circuit, a circuit modelling method which efficiendy

supports the test generation process is required. A more traditional approach is that

of graphs.

&

&

&

&

H

K

47

c;

A; B; /i- 1

Figure 4. 2. 1: Full adder.

Graphs provide an elegant method for describing a circuit's structure. The full

adder in Figure 4. 2. 1 can be described by the graph of Figure 4.2.2. Each vertex

represents a functional logic primidve, such as a NOR or inverter logic gate, of the

logic circuit. Similarly, the circuit's primary inputs and primary outputs are shown as

vertices. Directed edges, resulting in a directed graph or digraph, link the various

vertices and show the circuit's interconnecrivity. A graph G, is often summarized as

G(V, E) where V is the set of all vertices and E is the set of all edges. Although this

is the nonnal case. Bell interchanges the role of V and E in his 1988 paper [Bell

Taylor 88].

48

B, 10

12 ci
(14)

Ai

c, ",
/i-1.

B,
s.

11

si
(15)

13

(A, := 1 B, := 2 C, := 3)

Figure 4.2.2: Full adder's graph.

Given the finite set, {A], of elements contained in the UUT, such that {A} =

{Pis, POs, logic primitives}, the relations between the various elements can be

expressed using a matrix. Given that 1{A}1 = n, the'n x n matrix Mg^ will contain a '1'

(a^ = l)to indicate that Acre is a directed edge e from vertex a^ to aj iff (if and only if)

a^Ra,. (A <0t indicates that there is no edge from a^ to ap. R is the relation

expressing some information about how the two verdces are connected by some

path. The matrix of a relation Mg^ for the fuU adder is shown in Figure 4.2.3. It is

possible to determine if a path of length n exists from an arbitrary vertex a^ to a^ by

constructing M^n (a relation matnx indicating that a path of length n exists between

a^ and ap using the relation ". " described by [Kolman Busby 84].

MRn = MR . M R M-R M
R 4. 2.1

49

The knowledge is used recursively to generate a^R""a^ the connectivity

relation, which indicates Aat there is some path from a^ to a^. The corresponding

relation matrix can be calculated from the relation 4.2. 1. A more efficient technique for

generating these matrices has been created. Warshall's algorithm rWarshall 62] is

one such method.

MR" = M.R u MR u MR u 4.2.2

Despite the mathemadcal preciseness of a pure graphical representation, the

lack of functional information precludes helping the automatic test pattern generator,

in the case of an automated design environment, on propagating through the graph

even Aough knowledge about the shortest path may be detemiined. Also,

calculadons using matrices tend to be exponendal in the number of vertices contained

by the graph. However, authors such as Bell propose using graph representations in

determining TMs [Bell Taylor 88] which consider the effect of reconvergent fanout.

Bell develops a methodology to detect the presence of this reconvergence and to

detail information about each reconvergent path. His technique includes the ability to

work with hierarchically described circuits.

4.3 A Review of binary decision diagrams (BDDs) techniques.

Akers proposed that one could replace traditional functional descnptions of

logic circuits - truth tables, Boolean equations, and Karnaugh maps - by a concise

technology implementation free descripdon [Akers 78a] known as binary decision

diagrams. The former have the undesirable side effect of growmg at an exponential

rate; they are exponential in n the number of variables that describe the function. This

diagraminatic technique shares many of a binary decision tree's properties, however

the BDDs may have more than one branch directed into it - an in degree (id) > 1.

BDDs tend to contain a number of nodes, corresponding to the n variables, that grow

50

linearly wiA n although this can degrade to 0(2n/n).

1 2 3 4 5 67 8 9101112131415

1000111100000000

2000111100000000

3000001 1 10000000

4000000010000000

5000000000100000

6000000001000000

7000000000010000

8000000000100000

9000000000010000

10 000000001001000

11 000000000000 100

12 0 0

13 0 0

14 0 0

15 0 0

00000

00000

00000

00000

00000010

00000001

00000000

00000000

Figure 4. 2.3: Full adder's relation matrix.

Figure 4. 3. 1 depicts the BDD for an n-input AND logic gate whose inputs are

{X^, X^, ..., X^}. Each variable is found in at least one BDD node', the variable is
referred to as the node variable. The node variable name describes the value

51

assigned to this BDD node and is e {0, 1}. A node variable of 0 activates the 0-

branch (the left branch leaving the BDD node); a value of 1 acdvates the 1-branch; X

indicates that no path has been acdvated and that the current setting of the variable

is don't care.

f(X^, X^, ... X^)

0

0

0 1

Figure 4.3.1: n - input AND gate's BDD.

BDD nodes having two leaves are called exit variables. The logic 0 and logic

1 associated wiA a node's leaf are the exit value and define the value of the

evaluated function when an activated path - a path leading from the root of the BDD

to one of the BDD's exit value exists under a given set of input conditions. Figure

4.3.2 shows a binary decision diagram for a 2 input modulo logic primitive (exclusive

or gate). The activated path is indicated by the heavy line and coiresponds to the

input cube {Xp X^} = {0, 1}. Note that the "." indicates that parity is mvolved. For

even parity, the funcdon is simply the exit value; an odd parity requires the inversion

of the exit value.

52

fCX^. X^)

0

Figure 4.3.2: Activated modulo 2 BDD.

Any path that causes /to be a "1" is an implicant of/ - thus one can

generate the sum of products (SP) form for/by tracing all paths that go from/to a

"I". The product of sums (PS) form is derived by selecting all the paths which go

from/to a "O". Note that the implicants are not necessadly prime unplicants [Akers

78a].

Binary decision diagrams are not limited to describing only combinadonal

circuits. Akers described flip-flops (D F/F, T F/F, J-K F/F), priority encoders, shift

registers, addressable latches and an ALU (arithmetic logic unit): some are shown in

Figure 4.3.3. Thus BDDs offer a great deal of versatility in modelling a circuit's

functionality. This model also supports a circuit hierarchy by using auxiliary

functions. The replacement of a node variable by an auxiliary variable a^, requires

that the funcdon described by a, be evaluated before the respecdve 0- or 1-branch

may be taken. Akers uses this techniques to describe a 14-input, 8 output ALU with

a 35 node binary decision diagram [Akers 78b] while a tmth table representation

requires 21 / entries to provide the same informadon.

53

f(xp

INVERTER

0

f(xp

BUFRER

0

f(X^,X^,...X^,)

OR

0 1

f(Clock, D)

D FUp Rop

D

0

Figure 4.3.3: Typical BDDs.

54

BDDs can also be used to for obtaining information about the Boolean logic

expressions used to describe a logic function. Branch labelling procedures can
determine the number of product terms by counting the number of 1-exit values. Swn

terms can be enumerated similarly from the number of 0-exit values. Akers states

that similar procedures exist to:

. count the number of literals in 2 level form;

* count the number of minterms;

. count the number of maxterms.

BDDs have also been used to develop test stknulus buUt upon the circuit's

functionality instead of the more traditional single stuck at fault model. Functional

testing - in the sense of verifying that the device functions according to its objective

specifications - may be tested using BDDs [Akers 78b]. Akers suggested that one

approach to ease the testing problem is to use a set of experiments. An experiment

is defined as a path from f to an exit value. Following this initial work, other

researchers extended the concepts with perhaps the most definitive - to date - from

a testing perspecdve being the work by Chang et al. [Chang et al. 86].

Functional based test highlights the two major disadvantages of the binary

decision diagram circuit model. As Chang noted, implementation independent test

generation can result in a varied single stuck at fault coverage quality when the
different circuits are simulated using a tradidonal fault simuladon tool. It was also

necessary to create a new fault simulator to support the new fault model. Chang also
noted that it is not sufficient to test that a circuit does as intended, but that no

undesired functions exist due to the manufacturing process.

4.4 gBDD - Graph Binary Decision Diagrams.

The graph and binary decision diagram circuit models have major

disadvantages but ones that would effectively cancel out should a hybrid method be
created. The graph lacks functional details, which are easily supplied by the BDDs;
binary decision diagrams provide no stmctural knowledge - this can be overcome by

55

the graph structural modelling. A hybrid circuit representation would reinforce the

positive aspects of both modelling methods. Previous researchers' work have created

methods, procedures and algorithms for manipulating graphs: (1) to extract structural

based testability measures [Bell Taylor 88] derived from knowledge about

reconvergent fanout and path lengths; and (2) for improving fault diagnostic

capabilities for the network [Russell Kime 71]. This previous research can be

vertically integrated into a hybrid approach. Similar test related work, built around

BDDs, developed to permit functional test generation, functional fault modelling and

fault simuladon procedures [Chang et al. 86] may also be reused. Both techniques

support multiple output circuit elements and allow hierarchy. The ability to support

hierarchical circuit descriptions is made more powerful by containing structural and

functional knowledge down to the flattest schematic representation level

(tradidonally that of the gate level for ATPGs).

Thus a graph binary decision diagram (gBDD) circuit model was created by

adding a modified BDD at each graph vertex for each of the vertex's corresponding

circuit outputs since the BDD describes the output function as controlled by the

setting of its input variables.

The modificadons to the binary decision diagram allow the addidon of

propagation guidance heuristics. This permits guidance knowledge, that is a funcdon

of implementation aspects, to be directly embedded into the circuit representation/

For an n-input AND gate, the modified BDD [Stannard Kaminska 89b] is shown in

Figure 4.4. 1. Intuitively, the test engineer knows that all the AND gate's inputs,

except for Aat with the en-or signal, need to be set to a logic '1' before the error will

be propagated to the AND gate's output: this corresponds to choosing the 1-branch

or the right branch. This data is automatically inserted into the mBDD structure at

the time of the gBDD's crcadon. This mBDD structure, at the primitive level, lends

itself nicely to several heuristics during the justification phase: the inBDD's nodes

can be explicitly ordered by decreasing difficulty of setting a logic '1' on the input

variables by using the COP C^ TM while implicitly stating the CgS. Other orderings

56

could also be used, however since TMs do not always correlate with Ac actual

difficulty in detecting a fault, it was arbitrarily decided to choose the latter and hope

that, on average, the tradition of trying to justify the hardest net value first will allow

quick identification of conflicts and backtrack situations.

f(A,, B^, q . p

0
R

0
R

0 1

Modified BDD for Graph Node 6

Figure 4.4. 1: Modified BDD for AND gate.

The graph binary decision diagram approach requires that each directed edge

corresponding to a unique logic element output have a modified BDD "attached" to

it. Also, a graph node's (GN) out degree is no longer the traditional number of

directed edges emanating from the corresponding vertex; it is now the quantity of

unique logic element primary outputs or GN_POs. For the purposes of this thesis,

only single output logic primitives have been considered since handling multiple

outputs is an implementadon issue and not central to this research.

Conceptually, the 3 input AND gate's modified binary decision diagram is

added to the appropriate graph node edge such as at graph node 6 in Figure 4.4.2.

This was implemented in the "C" language version using data structures for the

57

graph nodes which included a vector of pointers for every unique (i. e. one per logic

element output) mBDD.

A;

B,

B;

Ai
^

c:i- 1

B;
^

A;-

c;

Figure 4. 4.2: gBDD for full adder circuit.

Figure 4.4.3 demonstrates simplified versions of the graph node and modified

binary decision diagram data structures used in modelling the unit under test (UUT).

Every mBDD node has a pointer to its corresponding input variable.

Each of the graph and the binary decision's advantages are reinforced by the

this hybrid circuit modelling method. The net advantages are:

. Functional and structural infonnadon;

. Supports hierarchy;

. Sequential logic elements supported;

. Structural (that is the single stuck at fault model) and functional
faults may be used;

58

. Can integrate the work of previous researchers;

. . Can build function verification tests once the blocks and their
functionality are known - following the objective specification for the
UUT.

GRAPH_Node{

PI_data_Vector[GN_PI_quantity];

PO_data_Vector[GN_PO_quantity];

PI_to_inBDD_node_pointers[GN_PI_quandty];

PO_to_mBDD_Root_pointers[GN_PO_quantity];
GN_idendfication_Data_Structure;

ON Simulation_Data_Structure;

GN_Fault_Sun_Data_Structure;

}

mBDD_Node{

GN_PI_pointer;

Value;

Propagadon_Rules;
inBDD identification_Data_Structure;

mBDD_Branch_pointers[Up, Down, Left, Right, Previous]

}

Figure 4.4.3: Graph node and mBDD node data structures.

4.5 Summary.

Two traditional circuit models were reviewed and their attributes were

explored briefly: the graph model with its lack of functional data, and the binary
decsion diagram which compensates for the lack of functional information at the
expense os structural knowledge. A new circuit model, graph binary decision
diagrams consisting of a hybrid of these two techniques, was introduced. This circuit
model was required to allow HUB to detect the presence of hard to test faults and

support the various phases of this algorithm.

5.0 Detection of Hard Faults using HUB.

5.1 Introduction to budgetary constraints.

Despite Ae use of testability measures and the other techniques reviewed in

Chapter 2, there does not appear to be a valid method to detect the presence of hard

to test faults (HFs) in a logic circuit. The use of an algorithmic automadc test pattern

generator, while being the definitive method for finding redundant faults, is generally

considered to be too unrealistic to be considered a valid approach when large number

of UUT_PIs are encountered. Thus for larger circuits, it is unacceptable to run an

ATPG with unlimited backtracks allowed and no dme limit. Detecting HFs with an

algorithm is also a function of the choice of algorithm, heuristics and the search

strategy [Min Rogers 89].

