
Exact Algorithms via Multivariate Subroutines∗

Serge Gaspers†1 and Edward J. Lee2

2 The University of New South Wales, Sydney, Australia; and
Data61, CSIRO, Sydney, Australia
sergeg@cse.unsw.edu.au

2 The University of New South Wales, Sydney, Australia; and
Data61, CSIRO, Sydney, Australia
e.lee@unsw.edu.au

Abstract
We consider the family of Φ-Subset problems, where the input consists of an instance I of size
N over a universe UI of size n and the task is to check whether the universe contains a subset
with property Φ (e.g., Φ could be the property of being a feedback vertex set for the input graph
of size at most k). Our main tool is a simple randomized algorithm which solves Φ-Subset in
time (1 + b− 1

c)nNO(1), provided that there is an algorithm for the Φ-Extension problem with
running time bn−|X|ckNO(1). Here, the input for Φ-Extension is an instance I of size N over
a universe UI of size n, a subset X ⊆ UI , and an integer k, and the task is to check whether
there is a set Y with X ⊆ Y ⊆ UI and |Y \X| ≤ k with property Φ. We also derandomize this
algorithm at the cost of increasing the running time by a subexponential factor in n, and we
adapt it to the enumeration setting where we need to enumerate all subsets of the universe with
property Φ. This generalizes the results of Fomin et al. [STOC 2016] who proved them for the
case b = 1. As case studies, we use these results to design faster deterministic algorithms for

checking whether a graph has a feedback vertex set of size at most k,
enumerating all minimal feedback vertex sets,
enumerating all minimal vertex covers of size at most k, and
enumerating all minimal 3-hitting sets.

We obtain these results by deriving new bn−|X|ckNO(1)-time algorithms for the corresponding
Φ-Extension problems (or the enumeration variant). In some cases, this is done by simply
adapting the analysis of an existing algorithm, in other cases it is done by designing a new
algorithm. Our analyses are based on Measure and Conquer, but the value to minimize, 1+b− 1

c ,
is unconventional and leads to non-convex optimization problems in the analysis.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases enumeration algorithms, exponential time algorithms, feedback vertex
set, hitting set

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.69

1 Introduction

In exponential-time algorithmics [8], the aim is to design algorithms for NP-hard problems
with the natural objective to minimize their running times. In this paper, we consider a

∗ For a full version of the paper see http://arxiv.org/abs/1704.07982 [11].
† Serge Gaspers is the recipient of an Australian Research Council (ARC) Future Fellowship (FT140100048)

and acknowledges support under the ARC’s Discovery Projects funding scheme (DP150101134).

EA
T

C
S

© Serge Gaspers and Edward J. Lee;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 69; pp. 69:1–69:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.69
http://arxiv.org/abs/1704.07982
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

69:2 Exact Algorithms via Multivariate Subroutines

broad class of subset problems, where for an input instance I on a universe UI , the question
is whether there is a subset S of the universe satisfying certain properties. For example, in
the Feedback Vertex Set problem, the input instance consists of a graph G = (V,E) and
an integer k, the universe is the vertex set and the property to be satisfied by a subset S is
the conjunction of “|S| ≤ k” and “G− S is acyclic”.

More formally, and using definitions from [5], an implicit set system is a function Φ
that takes as input a string I ∈ {0, 1}∗ and outputs a set system (UI ,FI), where UI is a
universe and FI is a collection of subsets of UI . The string I is referred to as an instance
and we denote by |UI | = n the size of the universe and by |I| = N the size of the instance.
We assume that N ≥ n. The implicit set system Φ is polynomial time computable if (a)
there exists a polynomial time algorithm that given I produces UI , and (b) there exists a
polynomial time algorithm that given I, UI and a subset S of UI determines whether S ∈ FI .
All implicit set systems discussed in this paper are polynomial time computable.

Φ-Subset
Input: An instance I

Output: A set S ∈ FI if one exists.

Φ-Extension
Input: An instance I, a set X ⊆ UI , and an integer k.
Question: Does there exists a subset S ⊆ (UI \X) such that S ∪X ∈ FI and |S| ≤ k?

In recent work, Fomin et al. [5] showed that ckNO(1) time algorithms (c ∈ O(1)) for Φ-Ex-
tension lead to competitive exponential-time algorithms for many Φ-Subset problems. The
main tool was a simple randomized algorithm which solves Φ-Subset in time (2− 1

c)nNO(1)

if there is an algorithm that solves Φ-Extension in time ckNO(1). A derandomization
was also given, turning the randomized algorithm into a deterministic one at the cost of a
2o(n) factor in the running time. The method was also adapted to enumeration algorithms
and combinatorial upper bounds. This framework, together with a large body of work in
parameterized algorithmics [3], where ckNO(1) time algorithms are readily available for many
subset problems, led to faster algorithms for around 30 decision and enumeration problems.

