91 research outputs found

    Advances in PID Control

    Get PDF
    Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    Mission programming for flying ensembles: combining planning with self-organization

    Get PDF
    The application of autonomous mobile robots can improve many situations of our daily lives. Robots can enhance working conditions, provide innovative techniques for different research disciplines, and support rescue forces in an emergency. In particular, flying robots have already shown their potential in many use-cases when cooperating in ensembles. Exploiting this potential requires sophisticated measures for the goal-oriented, application-specific programming of flying ensembles and the coordinated execution of so defined programs. Because different goals require different robots providing different capabilities, several software approaches emerged recently that focus on specifically designed robots. These approaches often incorporate autonomous planning, scheduling, optimization, and reasoning attributable to classic artificial intelligence. This allows for the goal-oriented instruction of ensembles, but also leads to inefficiencies if ensembles grow large or face uncertainty in the environment. By leaving the detailed planning of executions to individuals and foregoing optimality and goal-orientation, the selforganization paradigm can compensate for these drawbacks by scalability and robustness. In this thesis, we combine the advantageous properties of autonomous planning with that of self-organization in an approach to Mission Programming for Flying Ensembles. Furthermore, we overcome the current way of thinking about how mobile robots should be designed. Rather than assuming fixed-design robots, we assume that robots are modifiable in terms of their hardware at run-time. While using such robots enables their application in many different use cases, it also requires new software approaches for dealing with this flexible design. The contributions of this thesis thus are threefold. First, we provide a layered reference architecture for physically reconfigurable robot ensembles. Second, we provide a solution for programming missions for ensembles consisting of such robots in a goal-oriented fashion that provides measures for instructing individual robots or entire ensembles as desired in the specific use case. Third, we provide multiple self-organization mechanisms to deal with the system’s flexible design while executing such missions. Combining different self-organization mechanisms ensures that ensembles satisfy the static requirements of missions. We provide additional self-organization mechanisms for coordinating the execution in ensembles ensuring they meet the dynamic requirements of a mission. Furthermore, we provide a solution for integrating goal-oriented swarm behavior into missions using a general pattern we have identified for trajectory-modification-based swarm behavior. Using that pattern, we can modify, quantify, and further process the emergent effect of varying swarm behavior in a mission by changing only the parameters of its implementation. We evaluate results theoretically and practically in different case studies by deploying our techniques to simulated and real hardware.Der Einsatz von autonomen mobilen Robotern kann viele Abläufe unseres täglichen Lebens erleichtern. Ihr Einsatz kann Arbeitsbedingungen verbessern, als innovative Technik für verschiedene Forschungsdisziplinen dienen oder Rettungskräfte im Einsatz unterstützen. Insbesondere Flugroboter haben ihr Potenzial bereits in vielerlei Anwendungsfällen gezeigt, gerade wenn mehrere in Ensembles eingesetzt werden. Das Potenzial fliegender Ensembles zielgerichtet und anwendungsspezifisch auszuschöpfen erfordert ausgefeilte Programmiermethoden und Koordinierungsverfahren. Zu diesem Zweck sind zuletzt viele unterschiedliche und auf speziell entwickelte Roboter zugeschnittene Softwareansätze entstanden. Diese verwenden oft klassische Planungs-, Scheduling-, Optimierungs- und Reasoningverfahren. Während dies vor allem den zielgerichteten Einsatz von Ensembles ermöglicht, ist es jedoch auch oft ineffizient, wenn die Ensembles größer oder deren Einsatzumgebungen unsicher werden. Die genannten Nachteile können durch das Paradigma der Selbstorganisation kompensiert werden: Falls Anwendungen nicht zwangsläufig auf Optimalität und strikte Zielorientierung ausgelegt sind, kann so Skalierbarkeit und Robustheit im System erreicht werden. In dieser Arbeit werden die vorteilhaften Eigenschaften klassischer Planungstechniken mit denen der Selbstorganisation in einem Ansatz zur Missionsprogrammierung für fliegende Ensembles kombiniert. In der dafür entwickelten Lösung wird von der aktuell etablierten Ansicht einer unveränderlichen Roboterkonstruktion abgewichen. Stattdessen wird die Hardwarezusammenstellung der Roboter als zur Laufzeit modifizierbar angesehen. Der Einsatz solcher Roboter erfordert neue Softwareansätze um mit genannter Flexibilität umgehen zu können. Die hier vorgestellten Beiträge zu diesem Thema lassen sich in drei Punkten zusammenfassen: Erstens wird eine Schichtenarchitektur als Referenz für physikalisch konfigurierbare Roboterensembles vorgestellt. Zweitens wird eine Lösung zur zielorientierten Missions-Programmierung für derartige Ensembles präsentiert, mit der sowohl einzelne Roboter als auch ganze Ensembles instruiert werden können. Drittens werden mehrere Selbstorganisationsmechanismen vorgestellt, die die autonome Ausführung so erstellter Missionen ermöglichen. Durch die Kombination verschiedener Selbstorganisationsmechanismen wird sichergestellt, dass Ensembles die missionsspezifischen Anforderungen erfüllen. Zusätzliche Selbstorganisationsmechanismen ermöglichen die koordinierte Ausführung der Missionen durch die Ensembles. Darüber hinaus bietet diese Lösung die Möglichkeit der Integration zielorientierten Schwarmverhaltens. Durch ein allgemeines algorithmisches Verfahren für auf Trajektorien-Modifikation basierendes Schwarmverhalten können allein durch die Änderung des Parametersatzes unterschiedliche emergente Effekte in einer Mission erzielt, quantifiziert und weiterverarbeitet werden. Zur theoretischen und praktischen Evaluierung der Ergebnisse dieser Arbeit wurden die vorgestellten Techniken in verschiedenen Fallstudien auf simulierter sowie realer Hardware zum Einsatz gebracht