Additional problems associated with using ATPGs and TMs to detect HFs may also

surface:.

. the backtrack's cause is not known;

. the actual elements involved in the aborted test generation effort are
not known. That is the structural and functional information is not

available;

. the phase that inidated a backtrack is unidentified;

. the ATPG or TM calculadon effort is essentially lost since most tools
need to be rerun for the whole circuit once modifications have been

selected and implemented.

Therefore it was decided that another approach was required, one that allows

a more practical attack on the problem - that is the identification of the HF and,

hopefully providing some guiding informadon that would be useful to the design team

in detemiining a solution set to correct the HF's root cause. Thus a new set of

metrics, founded upon the concepts of circuit budget constraints [Stannard Kaminska

88a], was developed; they were suggested as a means by which the loop between

the designer's circuit knowledge and the chip's inherent testability could be closed.

60

Usually, a project has a budget for all engineering related costs - usually

referred to as Non Recurring Engineering (NRE) costs since they should happen only

once per product - for the phases of a new product's introduction. A typical integrated

circuit design process flow is presented in Figure 5. 1. 1. There are many variations of

this theme, often catering to an organization's internal requirements. Henckels

presented a graph showing the test NRE component for test generation, relative to

the total design NRE [Henckels 88a]. As circuits continue to become more complex,

the tendency appears that test NRE may approach 50%. Henckels also indicated that

ASIC (application specific integrated circuits) do not appear to be heavy SCAN

method users due a variety of reasons. In today's marketplace, cost effectiveness

and time to market are key ingredients to a product's success. Thus, budget

considerations will be applied to the UUT in order to couple a circuit's testability to

the reality. Budgets, time, and costs tend to be known items for the company due to

its past experience in project management and its understanding of its market. The

feasibihty study will aUow knowledge of whether the project is worth the effort and is

potentially profitable; the prior lack of testability for a class of circuit will probably

result in the project stopping before a major effort and difficulties are expended.

Before explaining how the system HUB (Hard fault detection Usmg Budget

constraints) monitors costs during its hard fault idendfication efforts, it is necessary

to introduce three circuit compartementalization concepts: (1) the pdcf and its

associated pdcf fault-, (2) the graph node (GN); and (3) the UUT. The pdcf (Qrimitive

D cube of failure) describes the input condition to a combinational logic element in

order to sensitize the element for the presence of a single stuck at fault. In general,

there are n+2 pdcfs for an n - input logic element. The pdcf is able to detect a fault,

and somedmes two faults (always under the assumption of a single fault at any given

time) and these enumerated faults have been labelled as pdcf faults.

The GN corresponds to a single logic element primitive and has n + 2 pdcfs

associated with it in the case of the single output logic primitive as is the case for all

the circuits exaimned during this thesis.

61

The UUT, or unit under test, is the whole circuit as viewed from the highest

level of hierarchy. The UUT is composed of all the internal building components

(AND gates etc.) which are represented in the gBDD circuit model by an associated

GN. All of these items have costs and budgets assigned to them and the increasing

degree of resolution as one precedes from the UUT level to the pdcf level allows for

the accounting to be controlled at various degrees. The UUT's budget is stadc, but aU

costs and budgets are dynamic within the global UUT constraints.

HUB monitors costs at three separate levels: (1) per pdcf fault, the fault(s)

associated with the error sensitization of the targeted GN for the graph node's fault

dictionary; (2) per graph node; and (3) for the UUT. These costs are then compared

dynamically against a set of static and dynainic budgets and consist of:

. propagation cost (CPU - central processing unit - time);

. justification cost;

. implication (simulation) cost;

. backtrace cost;

. backtrack cost;

. total cost - the total of the above 5 items.

The UUT's budget is defined by the program's user and is static for the

duradon of HUB'S run time; this budget is distnbuted over the UUT's fault set. As

hard fault detection program proceeds from graph node to graph node, local dynamic

budgets are created as a function of the potentially detectable faults at that GN or the

node under test (NUT). At the pdcf level, a budget is created for the number of

potential faults that will be detected if the pdcf can be justified and the error

propagated to at least one UUT_PO

Feasibility Study

\
Objective Specification

62

Functional
Decomposition

rest., ,
:vtication

Fabrication

Characterization

Production Release

Figure 5. 1.1: Design phases.

The budgets must be respected, given the algorithm's and the computer's

ability to resolve time differences; thus each major ATPG phase charges its

execution cost (CPU time) for each invocation. Therefore all pdcfs must remain within

theu- budget constraints for the total pdcf time while simultaneously requiring that the

GNs and the UUT also remain within their respective budgets. The UUT's budget

takes precedence over the individual GN's budget which in turn is of higher ordering

than the individual pdcfs. The order of precedence for the various budgets arc

summarized in Figure 5. 1.2.

63

UUT budget

GNs' budgets

PDCFs' budgets

Figure 5. 1.2: Budget importance.

Failure to meet a budget has repercussions depending upon which budget is

not respected. Overspending of a pdcf budget results in potential HFs; if subsequent

test vectors generated for the other pdcfs of other graph nodes are not capable of

detecting these faults during a fault simulation phase, then these potendal hard faults
become HFs. HUB wUl continue with any remaining pdcfs for this same graph node

provided that the ON's and circuit's (UUT) budgets are respected. Should the graph
node have no pdcfs remaining, HUB will select the next GN to become the Node

Under Test (NUT) providing resources (time) at and circuit levels permit. Thus, as

one proceeds from the top to the bottom, of Figure 5. 1.2, the implications of being
over budget have a more localised effect.

Overspending at the GN level results in all undetected faults at the GN
becoming potential HFs which are subject to the same fate as stated above. IIUB
will continue with another GN should any remain and the UUT's budget be respected.

Overspending at the UUT level causes the immediate classification of remaining
faults in the valid fault dictionary as hard faults. A definition of hard faults based upon

64

cost constraints follows from this hierarchy. Figure 5. 1.3 presents some of the

formulae used to administer the costs and budgets.

Hard Fault . a fault that can not be detected within the cost
constraints and that is contained in the fault
dictionary. The costs are those imposed by time,
backtracks limits, and the exhaustive search
nature of the underlying algorithm.

Fault_count = Desired_fault_coverage * Total_fault_count

Resource_per_fault = Total_resources$
Fault count

PDCF_budget = PDCF_faults * Resource_per_fault

GN_budget = GN_faults * Resource_per_fault

PDCF_costs = E(ATPG_phases' costs for PDCF)

GN costs = £(GN's PDCF costs)

UUT cost = £(GN costs)

Figure 5.1.3: Budget formulae.

5.2 The HUB algorithm.

HUB strives to identify hard to test faults by using a detemiinisdc algorithmic

test generator controlled by sets of cost constraints and guided by a mixture of
traditional heuristics (COP based testability measures) and heuristics embedded

65

into the gBDD circuit description. The algorithm is a modified version of Fujiwara's

FAN algorithm with several differences in its implementation and methodology. The

test generator is augmented by a fault simulator, which currently supports only the

single stuck at fault model, that helps reduce the test generation effort; these will be

described in more detail. Before HUB can be invoked, the circuit must be converted

from its original descripdon, in a TEGAS like language, to a file containing the

information about the gBDD stmcture. It is during this phase that the COP TMs are

calculated; this data is also stored in Ae file. These tasks were consigned to a

separate phase specifically to reduced the cost of running the test generator: since all

the data is static during the automatic test generation, there is litde to be gained by

repeating these tasks needlessly each time that the ATPG is used for the same

circuit Figure 5.2. 1 indicates this data flow.

file. tegas

gBDD

file.gBDD file related data

Figure 5.2.1: Creation of gBDD circuit.

The ATPG based approach was adopted since teatability measures have

yielded the desired level of confidence and smce it has been suggested that it is

important to link the testability to the test generation process [Bell Taylor 88].

Algorithms also provide redundant fault detecdon in the case of an exhaustive

search. The ATPG, if controlled, should provide a wealth of insight through its stored

information generated during test generation about the HF's cause. Use of HUB

requu-es that its user provide a set of 3 cost related constraints that will be used to

66

define and detect a HF. Specifically, the program requires:

. the minimum desired fault coverage [0.0% ... 100%];

. the total budget for the UUT;

. Ae backtrack limit per target fault.

file. gBDD

options

HUB
cost

constraints

test
vectors

feedback
data

cost
data

Figure 5. 2.2: HUB'S inputs and outputs.

All 3 data are considered to be important: the traditional backtrack limit was

kept since prior researchers indicated that there is some merit in specifying a

reasonable ceiling, perhaps 10 backtracks [Fujiwara 85][Ivanov 85]. The minimum

fault coverage provides the user with the ability to accept "poorer" test coverage as

defined by the metnc. In the eventuality of dght budget constraints the user can try to

pick this fault coverage to arrive at the desired point on the typical fault coverage

curve; a typical fault coverage curve is shown in Figure 5.2.3. The budget refers to the

CPU (computer time) resource that will be allocated to the UUT. This resource is

distributed evenly over the cu-cuit on a per fault basis: that is the time will be

amortized over the total potential fault quantity to be detected. This potential fault

volume will be a function of whether the faults were collapsed or not. While for this

thesis the resource is uniformly distdbuted, weighting of the budget would provide

the ability for the design team to emphasize the important circuitry, in their opmion,

67

instead of based upon grouping of potential faults.

100%

%

vector quantity -*'

Figure 5.2.3: Fault coverage curve.

A budget of $0.00 provides the immediate and obvious result that the UUT is

untestable for all the faults. An unlimited budget revens to the backtrack limit criteria

or an exhaustive search of the decision space depending upon the backtrack limit's

magnitude, the size of the decision space, and the efficiency of the underlying

algorithm and the heuristics.

The pseudo code for HUB, presented in Figure 5.2.4, represents the major

functional blocks executed by the algorithm. Initially, the circuit is read into the

computer's memory using a linear algorithm where it is stored as the internal gBDD
circuit model. The user supplied constraints are obtained and the reference metrics

are calculated: the total valid potendal fault quantity using fault collapsing should this

option be specified; the CPU resource allocation per fault is then determined knowing
the fault dictionary's volume. Dynamic metrics such as the pdcf budget and the GN

budget are calculated at each GN as required and only if there are undetected faults
remaining at the targeted GN. If the next pdcf sensitizes faults akeady detected,
HUB looks for the next possible pdcf which has undetected faults associated with it;

when no pdcfs remain, HUB proceeds to the next GN among the remaining valid

68

choices.

Restore_gBDD(circuit);

if (fault collapsing required)

Fault_Collapse(circuit);

Count_Potendal_Faults(circuit);

Query_User();

Defme_Budget_Metrics();

HUB_atpg(circuit);

Figure 5.2.4: HUB'S pseudo code.

The ATPG process is Ae most important and time consunsing pordon of HUB.

It is this function, described by the pseudo code shown in Figure 5. 2. 5, that risks

have exponential run times when faced by hard to test circuitry. Attempts have been

made to make the automatic test generator an efficient one; thus FAN serves as its

basis and heuristics and implementation related features have been added above the

basic concepts of directing HUB by cost controls. The primary goal was not to

reproduce an ATPG, Aus it was not considered essential that the implementation be
the most efficient available nor the most compact coding and sophisticated use of

heuristics.

69

while (Faults remain in UUT){

Pick a fault.

Sensitize the fault.

while (No test yet & Not exceeded backtracks){

Implication.

if(ErroratUUTPO){

if (No unjustified BOUND lines){

Justify FREE and HEAD lines.
Simulate for other faults detected by this test.

} else BackTracE.

}

else if (Error not at UUT P0){

else if (D Frontier = 1 gate){

Unique Sensitization.
BackTracE.

}
else BacKtracK

}

}

Figure 5.2.5: HUB ATPG's pseudo code.

Hard faults are only those faults which were not detectable from the set of

targeted faults. If a 0% fault coverage target is chosen, there are no HFs although

there is 100% undetectable faults. However if a 100% fault coverage value is chosen

but 0 resources allocated, all the undetected faults are hard faults even though they

may be detectable.

70

Unlike FAN, no multiple backtrace phase was generated since this was

thought to be an unnecessary phase and since initial effort suggested that there was

no clear advantage in implementing it. [Marlett 89] and [Min Rogers 89] would

appear to support this decision.

The time cost of each of the 5 important phases (of the FAN based test

generation algorithm) are timed and these times are charged to the respective

account at the pdcf (lowest), graph node, and unit under test (highest) levels. The

total effort required at each level is monitored for adherence to the respective

budgets. Costs are accounted for using the data structure shown in Figure 5.2.6. At

Accounting

Accounting

Accounting

Accounting

Accounting

Accounting

Accounting

. >Propagation_time

.>Justification_time

->lmplication_time

. >BacktracE_time

->BacKTracK_time

->Total_time

->Budgeted_time

Figure 5. 2.6: HUB Cost Accounting Data Structure.

the end of each pdcfs ATPG effort, the pdcf accounting structure data is used to

update that of the NUT'S (at the graph node level) and that of the UUT. The pdcf

accounting structure is then re-initialized. Upon compledng the NUT'S ATPG work,

the GN and the pdcf's accounting structures are re-initialized. Note that the budget

is the product of the resource j)erjault and the fault _quantity. For the UUT, this is

simply the user specified budget constraint value.