In this paper, we extend the results of Fomin et al. [5] and show that a bn−|X|ckNO(1)

time algorithms (b, c ∈ O(1)) for Φ-Extension lead to randomized (1 + b− 1
c)nNO(1) time

algorithms for Φ-Subset. Our result can be similarly derandomized and adapted to the
enumeration setting. Observe that for b = 1, the results of [5] coincide with ours, but that
ours have the potential to be more broadly applicable and to lead to faster running times.
The main point is that if we use a ckNO(1) time algorithm as a subroutine to design an
algorithm exponential in n, we might as well allow a small exponential factor in n in the
running time of the subroutine.

Similar as in [5], the Φ-Extension problem can often be solved by preprocessing the
elements in X in a simple way and then using an algorithm for a subset problem. In the case
of Feedback Vertex Set, the vertices in X can simply be deleted from the input graph.
Whereas the literature is rich with ckNO(1) time algorithms for subset problems, algorithms
with running times of the form bnckNO(1) with b > 1 are much less common.1 One issue is

1 One notable exception is by Eppstein [4], who showed that all maximal independent sets of size at most
k in a graph on n vertices can be enumerated in time (4/3)n(81/64)knO(1).

S. Gaspers and E. J. Lee 69:3

that there is, in general, no obviously best trade-off between the values of b and c for such
algorithms. However, the present framework gives us a precise objective: we should aim for
values of b and c that minimize the base of the exponent, (1 + b− 1

c).
Our applications consist of three case studies centered around some of the most funda-

mental problems considered in [5], feedback vertex sets and hitting sets. For the first case
study, we considered the Feedback Vertex Set problem: given a graph G and an integer
k, does G have a feedback vertex set of size at most k? For this problem, we re-analyze the
running time of the algorithm from [6]. In [6, 10], the algorithm was analyzed using Measure
and Conquer: using a measure that is upper bounded by αn and aiming for a running time of
2αnnO(1) the analysis of the branching cases led to constraints lower bounding the measure
and the objective was to minimize α subject to these constraints. In our new analysis,
we add an additive term wk · k to the measure and adapt the constraints accordingly. If
all constraints are satisfied, we obtain a running time of 2αn+wkknO(1). Our framework
naturally leads us to minimize 2α − 2−wk . This approach leads to a O(1.5422n · 1.2041k)
time algorithm, which, combined with our framework gives a deterministic O(1.7117n) time
algorithm for Feedback Vertex Set. This improves on previous results giving O(1.8899n)
[13], O(1.7548n) [6], O(1.7356n) [14], O(1.7347n) [9], and O(1.7216n) [5] time algorithms for
the problem. We note that adapting the analysis of other existing exact and parameterized
algorithms did not give faster running times. Also, if we allow randomization, the O(1.6667n)
time algorithm by [5] (which can also be achieved using our framework) remains fastest.

Our second case study is more involved. Simply using an existing algorithm and adapting
the measure was not sufficient to improve upon the best known enumeration algorithms (and
combinatorial upper bounds) for minimal feedback vertex sets. Here, the task is, given a
graph G, to output each feedback vertex set that is not contained in any other feedback
vertex set. We design a new algorithm for enumerating all minimal feedback vertex sets. We
also need a new combinatorial upper bound for the number of minimal vertex covers of size
at most k to handle one special case in the enumeration of minimal feedback vertex sets.2
We obtain a O(1.7183n · 1.1552k) time algorithm for enumerating all minimal feedback vertex
sets. Our framework thus leads to a running time of O(1.8527n), improving on the previous
best bound of O(1.8638n) [6]. The current best lower bound for the number of minimal
feedback vertex sets is O(1.5926n) [6]. We would like to highlight that the enumeration of
minimal feedback vertex sets is completely out of scope for the more restricted framework of
[5]: the number of minimal feedback vertex sets of size at most k cannot be upper bounded
by cknO(1) for any c ∈ O(1), as evidenced by a disjoint union of k cycles of length n/k.

Our last case study gives a new algorithm for enumerating all minimal 3-hitting sets, also
known as minimal transversals of rank-3 hypergraphs. These are minimal sets S of vertices of
a hypergraph where each hyperedge has size at most 3 such that every hyperedge contains at
least one vertex of S. We re-analyze an existing algorithm [2] for this enumeration problem,
adapting the measure in a similar way as in the first case study, and we obtain a multivariate
running time of O(1.5135n · 1.1754k), leading to an O(1.6627n) time enumeration algorithm.
This breaks the natural time bound of O(1.6667n) of the previously fastest algorithm [5].
The current best lower bound gives an infinite family of rank-3 hypergraphs with Ω(1.5848n)
minimal transversals [2].

Lastly, all random selection is done from a uniform distribution and all randomized
algorithms in this paper are Monte Carlo algorithms with one-sided error. On No-instances

2 Previous work [1, 4] focused on small maximal independent sets, whose bounds were insufficient for us.
We need better bounds on large maximal independent sets or small minimal vertex covers.

