8,525 research outputs found

    Cut and Count and Representative Sets on Branch Decompositions

    Get PDF
    Recently, new techniques have been introduced to speed up dynamic programming algorithms on tree decompositions for connectivity problems: the \u27Cut and Count\u27 method and a method called the rank-based approach, based on representative sets and Gaussian elimination. These methods respectively give randomised and deterministic algorithms that are single exponential in the treewidth, and polynomial, respectively linear in the number of vertices. In this paper, we adapt these methods to branch decompositions yielding algorithms, both randomised and deterministic, that are in many cases faster than when tree decompositions would be used. In particular, we obtain the currently fastest randomised algorithms for several problems on planar graphs. When the involved weights are O(n^{O(1)}), we obtain faster randomised algorithms on planar graphs for Steiner Tree, Connected Dominating Set, Feedback Vertex Set and TSP, and a faster deterministic algorithm for TSP. When considering planar graphs with arbitrary real weights, we obtain faster deterministic algorithms for all four mentioned problems

    Solving weighted and counting variants of connectivity problems parameterized by treewidth deterministically in single exponential time

    Full text link
    It is well known that many local graph problems, like Vertex Cover and Dominating Set, can be solved in 2^{O(tw)}|V|^{O(1)} time for graphs G=(V,E) with a given tree decomposition of width tw. However, for nonlocal problems, like the fundamental class of connectivity problems, for a long time we did not know how to do this faster than tw^{O(tw)}|V|^{O(1)}. Recently, Cygan et al. (FOCS 2011) presented Monte Carlo algorithms for a wide range of connectivity problems running in time $c^{tw}|V|^{O(1)} for a small constant c, e.g., for Hamiltonian Cycle and Steiner tree. Naturally, this raises the question whether randomization is necessary to achieve this runtime; furthermore, it is desirable to also solve counting and weighted versions (the latter without incurring a pseudo-polynomial cost in terms of the weights). We present two new approaches rooted in linear algebra, based on matrix rank and determinants, which provide deterministic c^{tw}|V|^{O(1)} time algorithms, also for weighted and counting versions. For example, in this time we can solve the traveling salesman problem or count the number of Hamiltonian cycles. The rank-based ideas provide a rather general approach for speeding up even straightforward dynamic programming formulations by identifying "small" sets of representative partial solutions; we focus on the case of expressing connectivity via sets of partitions, but the essential ideas should have further applications. The determinant-based approach uses the matrix tree theorem for deriving closed formulas for counting versions of connectivity problems; we show how to evaluate those formulas via dynamic programming.Comment: 36 page

    Exact Algorithms via Multivariate Subroutines

    Get PDF
    We consider the family of Phi-Subset problems, where the input consists of an instance I of size N over a universe U_I of size n and the task is to check whether the universe contains a subset with property Phi (e.g., Phi could be the property of being a feedback vertex set for the input graph of size at most k). Our main tool is a simple randomized algorithm which solves Phi-Subset in time (1+b-(1/c))^n N^(O(1)), provided that there is an algorithm for the Phi-Extension problem with running time b^{n-|X|} c^k N^{O(1)}. Here, the input for Phi-Extension is an instance I of size N over a universe U_I of size n, a subset X subseteq U_I, and an integer k, and the task is to check whether there is a set Y with X subseteq Y subseteq U_I and |Y X| <= k with property Phi. We derandomize this algorithm at the cost of increasing the running time by a subexponential factor in n, and we adapt it to the enumeration setting where we need to enumerate all subsets of the universe with property Phi. This generalizes the results of Fomin et al. [STOC 2016] who proved the case where b=1. As case studies, we use these results to design faster deterministic algorithms for: - checking whether a graph has a feedback vertex set of size at most k - enumerating all minimal feedback vertex sets - enumerating all minimal vertex covers of size at most k, and - enumerating all minimal 3-hitting sets. We obtain these results by deriving new b^{n-|X|} c^k N^{O(1)}-time algorithms for the corresponding Phi-Extension problems (or enumeration variant). In some cases, this is done by adapting the analysis of an existing algorithm, or in other cases by designing a new algorithm. Our analyses are based on Measure and Conquer, but the value to minimize, 1+b-(1/c), is unconventional and requires non-convex optimization