71

Although this was not implemented, one could weight the various cost groups

at the graph node and the pdcf level. This would allow more resources to be allocated

to cntical faults and circuitry.

When HUB chooses a path for error propagation, if Acre is more than one

gate in the D Frontier, by performing an X-path check [Goel 81]. Essendally this

starts with the fanout branch having the largest observability (all values are kept

separately instead of heurisdcally setting all fanout branches with the same value)

and that is not blocked before reaching an UUT_PO. Should none remain, a backtrack

condition occurs.

5.3 Important HUB attributes.

HUB has some features that are discussed in futher detail in the following

paragraphs. (1) The algorithm's progression through the circuit is controlled by the

list of graph nodes and not by the list of faults as is typically the case. (2)

Sensidzation of the target fault(s) at the GN is dictated by the use of information

contained in a pdcf personality file and which currendy supports only the smgle stuck

at fault model and not by faulting every node with each of the single stuck at faults.

(3) A provision for simplified method (heuristically based) of single stuck at fault

model fault collapsing is provided. Also provided are an interactive mode for selective

ATPG or HF identificadon that is controlled by specifying this option upon program

startup with Ac number of the desired GN and one of its pdcfs. (4) HUB produces a

wealth of information that is output to the user for use in solving hard faults, for

program devlopment purposes, and for educational purposes. (5) Also included, but

not currendy used, is the provision for the introduction of hierarchy at a future date.

Each of these attributes is explained below. HUB also retains a wealth of other

information acquired during the ATPG phase; this retained data will be briefly

introduced but, due their planned usage at a future tune, no in depth details will be

provided.

72

5.3.1 ATPG control by Graph Node (GN).

TypicaUy, a fault dicdonary is created for the circuit and this fault dictionary

contains unranked faults [Shen 85]. Commercial simulators such as SIMUCAD's

SILOS //T do not explain or make readily available any information on how this fault

dictionary is created, its stmcture, how it is accessed, or how it is maintained during

simuladon. One supposes that, upon creating this fault dictionary, faults are accessed

in a sequendal order and that one might find the next targeted fault in a totally

different region of the unit under test. A version of PODEM, used at Ecole

Polytechnique, seems to create a fault dictionary dictated by the order in which the

cu-cuit is processed starting from the UUT's Pis.

HUB functions by attempting to complete the test generadon at a targeted

Graph Node far all the faults requu-ed to be detected at this GN before selecting

another graph node. If the fault simulator option was invoked, the additional faults

detected, which must occur for GNs other than the current ON, will be identified at

their respective graph node.

The gBDD circuit model does not attempt to flatten the circuit by element

depth. Rather the circuit is stored starting with all the UUT_PIs and then is tried in

an order determined by the way that the gBDD is traversed from the UUT_PIs

towards the UUT_POs in a sequence dictated by the circuit's structure and a depth

first algorithm; pointers to each graph node are stored in a simple linked list shown in

Figure 5. 3. 1. 1. A list of graph node pointers, each pointer is represented by a

rectangle in Figure 5. 3. 1. 1, is created when the gBDD circuit model is generated.

This list is ordered starting with pointers to the graph nodes of the circuit's primary

inputs and corresponds to the entries 0 ... nin the pointer list; these pointers are

stnctly for primary inputs. Graph node pointers n+7 through m point to graph nodes

which represent either logic elements or a primary output for the circuit Although this

list of pomters is guaranteed to start with the UUT_PIs' pointers after which one can

find UUT_PO pointers mterspersed with those of the logic elements. The presence of

an UUT_PO pointer may indicate a cone of influence but this is not guaranteed since

73

the UUT_PI ordering is a direct consequence of the circuit's nedist and may not

reflect any cone of influence; their ordering is only a function of the individual (or

algorithm) who created the original circuit nedist.

UUT Pis.

n UUT_Pls.

n+1 UUT_POs or gates.

m UUT_POs or gates.

Graph node
pomter
position
index.

Graph node
pointer
list (linked
Ust).

Circuit element
represented by
a graph node.

Figure 5.3. 1.1: HUB'S graph node pointer list.

HUB proceeds from GN to GN starting at the first graph node which is not an
UUT_PI or an UUT_PO. For this research, all of the UUT_PIs' graph nodes are

skipped since the fault collapsing routine and the ATPG assumes that the faults

possible on these inputs will be equivalent to other faults on the nets to which they
are attached. This assumption can be incorrect when the primary inputs fanout.

74

UUT_POs are also skipped since it is assumed that their faults will be equivalent to

those of the logic element's output controlling them.

5.3.2 pdcf Personality File.

Each unique logic primitive has a pdcf personality file associated with it This

file, for this thesis, contains the primitive d cube of failure associated with the n + 2

single stuck at faults which are detectable at the gate (with the notable exceptions of
the modulo 2 function with 2n + 2 single stuck at faults and the mverter/buffer

funcdons with 2 single stuck at faults). Additional information describes how many

and which faults are detectable by this pdcf. This approach was used so that the

flexibility of using precomputed test stimulus was pennitted. There is a desire to cut

test costs by reusing previous work and this was designed into HUB from the

beginning to allow for its use in hierarchical test generation. An example of the pdcf

personality file is shown in Figure 5.3.2. 1. Information includes the number of faults
that can be detected by all the pdcfs contained wiAin the file, the number of pdcfs in

the personality file, and which faults cannot be resolved due to fault dominance. Each
pdcf which shows the error free output value, the output value when a fault is

present, the number of faults and which faults are detectable by the pdcf: "H/l"

refers to input 1 stuck at 1 while the "o" indicates an ouQ)ut node.

4 faults

2 inputs

i@0

3 pdcfs
01 0 d

1 0 0 d

211/1, o1/1;

2 12/1, 01/1;
11 1 D :1 o1/0;

Figure 5.3.2.1:2-in put AND gate's pdcf personality file.

75

While a graph node is within budget, HUB is controlled by this pdcf file. The

file, as shown, could have its fault dictionary ranked according to some predetermined

importance: this ranking could be by consideration of the relative probability that this
fault will occur compared to the remaining faults or, as is the case above, by the

number of potential faults detectable. Thus pdcf personality files provide the ability of
allowing further control of the ATPG process external to the underlying FAN based

algorithm.

By using an appropriate fault identification meAod, independent of the

underlying fault model, the pdcf file would permit precomputed test vectors to be

used; these vectors could be buUt for the desired fault model. Obviously, the

implementation will require changes to permit vector sequences however adding this
feature was not considered since it is not within the principle scope of this Aesis.

However, the author would probably suggest a technique such as Marlett's EBT

(extended dme backtrace) [Marlett 86].

5.3.3 Fault model, fault collapsing and simulation.

HUB uses the single stuck at fault model; all fault quantity calculations, fault

collapsing, and fault simulation are constructed under this assumpdon. fThis was a
question of time efficiency since the desire was to make these features independent
of the fault model employed, but this will be left as a research subject for others.) The

UUT fault dicdonary's size is dictated, when no fault coUapsing is desired, by the

number of faults in the pdcf personality files; this is determined by assuming n + 2

single stuck at faults per logic gate (except the exclusive OR/NOR functions with 2n
+ 2 faults and inverterslb^fers with 2 single stuck at faults) given an n-input logic

function. This n+2 quantity is based upon fault dominance principles [Miczo 86].

One method of calculating the circuit fault dictionary's size is to simply

assume that every net in the UUT can be faulted with a stuck at one and stuck at
zero; thus for k nets, one would have 2k potendal faults. This would be an upper

bound and in general should be subject to reduction due to the abiUty to fault collapse

given the circuit's topological nature. At a local level, that is at an individual gate

76

having n + 2 faults, one can typically reduce the fault quantity to n + 1 faults due to

the ability to generate tests which can resolve between 2 specific faults. Fault

equivalence and fault dominance can be used to further reduce the resolvable fault

quantity across the entire UUT. Judging by the comments that different fault

simulators using the same circuit and test patterns can yield a variety of fault

coverage values, it would appear as if the fault dictionary of single stuck at faults is

far from being clearly defined.

HUB provides for 2 operadon modes: (1) no fault collapsing requested except

for the inherent fault reducdon due to the pdcf personality files and ignoring UUT_PIs

and UUT_POs; and (2) fault reducdon based upon the following criteria:

. the faults on logic gate's outputs are subtracted if the net to which it
is attached can detect these faults. This is demonstrated in Figure
5.3. 3. 1;

4

t

+

^
Unreduced: 6 faults.

4

4

+
Reduced: 4 faults.

Figure 5.3.3. 1: Fault collapsing.

. the faults on logic gate's outputs are subtracted if the net to which it
is attached can not be resolved (detected) at the destinadon logic
element's input;

. the faults on a fanout stem are subtracted if the fanout branches to
which it is attached can detect these faults singularly or collecdvely;

. the faults on a fanout stem are subtracted if the fanout branches to
which it is attached cannot be detected collectively.

A simple single stuck at fault simulator was created by a student under the

77

limidng case of combinational only circuits. Once the test vector has been generated,
the fault simulator takes the values at the UUT_PIs and works towards the

UUT_POs buUding lists of faults detected. Figure 5.3.3.2 indicates the underlying

simulation philosophy which is essentially a list processing mechanism. This

technique was adopted primarily to (1) aid the development process and to generate
vectors with a list of fault attached for use in building new pdcf personality files, since

pdcfs have a list of faults associated with them. This is also a simple intuidve
approach although limited to combinadonal logic circuits oiily. The use of list was also
an attempt to decouple the fault model from the fault simulation routine although no

effort was spent on this line of research. The fault model decoupling concept was not

successful since it was necessary to use a simple mechanism, at each graph node, to

indicate that a given fault had already been detected: thus bits within a vector were
used to indicate that a fault had been detected, resulting in a method equivalent to

stuck at n pin faults [Chang et al. 86], instead of a true list. This plus some other

implemenmtion aspects has resulted in the simulator being dedicated as a single
stuck at fault simulator.

(A}0

{B}
1

0

&

{C}

0
{D}

0
&

{E}

0

Figure 5.3.3.2: Fault simulation using lists.

78

Fault simulation is perfomied using a breadth first algorithm which constructs

concatenated fault list using the information about logic elements blocking condidons.

Each list is reduced by removing redundant entries and memory size is controlled by

dropping lists which can not be propagated to an UUT_PO. An indepth analysis of the
fault simulation roudne will not be undertaken at this time, and will be the subject of

a separate report.

In the example of Figure 5.3.3.2, the boolean values represent the nets'

values for the fault free circuit. The list {A} will be propagated onto the output of the

first (from the left) AND gate's output while list {B} wiU be blocked. Ust {C} is

formed by concatenating any faults,. as yet undetected, which are potendally

detectable at this AND gate to the list {A}. List {D} is formed by repeating this

operation at the OR gate. If a sensitized path exists from the second AND gate to a

UUT_PO, then list {E} (plus any other non redundant concatenadons) will represent

the list of faults detected by the input vector.

A file containing the detected fault list and the quantity of faults detected by

each test vector is produced when the fault simulator option of HUB is invoked. For
the full adder shown above, one would have the data shown in Figure 5.3.3.3, which

is a partial sample of the fault simulator's output fUe.

5.3.4 Interactive Mode and Information Feedback.

To permit the user to retry specific HFs, HUB has the ability to choose to

attempt ATPG at a specific graph node for one of the GN's pdcfs. By selecting this

interactive mode and simultaneously invoking the verbose option, HUB provide

information on its progress as it tries to find a test vector; this provides information

about the reasons that conflicts occur during the error propagation, net justification,

and net implicadon phases. This was intended to aid the development process and

provide knowledge about why HUB is not able to detect a fault.

79

SIMULATION (reduit)

Date : Mon Nov 6 16:55:31 1989
Fichier d'entree : fadd. bdd
Nombre de defaut: 38 Nombre de defaut reduit: 22

Vecteur d'entree : 101

Liste :
D :i1/0
J Ul/o
CARRY :01/0

Liste :
K :j2/1
G :i2/1
SUM : o1/1

Nombre de nouveaux defauts : 6

Vecteur d'entree : 011

Liste :
D :i2/0

Liste :
G :i1/1

Nombre de nouveaux defauts : 2

Figure 5.3.3.3: Fault simulation sample output data.

HUB provides feedback about its performance on a per pdcf basis, a per graph

node basis and for the UUT. The type of information provided is listed below and is

intended to explain how the hard fault identifier expends its time and effort:

. total backtrack quantity;

. backtrack quantity for each major ATPG phase;

. total cost expenditures;

80

. individual cost expenditures per major ATPG phase;

. resource allocation information;

. fault target quantities;

. the identification number for the graph node causing the backtrack, if
it can be clearly assigned;

. the primary and secondary phases (propagation, justification,
implication, other) causing the backtrack;

. if an exhaustive search has occunred, this will be indicated;

. a list of rules violated due a conflict.