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Mobile robot vavigation using a vision based approach

    Get PDF
    PhD ThesisThis study addresses the issue of vision based mobile robot navigation in a partially cluttered indoor environment using a mapless navigation strategy. The work focuses on two key problems, namely vision based obstacle avoidance and vision based reactive navigation strategy. The estimation of optical flow plays a key role in vision based obstacle avoidance problems, however the current view is that this technique is too sensitive to noise and distortion under real conditions. Accordingly, practical applications in real time robotics remain scarce. This dissertation presents a novel methodology for vision based obstacle avoidance, using a hybrid architecture. This integrates an appearance-based obstacle detection method into an optical flow architecture based upon a behavioural control strategy that includes a new arbitration module. This enhances the overall performance of conventional optical flow based navigation systems, enabling a robot to successfully move around without experiencing collisions. Behaviour based approaches have become the dominant methodologies for designing control strategies for robot navigation. Two different behaviour based navigation architectures have been proposed for the second problem, using monocular vision as the primary sensor and equipped with a 2-D range finder. Both utilize an accelerated version of the Scale Invariant Feature Transform (SIFT) algorithm. The first architecture employs a qualitative-based control algorithm to steer the robot towards a goal whilst avoiding obstacles, whereas the second employs an intelligent control framework. This allows the components of soft computing to be integrated into the proposed SIFT-based navigation architecture, conserving the same set of behaviours and system structure of the previously defined architecture. The intelligent framework incorporates a novel distance estimation technique using the scale parameters obtained from the SIFT algorithm. The technique employs scale parameters and a corresponding zooming factor as inputs to train a neural network which results in the determination of physical distance. Furthermore a fuzzy controller is designed and integrated into this framework so as to estimate linear velocity, and a neural network based solution is adopted to estimate the steering direction of the robot. As a result, this intelligent iv approach allows the robot to successfully complete its task in a smooth and robust manner without experiencing collision. MS Robotics Studio software was used to simulate the systems, and a modified Pioneer 3-DX mobile robot was used for real-time implementation. Several realistic scenarios were developed and comprehensive experiments conducted to evaluate the performance of the proposed navigation systems. KEY WORDS: Mobile robot navigation using vision, Mapless navigation, Mobile robot architecture, Distance estimation, Vision for obstacle avoidance, Scale Invariant Feature Transforms, Intelligent framework

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version
    • …
    corecore