    Parameterized Distributed Algorithms

    Get PDF
    In this work, we initiate a thorough study of graph optimization problems parameterized by the output size in the distributed setting. In such a problem, an algorithm decides whether a solution of size bounded by k exists and if so, it finds one. We study fundamental problems, including Minimum Vertex Cover (MVC), Maximum Independent Set (MaxIS), Maximum Matching (MaxM), and many others, in both the LOCAL and CONGEST distributed computation models. We present lower bounds for the round complexity of solving parameterized problems in both models, together with optimal and near-optimal upper bounds. Our results extend beyond the scope of parameterized problems. We show that any LOCAL (1+epsilon)-approximation algorithm for the above problems must take Omega(epsilon^{-1}) rounds. Joined with the (epsilon^{-1}log n)^{O(1)} rounds algorithm of [Ghaffari et al., 2017] and the Omega (sqrt{(log n)/(log log n)}) lower bound of [Fabian Kuhn et al., 2016], the lower bounds match the upper bound up to polynomial factors in both parameters. We also show that our parameterized approach reduces the runtime of exact and approximate CONGEST algorithms for MVC and MaxM if the optimal solution is small, without knowing its size beforehand. Finally, we propose the first o(n^2) rounds CONGEST algorithms that approximate MVC within a factor strictly smaller than 2

    On Feedback Vertex Set: New Measure and New Structures

    Full text link
    We present a new parameterized algorithm for the {feedback vertex set} problem ({\sc fvs}) on undirected graphs. We approach the problem by considering a variation of it, the {disjoint feedback vertex set} problem ({\sc disjoint-fvs}), which finds a feedback vertex set of size kk that has no overlap with a given feedback vertex set FF of the graph GG. We develop an improved kernelization algorithm for {\sc disjoint-fvs} and show that {\sc disjoint-fvs} can be solved in polynomial time when all vertices in GFG \setminus F have degrees upper bounded by three. We then propose a new branch-and-search process on {\sc disjoint-fvs}, and introduce a new branch-and-search measure. The process effectively reduces a given graph to a graph on which {\sc disjoint-fvs} becomes polynomial-time solvable, and the new measure more accurately evaluates the efficiency of the process. These algorithmic and combinatorial studies enable us to develop an O(3.83k)O^*(3.83^k)-time parameterized algorithm for the general {\sc fvs} problem, improving all previous algorithms for the problem.Comment: Final version, to appear in Algorithmic

    A randomized polynomial kernel for Subset Feedback Vertex Set

    Get PDF
    The Subset Feedback Vertex Set problem generalizes the classical Feedback Vertex Set problem and asks, for a given undirected graph G=(V,E)G=(V,E), a set SVS \subseteq V, and an integer kk, whether there exists a set XX of at most kk vertices such that no cycle in GXG-X contains a vertex of SS. It was independently shown by Cygan et al. (ICALP '11, SIDMA '13) and Kawarabayashi and Kobayashi (JCTB '12) that Subset Feedback Vertex Set is fixed-parameter tractable for parameter kk. Cygan et al. asked whether the problem also admits a polynomial kernelization. We answer the question of Cygan et al. positively by giving a randomized polynomial kernelization for the equivalent version where SS is a set of edges. In a first step we show that Edge Subset Feedback Vertex Set has a randomized polynomial kernel parameterized by S+k|S|+k with O(S2k)O(|S|^2k) vertices. For this we use the matroid-based tools of Kratsch and Wahlstr\"om (FOCS '12) that for example were used to obtain a polynomial kernel for ss-Multiway Cut. Next we present a preprocessing that reduces the given instance (G,S,k)(G,S,k) to an equivalent instance (G,S,k)(G',S',k') where the size of SS' is bounded by O(k4)O(k^4). These two results lead to a polynomial kernel for Subset Feedback Vertex Set with O(k9)O(k^9) vertices
    corecore