The justificadon for this infonnation is that it is not sufficient to state that a

fault cannot be detected due to an aborted process or due to HUB'S heuristics; one

must have information about the root causes in order to permit the design team to

effect the necessary and required changes. Presently this information is generated m

an ASCII fonnat to permits its manipulation by UNKT utilities (grep for example)

and to allow the data to be easily imported into sophisticated data analysis tools

such as BBN's /?5/JT[BBN Software Products Corporation].

Other information is generated and kept by HUB although not currently

employed for this research. HUB indicates at each graph node the causes of why its

GN_POs and GN_PIs have been set; this is by the identifying graph node number

and the ATPG phase. It was intended that, given a means to couple this circuit model

to the schematic representadon, the designer could visualize the test generation

process in order to understand how he might modify his circuit in order to remove any

hard faults. HUB also records the number of failures in setdng an GN_PO to a zero

and to a one in order to provide a list of troublesome graph nodes without this

integration to the schematic environment.

5.3.5 Other HUB features.

There are some other features embedded into HUB, although they might not

81

be used to their fullest potential: (1) the observability (from COP) at a fanout stem is

not simply the minimum as is typical with COP, but the mean of all the fanout

branches; (2) all the fanout branches' observability values are kept; (3) the fanout

destinations are ordered according to COP observability values; (4) each graph

node's output records the quantity of zeros and ones that were not justifiable, this

was based on discussions with Marlett at the 1989 IEEE VLSI Test Workshop; (5)

the multiple backtrace option was written and tned with smaller circuits, but was not

completely verified; and (6) provisions for muldple paA sensidzadon were made.

A major feature of HUB and its underlying circuit modelling method, is that

one could complete HUB as an ATPG and use it to generate circuit verification

stimulus before the complete circuit has been implemented. This is an area of

research that has been neglected by most researchers although it is very important to

those who need to verify a circuits completeness from a functional aspect. Instead of

generadng tests for structural faults, one could use the intrinsic ability of binary

decision diagrams to create function tests. These vectors could then be reused once

the circuit has been implemented and the implementation details are available for

fault grading. The remaining faults could then have tests created for them specifically.

This use of HUB could also pemiit the identification of hard to simulate logic allowing

the designer to consider cu-cuit modificadons before detailed implementation has

begun and which niight aid in reducing the number of structure related hard faults.

5.3.6 Hierarchy Provisions.

The gBDD circuit model provides the ability to permit hierarchical circuit

descriptions. When coupled with the pdcf personality file concept, it is felt that one
should be able to work with hierarchically defined circuits and use (re use)

precomputed test stimulus for circuit elements described at higher abstraction levels:
i.e. and ALU cell instead of its gate level equivalent. This could provide future

researchers with the ability to exainine the time complexity of ATPG using data base

look up methods for large portions of circuitry while using the gBDD to aid in the

error propagation and net justification phases. The inherent ability of this hybrid

82

model to support hierarchical descriptions should permit the user to work at the

highest level desired while retaining the ability to descend to the lowest abstraction

pennitted by the design environment's resources.

5.3.7 Summary.

The algorithm HUB, its use of cost based ATPG constraints and its various

features and attributes were explained. The decision to use an automatic test

generadon based algorithm to identify hard faults was based on the concepts that an

algorithm is capable of detecting redundancies and that the test generation would be
du-ectly coupled to the measure of test difficulty. FAN, an efficient and extensible

algorithm, was choose as the starring algorithm and uses a new circuit modelling
technique gBDD. The use of cost based metrics provides a means to link the real
cost constraints to test generation and to provide data on which ATPG phases arc

having difficulty in test generation; an algorithm is also not a decoupled heurisdcally
based approach. Informadon is fed back to HUB'S user permitting the most

appropriate corrective acdons, based upon the cost constraints imposed by device

yield and performance parameters.

6.0 Results.

Several types of results will be examined in this thesis. Although the major

thrust was to have been the detection of hard to detect faults within digital

combinational logic circuits, it has been expaned to the following 3 areas of research.

(1) Some measure that reflect upon the efficiency of the gBDD circuit modelling

method; (2) the charactersitics of HUB'S ATPG, although not HUB does not contain

a complete implementadon of FAN; and (3) the verficiarion of the hard fault detection

process. It is necessary to detail some of the problems encountered during the

measurement process in order to forewarn the reader.

Some of the comparisons have been made against a copy of the PODEM

ATPG program that was developed by [Ivanov 85] (and which was developed from a

version that originated from Hideo Fujiwara's work during his stay at the University

of McGill). Unfortunately, there is a minimum of documentation available for this

program and its performance in a SUN workstadon environment for the larger ISCAS
combinational circuits resulted in run time errors (known as "CORE DUMPs").

Thus some comparisons will be limited in theu- scope due to this.

The ISCAS circuits are described by their neutral netlist; there does not

appear to be readily available complete schematic sets. It is this author's belief that

for hard fault detection to be tmly effective will require that the design's

documentation be available (as is currently the case in industry when testability

analysis or test pattern generation would be attempted, and the effect of circuit

modifications on performance versus objective specificadons could be subjectively

compared). Although [Marlett 89] suggests that circuit modificadons can be

performed without the circuit's schemadcs, this author's beliefs are that hard fault

detection and theu- removal for specific circuits is simply one step in the design

process; the long term goal is (should be) to understand the underlying weakness in

the design methodology to avoid or eliminate the problem as a natural part of the

design methodology. Thus the demonstration of HUB'S current ability to detect hard
faults will be limited to a small class of circuits for which schematics existed.

84

Additional measurements will be shown and analysed however.

The ATPG ability of HUB is used as a means to couple the hard fault

defmition metric to the test generadon process (as [Bell Taylor 88] suggest is

required) and was not meant to be the development of a new test pattern generator.

The programming environment was chosen to ensure that (1) robust code was

generated, (2) the primary premise of research could be verified and (3) that a

niinimum of programming should be performed since this was not an exercise m

developing computer science skills. It was assumed that the FAN based ATPG

algorithm's time performance would not be seriously degraded by the implementation

issues and that, while FAN had been reported to provide a 5 to 6 times improvement

over PODEM, small loses of linear improvements in an NP complete problem would

not be a significant problem for the purposes of this research.

One final implementation problem was discovered during the final stages of

the HUB'S development and measurement phases. The original version was started

on an IBM PC AT which aUowed access to a precise hardware clock contained m the

system and which showed the ability to repeat time difference measurements with a

high level of confidence. The final version of HUB was developed in the SUN

workstation environment to facilitate its creation. However, the UNDOT operation

system does not provide a precise and reproducible time difference with the systems

calls that were available. CThis was also noticed with a commercial logic simulator

that for the same circuit, the same stimulus, and when run on the SUNs provided a

factor of 2 for the different run times that it calculated internally.) This appears to be

an intrinsic weakness of the UNDOT operating system which has not appeared to be

subjected to the usual cost accounting requirements of an MIS (management of

information systems) environment where computer users are charged for their

computer resource usage.

85

6.1 Circuit characteristics of used for results.

Table 6. 1. 1 provides a summary of the circuit characterisdcs for the set of

combinational circuits that were involved in the measurement process. While not all

the circuits were used for each measurement, all of the circuits listed are used at

least once.

6.2 Comparison of gBDD.

The program gBDD that is used to create the gBDD cu-cuit model is called

once per unique circuit net list; this was done to save needless calculadons and effort

every time that HUB would be used and required only that HUB read in the

appropriate circuit data directly into the memory. The translation of the TEGAS like

neutral netlist by which the ISCAS and other circuits were described consists of 6

phases: (1) open the original file descripdon, parse the file while verifying the

circuit's connectivity, and indicate any errors detected; (2) create a supervisory

structure containing centralized data about circuit function and structure; (3) create

the graph structure portion of the gBDD cu-cuit model to reflect the circuit's stmcture;

(4) attach the mBDDs for every non UUT_PI and non UUT_PO (currently limited to

one output logic elements); (5) calculate Ae controllabilities and observabilides

based upon the COP testability measures and sort the mBDD nodes and fanout

branches based upon these values - the fanout stem's observability is the mean of

the its branches; and (6) store this data into a file. In this section, the creadon of the

gBDD's circuit model will be analysed from a generation view point (its time

behaviour), and from memory considerations.

6.2. 1 gBDD Temporal performance.

The algorithms used to create the gBDD circuit model firom the neutral netlist

are essentially linear in performance characteristics. The following graph summarizes

the performance of the gBDD algorithms. Once again it is important to remind the
reader that the time measurements do not show a high degree of consistency from

use to use.

86

Circuit Name

C17

C95

C880

C1908

C2670

C3540

C5315

C6288

C7552

IMAGE

ADDER

Gates

6

27

383

718

1003

1446

1994

2416

2980

31

22

Nets

17

95

880

1908

2670

3540

5315

6288

7552

80

80

Pis

5

5

60

33

157

50

178

32

206

10

3

POs

2

7

26

25

54

22

117

32

102

1

2

Table 6.1.1: ISCAS and other test circuit characteristics.

The performance for the file storage and reading in the file is linear m the

number of gates, equivalent to being linear in the number of graph nodes in the gBDD
circuit model, which is a reflection of the one pass requu-ed to store and read the

circuit elements.

87

s 24
t 22
0 20

r 18

a 16

g 14
e 12

10

t

I

m

e

(sees)
500 1000 1500 2000

Gate quantity

Graph 6. 2. 1.1: gBDD file storage time.

2500 3000

Table 6.2. 1. 1 summarizes the time spent in the major phase of the gBDD

circuit model generation program and for the restore() function used by HUB to

reconstruct the cu-cuit in memory from the ASCII gBDD file. The parse phase is seen

to consume the largest portion of the generation time: it is during this phase that all

the network checks, hash table construction, and the majority of the file input

operations occur.

88

Time in seconds (s)

Circuit Name Parse gBDD() mBDD() OBS() Store Restore

C17

C95

C880

C1908

C2670

C3540

C5315

C6288

C7552

0.07

0.23

4.00

10.05

16. 83

32. 13

0.02 0.02 0.00

0. 10 0.02 0.03

1. 63

3.75

6.30

7. 15

0.38 0.30

0.80

1. 12

2.22

113.55 23.43 2.55

59.18 28.47 5.88

132.70 28.27 3. 65

0.57

0.80

1. 15

1.88

1.98

2.33

0. 07

0.32

3. 13

5.52

8.68

11. 12

16.92

20.12

24.48

Table 6.2.1.1: gBDD time distributions.

6.2.2 File sizes.

0.20

1.00

15.50

33.40

48.80

83.30

237.20

165. 00

291. 60

HUB uses an ASCH input file format that was selected for ease of

development and not based upon efficient or opdmal file structures as would be the

case for a commercial product. The files' size are compared against 2 different file

1 ;.
formats used by PODEM: the first file fomiat, PODEM1, is an ASCH me format; the

second file format is unspecified but appears to be a compressed format for use by

PODEM only.

89

Circuit Name

C17

C95

C880

C1908

C2670

C3540

C5315

C6288

C7552

IMAGE

ADDER

gBDD (kb)

1.9

7.7

88.9

152.8

229.5

307.6

469.4

535.7

661.9

7.8

2.5

PODEM1(kb)

2.2

9.9

88.0

151.7

218.0

293.9

456.8

627.5

631.2

8.3

3.0

PODEM£(kb)

1.1

5.2

49.0

85.9

125.2

167.7

266.8

351.9

366.0

4.1

1.5

PODEM1- ASCII Format.
PODEM2 - Unspecified Format.

Table 6.2.2.1: Circuit Model File Requirements (k bytes).

Basically PODEM1 and the gBDD file size are of comparable sizes and are of
the same order of magnitude. There is approximately a factor of 2 between the

PODEM2 and the gBDD file sizes although, once again, they are of the same order
of magnitude.

90

6.3 ATPG related results.

HUB will perfonn its own fault simulation, if requested upon invocation, and

operates in two basic modes wheAer or not fault simulation is used: (1) with fault

reduction or (2) without fault reduction. As a basic verificadon of HUB'S instrinsic

automatic test pattern generation, its perfomiance against PODEM (without using
fault simulation and without fault reduction) was verified for four of the smaller

circuits. These four were selected due to the available schematics and since two of

the four circuits have known and readily idendfiable redundancies (C95 and Image)

included. A secondary reason for selecting these four was due to reduced amount of

UUT_PIs; HUB does not attempt to maximize the number of these primary inputs

which can be set during the generation of a test vector while PODEM appears to

provide dynamic vector compression by maximizing the number of the unit under

test's primary inputs that can be set without causing a conflict for the target fault.

Vector

Circuit Quantity

PODEM* HUB

Total

Time (sec)

Fault

Coverage (%)

PODEM* HUB PODEM* HUB

C17 38 15 0.6 0.3 100 100

C95 199 63 6.2 4.3 97.5 97.5

Adder 56 30 1.0 0.8 100 100

Image 149 64 7.1 4.9 92.0 92.0

Table 6.3.1: Partial ATPG results - no simulation.

91

Table 6.3. 1 summarizes the results of this basic comparison. The fault

coverage and the execution times are comparable while the quantity of vectors

generated tends to be different. This is due to a fundamental difference in the way

that HUB works; HUB generates a vector per pdcf, from the pdcf personality file

described in Chapter 4, as opposed to PODEM which generated a vector per targeted

fault when no fault simulation is used. Since the pdcf personality files contain far

fewer pdcfs than PODEM contains faults, due to the localized fault quantity reduction

used in building the pdcf personality files, HUB will attempt to build less test vectors.

As previously stated, HUB does not attempt to perform any form of dynainic

vector compression during automatic test pattern generation for hard fault detection.

The amount of logic affected by the UUT_PIs define a cone of influence and this will

be circuit dependent. Since HUB'S primary objecdve is to detect the presenece of

hard faults and not simply provide test pattern generation, an explicit objective of the

alogorithm was to set and justifiy only the nodes (and hence eventually only the

UUT_PIs) necessary. When the number of UUT_PIs is large, but the number of these

inputs which are involved in the cone of influence for which HUB is evaluating, HUB
can have an undesired side effect. HUB is expected to generate more vectors than

PODEM, due to the lack of this feature as Ae rado of the number of UUT_PIs in the

cone of influence for the current targeted fault to the total number of UUT_PIs

decreases.

Although no attempt was made to determine a heuristic for this test vector

reduction effect, the preceding four circuits see a reduction of roughly 2 to 3 times.

6.4 Fault Simulation related results.

The same four circuits were retned but using HUB'S fault simulation mode

with the fault reduction option activated. For comparison purposes, a commercial

logic and fault simulator SILOS IIT was used to perform the fault simuladon. SILOS

HT's data net list requu-ements and input pattern requirements required that a small

translator (a simple linear algorithm) be built and that the test vectors generated be

92

time stamped (have a time value associated with it). It was discovered, using the
circuits in Table 6.4. 1, that where 100% fault detection was achieved with HUB, that

SILOS IFM concurred. For the other cases, SILOS HT provides different fault

coverage than HUB detennines. This was also found to be the case with larger

circuits, notably the C880 and C1908 circuits, and appears to be due to the fault

simuladon/fault reduction methodology used by HUB. The cause is felt to be

implementation based and non critical to the underlying research.

Vector Total Fault

Circuit Quantity Time (s) Coverage (%)

HUB FSIM HUB FSIM HUB FSIM

C17

C95

10

20

Adder 8

Image 48

10

20

8

48

0.6

2.5

0.7

5.5

0.4

4.5

100

91

100

97

0. 6 100 100

4.3 91 94

Table 6.4.1: ATPG results with simulation vs fault simulation.

It should also be noted that PODEM and SILOS HT did not always agree

with their fault coverage determination, although PODEM was much closer to SILOS

H'sT values. SILOS H'sT fault reduction and fault simulation algorithms are not

documented and are not available for comparison pmposes.

HUB, PODEM, and SILOS DT did not agree on the total potential fault

quantides present for either the reduced (not shown by PODEM) or the total fault

count. SILOS HT provides for some fault reduction, removal of redundant faults; no

precise definition is provided although they are apparently based upon topological
considerations. SILOS HT faults every net, at input and output pins, as stuck at 0

93

and stuck at 1; PODEM also faults every net with these same faults. The differences

appear to be part of a more global standardizadon problem.

6.5 Hard Fault Detection.

Four circuits were examined in detail given the readily availability of their

schematics and the relatively small size which permitted to determine whether HUB

provides a useful function in idendfying the presence of HFs (and redundancies) and

presenting information about the reasons that these faults exist.

The underlying premise of this research is the use of cost based constraints

coupled with an efficient algorithinic automadc test pattern generadon tool to detect

the presence of hard faults, as defined by the cost constraints, and the presence of

redundant faults as identified by exhausdve searches (as opposed to a heuristic

approach such as was used in VICTOR). To avoid the problems created by the lack

of reproducibility in the timing of HUB'S major ATPG phases when it would be
invoked several times for the same circuit but with different cost constraint values,

HUB was used with a backtrack limit of 10, previously suggested as a reasonable

1imir for both PODEM and FAN, but with an unlimited time budget. The data for the

cu-cuits was logged and then subsequendy it could be manipulated by the RS/1T tool

in order to see the effect of the tighter cost constraints.

Specifically, the graph of th-e total costs will provide information about how the

costs are distributed for a given cu-cuit allowing the ability to compare the effect of

tighter and relaxed cost budgets.

A more detailed analysis is provided for a smaller circuit, Image, to

demonstrate HUB'S instrinsic capabilities.

6.5.1 Extended example using Image.

A portion of the Image circuit was used to examine whether HUB would
detect the presence of the hard to test faults using the single stuck at fault model
based upon the pdcf personality file fault dictionary and provide accurate informadon

94

about theu- causes. This circuit contains untestable faults caused by intentional

design redundancies. There are 3 sections to the results for this circuit: (1) the cost

accounting infonnadon in histogram form showing how the costs for the major

automadc test generation phases are distributed plus the budget distribudons on a

per pdcf basis for HUB without fault simulation and without fault reduction; (2)

histograms for the primaiy and secondary backtrack phases (the phases which

caused the backtrack to occur) and for the graph nodes instigating the backtrack; and

(3) an indication of the data provided by HUB as to what was occurring when the

backtrack situation developed - what heurisdcs and rules were involved. Please note

that the frequency for cost/budgets is in terms of pdcfs; for the backtrack histograms,

frequency is in terms of backtrack quantity.

Figure 6. 5. 1. 1 is the circuit representation of the Image circuit. The nets arc

identified as per the names given in the neutral netlist circuit description. Appendix B

contains a cross reference of the graph node to the logic elements' output net name.

Graph 6.5. 1. 1 sunamarizes the primary ATPG phase in which HUB was

involved and that caused a backtrack to occur. Both the primary and secondary

phases (Graph 6. 5. 1.2) were found to occur principally due to net jusdfication phases.

The possibility of difference between the two phases was allowed since the major

phase might be net justification but the conflict occurs during the implication phase of

the net justification and not due only to net justification. For Image, the propagation

phase was also responsible for generating backtracks but these backtrack represent

only 25% of the total backtracks which occurred. It is important to remember that

HUB keeps track of total unique backtracks and the totals for all the phases. The

total backtrack quantity is not simply the addition of Ae individual phases'

backtracks. It was found that the majority of the backtracks occurred in the

justification phase.

95

A-^SS-6*1^

L. .

* TMR

Figure 6.5. 1.1: Image circuit subsection

96

5

F

r

e

q
u 3
e

n

Phases:
p - propagation
j - justificadon
i - implication
s - sensitizatton

J p

Graph 6.5.1.1: Primary Backtrack Phases.

F

r

e

q
u 3
e

C 2
y

1

Phases:
p - propagation
j - justification
i - implication
s - sensitizanon

Graph 6.5. 1.2: Secondary Backtrack Phases.

97

e

2.0

1.8

i.G

1.4

1.2
q
U 1.0

n S.8
c 0.6
y

8.

6.2

0.0
-999 13 17 18 21 25 33

Graph 6.5.1.3: Graph Node causing Backtrack Phase.

The histogram in Graph 6.5. 1.3 summarizes the information about which graph
nodes caused backtracks to occur when this could be uniquely determined and based

upon the following simple rules:

. the graph node's number that can not be justified;

. the graph node's number that blocks the error propagation during the
propagation phase at that node;

. the graph node's number that stops the back trace.

If the graph node's identity is not known, then a default value is set to -999 to be

certain that none of the GNs in the range [0 ... n] is incorrectly identified.

When the UUT's fault dictionary was reduced for Image, the unknown graph

nodes were eliminated. Graph 6. 5. 1.4, while retaining the remaining 6 graph nodes of

Graph 6.5. 1.3.

98

As mentioned, these results (summarizing the various causes of the

backtracks encountered) are on a pdcf basis. HUB does not maintain a summary of

the backtrack phases (the phases causing a backtrack condition to occur) on a graph
node basis as it does for the cost accounting aspects. The author felt that backtracks

could possibly occur in different phases for the different pdcfs of a given graph node.

Collecdng the backtrack causes on a per pdcf basis also allows the association of a

fault's identity wiA the backtrack causes by virtue of the pdcf's data content. This

was considered to be an efficient implementation..

Histogram of graph node causing backtracks.

1.0

F

r

e

q
u

e

n

c

y

e.e

9.6

6.4

0.2

13 17 18 21 25 33
Graph 6.5. 1.4: Graph node number (reduced fault dictionary).

The cost monitoring is done for the propagation, justification, backtrace,

backtrack, and implication phases on a pdcf and a graph node basis. This is also the

case for the total cost monitoring and for the dynamic budget constraints. The next 8

histograms summarize this information for the Image circuit: the first 7 histograms
are for HUB when no fault sunulation or reduction was allowed; the eighth histogram

is the total cost when HUB'S fault simulator, using fault reduction, was used.

99

12

1B

F

'- 8
e

q
U 6
e

n

c

y

2

Qv. W 0. 05 0. 10 0. 15 0. 20 0. 25 0. 36 6. 35 0. 40

Cost in ̂ .

Graph 6.5.1.5: Propagation phase cost histogram.

25

23
F
r

e 15
q
u

n IS
c

y
5

0."0000 0. 8885 0. 0 10 8.6915 0. 0 20 6. 0025 0. 0 30 0.0 35

Cost in K.

Graph 6.5. 1.6: Justification phase cost istogram.

25

100

20
F

r

e

q
u

e

n

c

y

15

10

0B 00 0. 05 B. 10 0. 15 0. 28 B. 25 0. 38
Cost in \.

Graph 6.5. 1.7: Backtrace phase cost histogram.

60

50

F

r 40
e

q
u 3B
e

n

c 29
y

1B

0U 00 0. 01 0. 02 0. 03 B. 84 0. 05 6. 06 0. 07 0. 08 0. 09 0. 10

Cost in X.

Graph 6.5.1.8: Backtrack phase cost histogram.

101

9

8

F7
^ 6
e

q 5

e 4

C 3

y2
1

e6 0. 95 0. 18 8. 15 0. 20 6. 25 8. 30 6. 35 0. 48 0. 45 0. 50 B. 55

Cost in \.

Graph 6.5. 1.9: Implication phase cost histogram.

r

e

q4
u

e 3
n

c

.
00 0. 62 8. 4 0. 06 6. 8 0. 1B 9. 12 6. 14

Cost in K.

Graph 6.5.1.10: Total cost histogram.

102

35

38

r25
e

q 20
u

e 15
n

c 18

"10 11 12 13 14 ill 1 1 20

Cost in ̂ .

Graph 6.5. 1.11: Budget histogram.

9

8

F7
r- e
e

q 5

e 4

c 3

i-2
1

0". 00 8. 82 0. 4 0. 6 0. 08 0.10 0. 12 0. 14 0. 16

Cost in X.

Graph 6.5.1.12: Total cost histogram (fault simulation).

103

The cost ?i, is related to the microsecond value returned by the program's call

to a UNDOT system routine. (The absolute value of the time units is 10 of

microseconds.) The times are not normalized and are therefore not valid for

comparisons between histograms.

The budget reflects that the fault quantity is discrete and, for this circuit,

based on either 1 or 2 target faults per pdcf. HUB assigned 10 dme units per fault,

resuldng in the value of 10 and 20 dme units. Note that while for this circuit the

budgeted dme is an integer, this need not be the case when there is a large number of

faults. The cumulative frequency of this histogram is the total potential faults for the

UUT when no fault simulation is used. The remaining histograms should, and do

show a more condnuous spectrum of values which miiror the relative degrees of

difficulty in each ATPG phase. For Image, it the propagation and implication phases
are the most costly test generadon phases that were invoked.

Looking at the cumulative cost accoundng data (for the propagadon and

implication phases) and for the total of all the major ATPG phases, one can see the
effect as to how many pdcfs would be aborted and result in potential HFs if the

budget constraints were modified from their unlimited (but respecting a maximum of
10 backtracks) values. This per pdcf data includes the pdcfs for which no test could be

completed due to the presence of redundancies. Thus if the budget constraints arc

sufficiently severe, even redundant faults would be classified as potential hard faults

and become hard faults if not detected by test stimulus which respected the more

stringent cost constraints. Table 6. 5. 1. 1 details the cumulative costs and the number
of pdcfs which respect the various thresholds for the total of the circuit costs. Tables
6.5. 1.2 and 6.5. 1.3 provide the individual infonnadon for the propagation and

justification phases respectively.

104

Time Threshold
(time units * 1000)

130

120

110
100
90
80
70
60
50
40
30

20
10

Quantity of pdcf respecting Time Threshold

58

55

50
46
40
36
31
27
23
16
11

7

2

Table 6.5.1.1: Cumulative total cost distribution.

105

Time Threshold
(k * 1000)

Quantity of pdcf respecdng Time Threshold

40 58

35 46

30 44

25 36

20 29

15 26

10 19

5 11

Table 6.5.1.2: Cumulative propagation distribution.

Time Threshold
(^ * 1000)

55

50

45
40

35
30

25

20
15

10

5

Quantity of pdcf respecting Time Threshold

58

55

50
46

40
36
31

27
23

16

11

Table 6.5. 1.3: Cumulative justification cost distribution.

106

The lower bound of 1 fault per pdcf is 1 and the upper bound is 2 faults per pdcf

for the circuits used in this research. Thus one can equate this knowledge into lower

and upper bounds for the potential hard faults.

Figure 6.5. 1.2 is a portion of the informadon logged by HUB for the Image

circuit. An exhausdve search has been performed for graph node 10 (the inverter with

output net GAT 17, from the list in Appendix B), specifically for the inverter pdcf 0

(output s-a-1). HUB provides data on the failure to generate a test using this pdcf; in

this case the failure is due to the inability to propagate the difference value at the 2-

input OR gate, GN 40 having the output net TMR. HUB prints the number of the rule

violated and explains this rule: P. 8.5 meaning that one of the mBDD's nodes blocked

the error propagation phase - !R. 1 leaf & picked R indicating that the rule required

the left branch to be picked but that the previously set value causes the right leaf to

be picked at a node which has one branch and one leaf. Since for FAN, the search
space is a function of the number of head lines, HUB will tried to provide a solution by

retrying all the possibilides associated with the search space.

It is important to note that HUB will always create data about the costs

incurred as it tnes to create a test from the pdcf used to sensitize a fault even if no

backtracks occur. Thus, in the presence of resistant faults due to non redundancies,

the cost information identifies which phase is the most cosdy: the basis of this

approach was that one could then implement a more global improvement in making
faults testable by the appropriate and cost effective method (an internal testability

bus to allow isolation, improved controllability and observability of the basic circuit

building blocks). Hooks have been placed into HUB which would aUow visualization

of the activated paths back into a design environment when such a tool exists; this

would probably be more useful than the simple cost accounting infonnation.

107

RULEP. 8.5
Error in propagation of BDD
GNODE OR2~PO_num 40. BDD i.d. 1
for NUT 10
|R: 1_leaf and picked R.
RULEP. 8.5
Error in propagation of BDD
GNODE OR2PO_num40. BDD i.d. 1
for NUT 10
!R: 1 leaf and picked R.
RULEP.8.5
Error in propagation of BDD
GNODE OR2PO_num40. BDD i. d. 1
for NUT 10
!R: 1 leaf and picked R.
RULEP.8.5
Error in propagation of BDD
GNODE OR2PO_num40. BDD i.d. 1
for NUT 10
!R: 1 leaf and picked R.
Exhaustively searched! Redundancy!
(10 : 0) No Success
Determine_Reasons not yet implemented

Figure 6.5. 1.2: Partial HUB hard fault data.

6.5.2 General Results.

HUB was used on 5 of the 1985 ISCAS combinadonal circuits (C17, C95,

C880, C1908, and C2670) plus the full adder cell and the Image circuit cell. The

following tables and histograms sunamarize the costs, budgets, backtrack information

and general data resulting from these measurements.

The measurements show that the biggest cause of backtracks is the net

justification phase, and that HUB had equal quantities of justification induced
backtracks for the primary and secondary causes. Table 6. 5. 2. 1 summarizes these

108

results and also includes data on the number of unique graph nodes involved in

generating the backtrack condition. No work was undertaken to determine the effect

of modifying the graph node to allow easier justification although Marlett has used

the concept of T-cells to automatically modify the circuit based upon the most frequent

element involved in stopping test generadon and then allowing the continuadon of the

ATPG process [Marlett 89].

Circuit Name

C17

C95

C880

C1908

C2670

IMAGE

ADDER

Primary

N/A

6

28

140

580

250

N/A

1
Secondary

N/A

6

28

140

580

250

N/A

1 GN Quantity2

N/A

6

11

12

580

98

N/A

Notes:

1) The number of justification caused backtracks. These represent
the amount of'backtracks which occurred in as the result of
line justification being either the primary or secondary cause.

2) The quantity of graph nodes which were identifiable as the source
of the conflict that originated the backtrack process. A given node

can cause more than one backtrack.

Table 6.5.2.1: Justification backtrack information.

In general, for these circuits, it was found that propagation induced backtracks

were the only other major backtrack component; implicadon, backtrace, and backtrack

induced backtracks were virtually non existent. Tables 6. 5. 2.2 and 6. 5.2.3 presents

the average number of backtracks for each of the circuits tried: the full adder and the

C17 circuit are fuUy testable and did not cause any backtracks: any backtracks would

have been due to poor guidance heurisdcs since there is no topological reasons for

109.

backtracks.

Circuit Name

C17

C95

C880

C1908

C2670

IMAGE

ADDER

Total

N/A

0.558

1.184

5.916

2.194

0.931

N/A

Backtrack Quantity

Justification Propagation

N/A

0.474

0.249

1.565

0.464

0.345

N/A

Implication

N/A N/A

0.032 N/A

0.002 N/A

0.065 N/A

0.136 N/A

0.138 N/A

N/A N/A

N/A - not applicable.
Table 6.5.2.2: Mean of backtracks.

Tables 6.5.2.4 through 6.5.2.8 summarize the means for the cost of the various

ATPG phases in HUB for the 7 circuits evaluated. It is interesting to note that all but
2 of the costs do not exhibit a monotonically increasing cost with complexity function.

However, the error propagation and implicadon phases do seem to possess this

monotonicity. The time or cost is in 'k units for this thesis.

Circuit Name Mean (k) Standard Deviation

C17 10 000 6 172

C95 85 891 47 551

C880 2 266 207 1 609 804

C1908 16 393 475 12 282 399

C2670 10 155 143 7 338 218

IMAGE 66 808 35 482

ADDER 4 583 3 622

Table 6.5.2.3: Mean and standard deviation of total costs.

110

The standard deviadon in many cases is as large if not larger than the mean.

This is not surprising considering the data distributions of these cost components:

the histograms for the total ATPG costs of the seven circuit exanuned using HUB are

found in Appendbc C.

Circuit Name Mean (k) Standard Deviation

C17

C95

C880

C1908

C2670

IMAGE

ADDER

3444

9193

291 018

418 582

518 490

19913

Not Defined

3241

4650

177310

648 307

333 983

12 080

Not Defined

Table 6.5.2.4: Mean and standard deviation of propagation total costs.

Circuit Name

C17

C95

C880

C1908

C2670

IMAGE

ADDER

Mean (k)

Not Defined

13298

97866

42994

516 629

1 667

Not Defined

Standard Deviation

Not Defined

8258

68549

12403

281 879

1 561

Not Defined

Table 6.5.2.5: Mean and standard deviation of justification total costs.

Ill

Circuit Name

C17

C95

C880

C1908

C2670

IMAGE

ADDER

Mean (k)

Not Defined

15 192

81 728

7 044 623

886 330

546

Not Defined

Standard Deviation

Not Defined

15549

58130

7 582 245

789 318

2032

Not Defined

Table 6.5.2.6: Mean and standard deviation of backtrack total costs.

Circuit Name

C17

C95

C880

C1908

C2670

IMAGE

ADDER

Mean (k)

6555

24788

660 862

4 465 937

2 887 644

14166

3083

Standard Deviation

3301

13358

477 866

2 714 843

2 114447

7100

1 733

Table 6.5.2.7: Mean and standard deviation of backtrace total costs.

112

Circuit Name

C17

C95

C880

C1908

C2670

IMAGE

ADDER

Mean (^)

Not Defined

23420

1 134 732

4 421 338

5 346 050

30516

1 083

Standard Deviation

Not Defined

7998

834 495

2 261 968

3 851 943

14746

1 555

Table 6.5.2.8: Mean and standard deviation of implication total costs.

Although HUB is able to generate the cost information as a means to identify
hard to test faults, even when there are no backtracks and the fault is non redundant,

it will be necessary to produce additional information which would indicate how circuit

modifications could be implemented and cause the fault to become easily testable.

One possible method would be to indicate on the circuit's schemadcs, at the high

abstraction level possible, which circuit macros and nets have been activated and

manipulated; this would allow human intervention. This is a major weakness to HUB

at present.

From an implementational aspect, HUB requires naany extra tools to provide

manipulation of the large amounts of data that HUB is capable of producing; BBN's

RS/1T statistical package was used - a tool that would be non trival to construct

during the process of a M. Sc.A.. Even with this tool, HUB may produce a surplus of
data which could be pruned into a more useful quantity.

6.6 Summary.

A variety of measurements were made using the HUB environment; the

113

gBDD circuit model, the characterisdcs of HUB'S automatic test pattern generator

and its fault simulator, and to indicate HUB'S ability to produce detailed information

about the existence and causes of hard to test faults with a combinadonal logic

circuit. The results were obtained by using a subset of the 1985 ISCAS combinational

logic circuits and two additional circuits: a full adder cell and a portion of the Image

circuit, a circuit developed at Ecole Polytechnique.

HUB succeeds in providing useful information for the design team and in

coupling the concept of testability measurement to the ATPG process, but additional

information and efforts will be required before the detection of hard to test faults is

completely solved.

7.0 Conclusions.

An attempt to identify the presence of hard to test faults in a digital

combinational circuit by a new method was tried The underlying concepts of the this

method involved the idea of coupling cost constraints with an efficient automatic

pattern generator (ATPG). The cost constraints are in Ae fonn of budgets and they
can be compared dynamically with the ATPG costs; the costs are obtained by

monitoring the important phases of an ATPG phase that is based upon the FAN
algorithm. A secondary set of concepts consists of identifying which ATPG phases
cause backtracks to occur, and the quantity of each, plus determining the logic

element which is clearly responsable in initiating the backtrack condition. A computer

implementadon, HUB (.hard fault detection using budget constraints), was used to
evaluate the basic principles of these concepts.

HUB consists of a modified version of the FAN ATPG algorithm which allows

the monitoring of the ATPG phases' costs. HUB uses traditional testability
measures (COP) to provide partial aid in selecting nodes during the error propagation

and net justification phases, in addidon to error propagation heuristics included in a

new circuit modelling technique created to aid HUB'S automatic test generation

process. An environment for HUB'S use was also created and consits of: (1) a circuit
netlist translator (from a neutral netlist fonnat) to the new gBDD (graph binary

decision diagram) circuit model used by HUB; (2) a simple single stuck at fault

simulator; (3) translation tools that permit HUB'S test vectors and gBDD's circuit

description to be converted into the input format required by a commercial logic and

fault simulator (SIMUCAD's SILOS IFM); and (4) output data files, from HUB, in an

ASCII format which were used by BBN's RS/1T statistical analysis package in

providing meaningful data.

Some measurements were effected using cu-cuits from the 1985 ISCAS

combinational benchmark circuits plus two addidonal circuits. The measurements

centered upon 3 arenas: the gBDD circuit model's characterisdcs; HUB'S ATPG and
fault simulation characteristics; and HUB'S hard fault detection abilities.

115

The gBDD circuit modelling method would appear to be the single most useful

result of this research albeit that the thesis' thrust was to find a method to detect

HFs based upon cost considerations. The gBDD circuit model has provided a method

to combine a circuit's structural and functional information in a reasonably compact

format which did not cause performance problems for the ATPG process. This model

reinforces the posidve aspects of the previously uncombined graph model and the

binary decision diagram circuit (BDD) descripdons which each have major handicaps:

graph modelling do not provide any functional details while the binary decision

diagrams preclude structural knowledge at the cost of poor single stuck at fault

coverage.

The resulting gBDD model pennits the ability to describe a circuit in a

hierarchical manner, to generate tests based upon non traditional fault models (that

is a functionality based fault model referred to as an experiment), and to incorporate

previous research based upon graph models and BDDs. This model was invented

expressly to aid the test pattern generation process and allow the future expansion of

the HUB tool to mixed sequential combinational logic circuits. Further advantages of

the modelling method will allow the construction of test stimulus before the full

implementation details of the cu-cuit are known - in particular shortly after the basic

circuit's building blocks and the interconnecting data paths are known - so that

efforts at detecting hard faults, from a functional testing aspect, can be identified

before Ae design has proceeded a great length.

HUB'S ATPG capabilities, although not a complete implementation of

Fujiwara's FAN algorithm and without dynamic vector compaction, has performance

characterisdcs similar to those of a university copy of PODEM. Due to the lack of

dynamic vector compression, HUB will tend to generate more test vectors for cu'cuits

having large numbers of primary inputs, but few primary inputs per cone of influence.

HUB'S hard fault detection mechanisms were seen to be functional, although

they may not be sufficiently useful when no backtracks occur. If one can reduce the

amount of backtracks by efficient algorithms and valid heuristics, then HUB'S cost

116

accoundng infonnadon will need to be augmented by additional data to provide useful

feedback to the design team.

HUB was seen to generate correct test vectors for circuits and its information

did provide accurate data about the cause of hard to test faults for the circuits for

which schematics could be used to verify HUB'S results. The cost informadon did not

show that one pardcular phase was generally responsible for the majority of resource

usage although, for all the circuits evaluated, it was seen that HUB clearly identified

that the majority of backtracks occurring were inidated by the net justification phase.

There are several next steps which HUB and the gBDD circuit model could

naturally be extended to encompass. The circuit model should allow the design team

to evaluate testability aspects without having the complete implementation specified

due to its funcdonal modelling aspects.

HUB has other abilities as yet unexplored and it would be desirable to

incorporate this tool into an integrated design evironment such as the CADENCE

company has attempted to do by integradng electronic schematic capture

environment with links to logic simulators and analog simulation tools from within the

one tool. Adding a testability analyzer would be of use especially in a paradigm that

supports hierarchical circuit descriptions. (Note that CADENCE supports SCOAP

whose limitations as a testability metric were previously described.)

8.0 Bibliography.

[Abadir Reghbati 85] Abadir, M. S. and Reghbati, H. K.,

"Functional Test Generation for LSI Circuits Described by Binary

Decision Diagrams;' Proceedings oflntl. Test Conf., 1985, pp. 483 - 492.

[Abadir Reghbad 86] Abadir, M. S. and Reghbad, H. K.,

"Functional Test Generation for Digital Circuits Described by Binary

Decision Diagrams, " IEEE Trans. on Comp., Vol. C-35, 1985,

pp. 375 - 379.

[Abramovici 89] Abramovici, M., and Miller, D.T.,

"Are Random Vectors Useful in Test Generation? "

Proceedings of European Test Conf. 1989, pp. 22 - 25.

[Agrawal Mercer 82] Agrawal, V.D. and Mercer, M. R.,

"Testability Measures - What Do They Tell Us?;'

Proceedings of Intl. Test Conf., 1982, pp. 391 - 396

[Agrawal Seth. 89] Agrawal, V.D., and Seth., S.,

"Tutorial: Test Generation for VLSI Chips, ''

IEEE Computer Society Press, Washington, 1988.

[Agrawal et al. 88] Agrawal, V.D., Cheng, S., Johnson, D.D.,

"Designing Circuits with Partial Scan,"

IEEE Design and Test ofComp., Vol. 5, No. 2, 1988, pp. 8 - 15.

[Agrawal et al. 89] Agrawal, V.D., Kwang-Ting, C., and Agrawal, P.,

"A Directed Search Method for Test Generation Using a Concurrent

Simulator, " IEEE Trans. on Comp. Aided Design, Vol. 8, No. 2,

Feb 1989, pp. 131-138.

[Akers 78a] Akers, S.B.,

"Binary Decision Diagrams,"

IEEE Trans. on Comp., Vol. , 1978, pp. 509- 515.

[Akers 78b] Akers, S.B.,

"Functional Testing with Binary Decision Diagrams,"

Proceedings of Fault Tolerant Conf., 1978, pp. 75 - 82.

118

[Bardell et al. 86] Bardell, P.H., McAnney, W.H., and Savir, J.,

"Built-in Self Test for VLSI: Pseudorandom Techniques,"

Wiley, Somerset, N.J., 1987.

[Batni Kime 76] Batni, R.P., and Kime, C.R.,

"A Module-Level TestingApproachfor Combinational Networks,"

ffiEE Trails, on Comp., Vol. C-25, No. 6, June 76, pp. 594 - 604.

[Beenker el al. 89] Beenker, P., Dekker, R., Stans, R.,

"A Testability Strategy for Silicon Compilers,"

Proceedings oflnd. Test Conf., 1989, pp. 660 - 670.

[BeU Taylor 88] Bell, I.M., and Ta;ylor, G.E..,

"Detection of Reconvergent Fanout Features in Digital Circuits,"

Proceedings of 1988 Canadian Testability Workshop, pp. 21 - 45

[Brglez 83] Brglez, F.,

"Testability in VLSI,"

Proceedings of CCVLSI, 1983.

[Brglez 84] Brglez, F., Pownall, P, and Hum, R.,

"Application of Testability Analysis: from ATPG to Critical Delay Path

Tracing," Proceedings oflntl. Test Conf., 1984, pp. 705 - 712.

CBrglez 85] Brglez, F.,

"A Fast Fault Grader: Analysis and Applications,"

Proceedings of Intl. Test Conf. 1985, pp. 797 - 800.

[Breuer 83] Breuer, M. A.,

"Automatic Design For Testability Via Testability Measures,"

Proceedings of Autotestcon, 1983, pp. 138 -143.

[Calhoun Brglez 89] Calhoun, J.P., and Brglez, F.,

"A Framework and Method for Hierarchical Test Generation,"

Proceedings Oflntl. Test Conf., 1989, pp. 480 - 490.

[Chang et al. 86] Chang, H.P., Rogers, W.A., Abraham, J.A.,

"Structured Functional Level Test Generation Using Binary Decision

Diagrams, " Proceedings oflntl. Test Conf., 1986, pp. 97 -104.

119

[Chen Breuer 85] Chen, T. and Brueur, M. A.,

"Automatic Design For Testability Via Testability Measures,"

IEEE Trans. on CAD, Vol. CAD-4, No. 1, Jan. 1985, pp. 3-11.

[Devadas et al. 88] Devadas, S., Ma, H-K. T., Newton, A.R., and

Sangiovanni-Vincentelli, A.,

"Synthesis and Optimization Porcedures for Fully and Easily Testable

Sequential Machines, " Proceedings oflntl. Test Conf., 1988,

pp. 621 - 630.

[D &T89] D &T Roundtable discussion,

"CAD For System Design: Is It Practical,"

IEEE Design and Test of Comp., Vol. 6, No. 2, April 1989, pp. 46 - 54.

[Eldred 59] Eldred, R.D.,

"Test Routines Based on Symbolic Logic Statements,"

Journal A. C. M., No. 1, 1959, pp 33 - 36.

[Ferguson 88] Ferguson, F.J., and Shen, J.P.,

"Extraction and Simulation of Realistic CMOS Faults using Inductive

Fault Analysis;' Proceedings oflnd. Test Conf., 1988, pp. 475 - 484.

[Fujiwara 83] Fujiwara, F., and Shimono, T.,

lt0n the Acceleration of Test Generation Algorithms,"

IEEE Trans. on Comp., Vol. C-32, No. 12, Dec. 1983, pp 1137 -1144.

[Fujiwara 85] Fujiwara, F.,

"FAN: AFanout - Oriented Test Pattern Generation Algorithm,"

Proceedings ofISCAS, 1985, pp. 671 - 674.

[Galiay 80] Galiay, J., Crouzet. Y., and Vergniault, M.,

"Physical Versus Logical Faults in MOS LSI Circuits: Impact on their

Testability,"

EEE Trans. on Comp., Vol. C-29, No. 6, June 1978, pp. 527 - 531.

[Goldstein 79] Goldstein, L.H.,

"Controllability/Observability Analysis of Digital Circuits,"

ffiEE Trans. Circuits Syst., 1979, pp. 685 - 693

120

[Goldstein 80] Goldstein, L.H., and Thigpen, E.L.,

"SCOAP: Sandia Controllability/Observability Analysis Program,"

Proceedings of Design Auto. Conf., 1980, pp. 190 -196.

[Goel81a]Goel, P.,

"An implicit enumeration algorithm to generate tests for combinational

circuits" ffiEE Trans. on Comp., Vol. 30, 1981, pp. 215 -222.

[Goel 81b] Goel, P., and Resales, B.C.,

"PODEM-X: An automatic test generation system for VUS logic

structures, " Proceedings of Design Auto. Conf., 1981, pp. 260-268.

[Henckels 88a] Henckels, L. P..

Invited Speaker's Presentation,

Proceedings oflnd. Test Conf., 1988.

[Henckels 88b] Henckels, L. P.,

Private correspondance, 1988.

[Huisman 88] Huissman, L.M.,

"The Reliability of Approximate Testability Measures,"

ffiEE Design and Test of Comp., Vol. xx, No. 6, 1988, pp. 57 - 67.

[Ivanov 85] Ivanov, A.,

"Dynamic Testability Measures and their User in ATPG,"

Master's Thesis, University ofMcGill, July 1985.

[Kirkland Mercer 88] Kirkland, T., and Mercer, M. R.,

"Algorithms for Automatic Test Pattern Generation,"

ffiEE Design and Test of Comp., Vol. 5, No. 3, June 1988, pp. 42 - 55.

[Kolman Busby 84] Kolman, B., and Busby, R.C.,

"Discrete Mathmatical Structures for Computer Science,"

Prentice-Hall, Toronto, 1st Ed., 1984.

[Lisanke et al. 86] Lisanke, R., Brglez, F., deGeus, A., and Gregory, D.,

"Testablity-Driven Random Pattern Generation,"

Proceedings ofICCAD, 1986, pp. 144 -147.

[Lisanke et al. 87] Lisanke, R., Brglez, F., deGeus, A., and Gregory, D.,

121

"Testdblity-Driven Random Pattern Generation,"

IEEE Trans. on CAD, Vol. CAD-6, No. 6, Nov. 1987, pp. 1082 -1087.

[Marlett 78] Marlett, R.,

"EBT: A Comprehensive Test Generation Technique for Highly Sequential

Circuits, " Proceedings of 15th Design Auto. Conf., 1978, pp. 335 - 339

[Marlett 86] Marlett, R.,

"An ̂ fective test generation system for sequentail circuits,"

Proceedings of Design Auto. Conf., 1986, pp. 250 -256.

[Marlett 89] Marlett, R.,

"Seauential ATP and Partial Scan;'

Proceedins of IEEE VLSI Testability Workshop, Atlantic City, 1989,

pages are not numbered.

[McClusky 86] McClusky, E. J,

"Logic Design Principles With Emphasis on Testable Semicustom

Circuits, " Prentice-Hall, Englewood, 1986.

[McClusky 88] McClusky, E.J,

"JC Quality and Test Transparency,"

Proceedings oflntl. Test Conf., 1988, pp. 295 - 301.

[Miczo 86] Miczo, A.,

"Digital Logic Testing and Simulation,"

Harper & Row, New York, 1986.

[Min Rogers 89] Min, H.B., and Rogers, W.A.,

"Search Strategy Switching: An Alternative to Increased Backtracking,"

Proceedings oflntl. Test Conf., 1989, pp. 803 -811.

[Patel Patel 86] Patel, S., and Patel, J.,

"Effectiveness of Heuristics Measured for Automatic Test Pattern

Generation" Proceedings of 23rd ACM IEEE DAC, June 1986,

pp. 547 - 552.

[Ratiu 82] Ratiu, I.M.., Sangiovanni-Vincentielli, A., and Pederson, D.O.,

"VICTOR: A Fast VLSI Testability Analysis Program,"

122

Proceedings oflnd. Test Conf., 1982, pp. 397 - 401

[RoA 67] Roth, J.P., Bouricius, W.G., and Schneider, P.R.,

"Programmed algorithms to compute tests to detect and distinguish

between failures in logic circuits, " IEEE Trans. on Elect Comp., Vol. 12,

1967,

pp. 567 - 580.

[Russell Kime 71] Russell, J.D., and Kime, C.R.,

"Stuctural Factors in the Fault Diagnosis of Combinational Networks, ''

ffiEE Trans. on Comp., Vol. C-20, No. 11, Nov. 71, pp. 1276 -1285.

[Salzmann et al. 88] Salzmann, C., Funcell, M., and Taylor, R.,

' 'Design For Test and the Cost of Quality,"

Proceedings of Intl. Test Conf., 1988, pp. 302 - 307.

[Sangio 88] Sangiovanni-Vincentelli, A.,

"Optimal Logic Synthesis and Testability: Two Sides fof the Same Coin,"

Invited Speaker's Presentadon, 1988 Int. Test Conf.

[Savri 83] Savir, J.,

"Good Controllability and Observability Do Not Guarantee Good

Testability;' IEEE Trans. on Comp., Vol. C-32, No. 12, Dec. 83,

pp. 1198-1200.

[Seth Agrawal 89] Seth., S., and Agrawal, V.D.,

"Cutting chip testing costs,"

ffiEE Spectrun, Vol., No. 4, April 1985, pp 38 - 45.

[Soden et al. 89] Soden, J., Treece, R.K., Taylor, M.R., and Hawkins, C.F.,

"CMOS 1C Stuck-Open Fault Electrical Effects and Design

Considerations, " Procedings of Ind. Test Conf., 1989, pp 423 - 430.

[Shen 85] Shen, J.P, Maly, W., and Ferguson, FJ.,

"Inductive fault Analysis ofMOS Integrated Circuits,"

DEEE Design and Test of Comp., Vol. 2, No. 12, 13 - 26.

[Somenzi et al. 85] Somenzi, F., Gai, S., Mezzalama, M., and Prinetto, P.,

"Testing Strategy and Technique for Macro-based Circuits,"

123

IEEE Test of Comp., Vol. 2, pp. 85 - 90.

[StaUings 88] StaUings, W.,

' 'ISDN: An Introduction, ''

MacMman, 1st Edition, 1989.

[Stannard Kaminska 88a] Stannard, D.H., and Kaininska, B.,

".Detection of Hard Faults in a Combinational Circuit Using Budget

Constrains, " Proceedings oflnd. Test Conf, 1988, pp. 999.

[Stannard Kaminska 88b] Stannard, D.H., and Kaminska, B.,

"The Use ofCostBaed Testability Measures in Binary Decision

Diagrams, " Proceedings ofCCVLSI., 1988, pp. 108 -113.

[Stannard Kaminska 89a] Stannard, D.H., and Kaminska, B.,

"A New Automatic Test Pattern Generation Based on Cost Driven

Heuristics. " Proceedings of ffiEE VLSI TestabUity Workshop,

Atlantic City., 1989, pages are not numbered.

[Stannard Kaminska 89b] Stannard, D.H., and Kaminska, B.,

' igBDD: An Extended circuit modeling technique to support ATPG, ' '

Proceedings ofCCVLSI, 1989, pp. 81 - 89.

[Wadsack 78] Wadsack, R.L.,

"Fault Modelliing and Logic Simulation of CMOS and MOS Integrated

Circuits, " BeU Sys. Tech. Journal, Vol. 57, No. 5, May 78.

[WarshaU 62] WarshaU, S.,

"A Theorem on Boolean Matrices"

Journal of the Association of Computing Machinery, 1962, pp. 11 -12.

[WUliams 89a] Wmiams, T.,

Invited Speaker's Presentation,

Proceedings, of bid. Test Conf., 1989.

9.0 Appendix A

HUB is invoked using the following command syntax, detailed in Figure A. l,

and consisting of three main argument components.

hub [- option list] lnput_file_name Accounting_file_name

When the fault simuladon option is used, an additional file faultsdetecter. sim is

created and which contains summarized data about the fault simulation results. The

file input J~ile.extension must be in Ae gBDD file format; a simple check is made and

HUB aborts if this requirement is ignored.

hub [-f -i -I -n -r -s -v -z] Input_file_name Accounting_file_name

f - Function names printed.

i - Interactive mode.

I - selected list of function names printed.

n - graph Nodes' net values printed.

r - fault Reduction activated.

s - fault Simulator activated.

v - Verbose: print gBD D circuit data.

z - silos ii vector output.

Figure A.1: HUB'S options and syntax.

Figure A.2 shows a portion of the accounting file's data output. Reasonable

effort was made to provide uniqueness of information to allow filtering by means of

the UNDOT utilities grep() and egrep(). These were used extensively in preparing

data for use by BBN's RS/1T statistical analysis program.

. 125

HUB'S data output.

126

Test vectors are generated in one of two formats: a dme stamped (the vector

has dme related informadon included with it) version. Figure A.3a, is created with

the -2 option; oAerwise the docuemented version of Figure A.3b is output which

includes the graph node and pdcf identification numbers plus the input and output

values. The documented vector is separated into 3 fields of information: (1) data on

which graph node and which pdcf at that graph node for which the vector was created;

(2) the primary input cube consisdng of 1, Os, and Xs; (3) and the primary output cube

which may have any value from the 5 value logic set [0, l, X, d, D}.

Output
Output
Output.
Output_
Output
Output
Output
Output
Output.

Test(11:1)
Test(12:0)
Test(12:1)
Test(12:2)
Test(13:0)
Test(13:1)
Test(13:2)
Test(14:0)
Test(14:1)

1011XXXXXX D
11010XOXOX d
11100XOXOX d
11110XOXOX D
110X01OXOX d
110X100XOX d
110X110XOX D
110X0X01 OX d
110X0X1OOX d

Figure A.3a: HUB'S documented vector output.

100 1011XXXXXX
200 11010XOXOX
300 11100XOXOX
400 11110XOXOX
500 110X010XOX
600 110X100XOX
700 110X110XOX
800 110X0X01 OX
900 110X0X1 OOX

Figure A.3b: HUB'S SU. OS ITM vector output.

To facilitate the file parsing phase, the follwing fixed cu-cuit net list format is

127

used. The inputs and outputs may use either one of the formats, and may be a

mixture for the same file. All statements start with a space. The order in which the

nedist is written is important; failure to respect this sequence may result in

unpredictable behavou-. The elements, except the inverter and buffer functions, must

have a minimum of 2 inputs. (This required that the ISCAS list be modtfed since they

use 1-input NAND and AND gates to achieve these funcdons) Figure A.5 shows a

IN/input1, input2,... //
OUT/outputl, output2,... //
ELEMENTs/inputl. input2, ... /outpuV
FOUT/input/outputl, output2, outputs/
END

Figure A.4: Neutral netlist syntax.

list of the elements, and the neutral netlist for a full adder is shown in Figure A.6.

Comments may be used, and are indicated by a "*" in the first column of any line.

There is also a continuation symbol, the "=" which must also be in the first column

of any line.

AND
NAND
OR
NOR
NOT
BUF

Figure A.5: Permissible element list.

128

Circuit's primary inputs.

Circuit's primary outputs.

A comment starts in col 1.

Logic elements.

IN/A1//
IN/B1//
IN/CIN//

* INT/TMP//
OUT/CARRY//
OUT/SUM//

*

OR/A11, B11/D/
AND/A12, B12/E/
AND/D, CIN1/H/
NOR/H, E/J/
NOT/J1/CARRY/

*

OR/A13, B13, CIN2/F/
AND/A14, B14, CIN3/G/
AND/F, J2/K/
NOR/K, G/U
NOT/L/SUM/

FOUT/A1/A11, A12, A13, A14/
FOUT/B1/B11, B12, B13, B14/
FOUT/CIN/CIN1, CIN2, CIN3/
FOUT/J/J1, J2/
END "*- Indicate end of netlist.

Figure A.6: Full adder netlist example.

10. 0 Appendix B.

Figure B. l describes the reladon between a graph node's output names (its

lexemes) and its graph node identification number as used by HUB. This list does not

include the circuit's primary outputs since they are the first graph nodes in the graph

node list maintained by HUB. All other graph nodes, that is the logic elements and

the primary outputs, are listed. Figure B.2 shows some of the data HUB produces.

Program: nodejister
Date : Wed Oct 18 12:04:32 1989
Fichier d'entree: image.bdd
ready to go to hub_ATPG()

(Graph Node Number): Net name

10)
11)
12)

(13):
(14):
(15):

16)
17)
18)

(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)

GAT17
GAT1
GAT2
GATS
GAT4
GAT5
GAT10
GAT11
GAT12
GAT13
GAT18
GAT19
GAT20
GAT21
GAT26
GAT27
GAT28
GAT7
GAT15
GAT23
GAT29
GAT6
GAT14

(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)

: GAT22
: GATS 1
:GAT9
: GAT30
:GAT8
: GAT25
: GAT24
:TMR

Figure B.1: Listing of Image's graph node output names.

<Q I (D «s> ? i m Q c co u» I 3 <Q Q
. I

D
a
te

:

M
o

n

N

o
v

6
1
6
:5

5
:3

0

1
9

8
9

F
ic

h
ie

r

d
'e

n
tr

e
e

:
fa

d
d

.
b

d
d

p
/g

 g
n
#
 p

d
c
f#

 t
^
p
r
o
p

t

P

3
0

0
.

0
0

0
0

0
0

0
0

0

.
P

3

1
0

.
0

0
0

0
0

0
0

0
 0

.
G

3

2
0

.
0
0
0
0
0
0
0
0
 0

.
P

4
0

0
.
0

0
0

0
0

0
0

0
 0

.
P

4

1
0
.
0

0
0

0
0

0
0

0

0
.

G

4
2

0
.

0
0
0
0
0
0
0
0

0
.

P

5
0

0
.0

0
0

0
0

0
0

0
 0

.
G

5

2
0
.
0
0
0
0
0
0
0
0

0
.

P

6
1

0
.0

0
0

0
0

0
0

0
 0

.
G

6

2
0

.
0
0
0
0
0
0
0
0
 0

.
G

7

3

0
.
0

0
0

0
0

0
0

0

0
.

ju
s
t

0
0
1
6
6
6
6
0

0
0
1
6
6
6
6
0

00
16

66
60

00
16

66
60

0
0
1
6
6
6
6
0

00
16

66
60

00
33

33
20

0
0
3
3
3
3
2
0

0
0

3
3

3
3

2
0

00
33

33
20

0
0
3
3
3
3
2
0

t
b
k
tr

a
c
E

0
.

0
0

0
0

0
0

0
0

0
.
0

0
0

0
0

0
0

0
0
.

00
00

00
00

0
.

00
00

00
00

0
.

00
00

00
00

0
.

00
00

00
00

0
.
0
0
0
0
0
0
0
0

0
.
0

0
0

0
0

0
0

0
0

.
0
0
1
6
6
6
6
0

0
.
0
0
1
6
6
6
6
0

0
.

0
0
1
6
6
6
6
0

b
u
d
g
e
t

F
it
s

B
K

J
b
k

P
bk

1
0

.
0

0
0

0
0

0
0

0

1
0
0
0

1
0

.
0

0
0

0
0

0
0

0

1
0
0
0

2
0

.
0

0
0

0
0

0
0

0

2

0
0

0
1
0
.

0
0
0
0
0
0
0
0

1

0
0

0
1

0
.
0

0
0

0
0

0
0

0

1
0
0
0

2
0
.

0
0
0
0
0
0
0
0

2
0
0
0

1
0

.
0
0
0
0
0
0
0
0

1
0
0
0

2
0

.
0

0
0

0
0

0
0

0

2
0
0
0

0
.

0
0

0
0

0
0

0
0

0

0
0

0
2
0
.

0
0
0
0
0
0
0
0

2
0
0
0

3
0
.
0

0
0

0
0

0
0

0

3

0
0

0

t
B

a
c
k
tr

a
K

 t
0

.
0

0
0

0
0

0
0

0
 0

'
0

.
0
0
0
0
0
0
0
0
 0

0
.

0
0
0
0
0
0
0
0
 0

0
.
0
0
0
0
0
0
0
0
 0

0
.
0

0
0

0
0

0
0

0
 0

,
0
.

0
0

0
0

0
0

0
0

0,

0
.

0
0

0
0

0
0

0
0

0,

0
.
0

0
0

0
0

0
0

0
 0

,
0

.0
0

0
0

0
0

0
0

 0
,

0
.
0
0
0
0
0
0
0
0
 0

0
.
0
0
0
0
0
0
0
0
 0

im
p

 1
0

0
0

0
0

0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
1
6
6
6
6
0

0
0
1
6
6
6
6
0

0
0
1
6
6
6
6
0

0
0
1
6
6
6
6
0

0
0
1
6
6
6
6
0

0
0
1
6
6
6
6
0

0
0
1
6
6
6
6
0

0
0
1
6
6
6
6
0

t
ti
m

e
0

.
0

0
1

6
6

6
6

0
0

.0
01

66
66

0
0

.0
0

1
6

6
6

6
0

0
.

00
33

33
20

0
.0

0
3

3
3

3
2

0
0

.
0

0
3

3
3

3
2

0
0

.0
0
4
9
9
9
8
0

0
.0

0
4
9
9
9
8
0

0
.0

0
6
6
6
6
4
0

0
.0

0
6

6
6

6
4

0
0

.
0

0
6

6
6

6
4

0

Ib
k 0 0 0 0 0 0 0 0 0 0 0

B
b

k

F

u
n

c
ti
o

n

P

r
S

e
c

C
a

u
s
e

0
O

R
2

0
O

R
2

0
O

R
2

0

A
N

D
 2

0
AN

D
 2

0

A
N

D
 2

0

A
N

D
 2

0

A
N

D
 2

0

N
O

R
2

0

N
O

R
2

0
O

R
3

-9
9
9

-9
9
9

-9
9

9
-9

9
9

-9
9
9

-9
9
9

-9
9

9
-9

9
9

-9
9
9

-9
9
9

-9
9
9

^

11.0 Appendix C.

The following 6 histograms are the total cost histograms for the ISCAS

circuits (C17, C95, C880, C1908, and C2670) and for the fuU adder cell. The cost is

expressed in X, the basic dme units used by HUB. These histograms provide the

visualization of the tabular data presented in the general results section of Chapter

6.

4.8

3.5

F 3.0
r

e 2.5
q
U 2.0
8

n 1.5
c

y 1.9

0.5

9,0
Q". 00 8. 02 8. 04 8. 96 9. 08 3. 10 0. 12 0. 14 0. 16 0. 18 9. 2B

Cost in \.

Graph C. 1: C17 total cost histogram.

132

18

16

F"
r 12
e

q 1
u

e 8

C 6
y

00. 08 0. 02 0. 84 8. 86 8. 08 8. 10 B. 12 0. 14 0. 16 0. 18

60

Graph C.2: C95 total cost histogram.

58

F

I" 40
e

q
u 30
e

n

C 2B
y

10

,
9 0. 5 1. 0 1. 5 2. 8 2. 5 3. 9 3. 5 4. 0 4. 5 5. 0 5. 5 6.B

Graph C.3: C880 total cost histogram.

133

69

58

F

I" 4B
e

q
u 39
e

c 26
y

10

30

160

140

F 129
r

e 188
q
u 80
e

n 69
c

y 49

20

0

3 40
Cost in \.

Graph C.4: C1908 total cost histogram.

1 1 14 16 18 2 2 24 26

Cost in \.

Graph C.5: C2670 total cost histogram.

134

r5
e

q4
u

e 3
n

C2

0: 00 B. 02 0. B4 9. B6 8. B8 6. 10 8. 12

Cost in \.

Graph C.6: Full adder total cost histogram.

	SKM_C550i23092914300
	SKM_C550i23092914310
	SKM_C550i23092914330