ICALP 2017

69:4 Exact Algorithms via Multivariate Subroutines

they always return No, and on Yes-instances they return Yes (or output a certificate) with
probability > 1

2 .

2 Results

Our first main result gives exponential-time randomized algorithms for Φ-Subset based on
single-exponential multivariate algorithms for Φ-Extension with parameter k.

I Theorem 1. If there is an algorithm for Φ-Extension with running time bn−|X|ckNO(1)

then there is a randomized algorithm for Φ-Subset with running time (1 + b− 1
c)nNO(1).

The next main result derandomizes the algorithm of Theorem 1 at a cost of a subexponential
factor in n in the running time.

I Theorem 2. If there is an algorithm for Φ-Extension with running time bn−|X|ckNO(1)

then there is an algorithm for Φ-Subset with running time (1 + b− 1
c)n+o(n)NO(1).

We require the following notion of (b,c)-uniform to describe our enumeration algorithms.
Let c, b ≥ 1 be real valued constants and Φ be an implicit set system. Then Φ is (b,c)-
uniform if for every instance I, set X ⊆ UI , and integer k ≤ n − |X|, the cardinality of
the collection FkI,X = {S ⊆ UI\X : |S| = k and S ∪ X ∈ FI} is at most bn−|X|cknO(1).
Then the following theorem provides new combinatorial bounds for collections generated by
(b, c)-uniform implicit set systems.

I Theorem 3. Let c, b ≥ 1 and Φ be an implicit set system. If Φ is (b, c)-uniform then
|FI | ≤

(
1 + b− 1

c

)n
nO(1) for every instance I.

We say that an implicit set system is efficiently (b, c)-uniform if there exists an algorithm
that given I,X and k enumerates all elements of FkX,I in time bn−|X|ckNO(1). In this case,
we enumerate FI in the same time, up to a subexponential factor in n.

I Theorem 4. Let c, b ≥ 1 and Φ be an implicit set system. If Φ is efficiently (b, c)-uniform
then there is an algorithm that given as input I enumerates FI in time

(
1 + b− 1

c

)n+o(n)
NO(1).

3 Random Sampling and Multivariate Subroutines

In this section, we prove Theorem 1. To do this, we first need the following lemmas.

I Lemma 5. If b, c ≥ 1 then b · c 1
bc ≤ 1 + b− 1

c

Proof. As both sides of the inequality are positive, it suffices to show that log(bc 1
bc) ≤

log(1 + b− 1/c). So we let y = log(1 + b− 1/c)− log b− 1
bc log c and prove that y ≥ 0 for all

b, c ≥ 1. When c = 1 we have that y = 0 for all b. We will show that for any fixed b ≥ 1 we
have that y ≥ 0 by showing that y increases with c ≥ 1. For fixed b, the partial derivative with
respect to c is ∂y

∂c = (bc+c−1) log c−c+1
bc2(bc+c−1) . When c = 1 then for all b, ∂y∂c = 0. As the denominator

is positive for b, c ≥ 1 it is sufficient to show that the numerator z = (bc+ c− 1) log c− c+ 1
is non-negative. To show that z ≥ 0, we consider the partial derivative again with respect to
c: ∂z

∂c = (b+ 1) log c+ b− 1
c For b, c ≥ 1, we have that b− 1

c ≥ 0 and (b+ 1) log(c) ≥ 0. Since
∂z
∂c ≥ 0, we conclude that z is increasing and non-negative which implies y is also increasing
and non-negative, for all b, c ≥ 1. This proves the lemma. J

The proof of the next lemma follows the proof of Lemma 2.2 from [5], who proved it for
b = 1.

S. Gaspers and E. J. Lee 69:5

I Lemma 6. Let b, c ≥ 1, n and k ≤ n be non-negative integers. Then, there exists t ≥ 0
such that(

n
t

)(
k
t

) bn−tck−t =
(

1 + b− 1
c

)n
nO(1), specifically when t = cbk − n

cb− 1 .

Proof. We consider two cases. First suppose k ≤ n
bc . Then for t = 0 the LHS (left-hand

side) is at most bnck ≤ bnc n
bc ≤ (1 + b− 1/c)n by Lemma 5. Now if k > n

bc then we rewrite
the LHS as(

n
t

)(
k
t

) bn−tck−t =
(
n
k

)
bn−k(

n−t
k−t
) (1

bc

)k−t .
Let us lower bound the denominator. For any x ≥ 0 and an integer m ≥ 0,∑

i≥0

(
m+ i

i

)
xi =

∑
i≥0

(
m+ i

m

)
xi = 1

(1− x)m+1 , (1)

by a known generating function. For m = n − k and x = 1
bc , the summand at i = k − t

equals the denominator
(
n−t
k−t
) (1

bc

)k−t. Since n
k < bc we have that m+k

k < 1
x and the terms of

this sum decay exponentially for i > k. Thus, the maximum term (m+i)(m+i−1)...(m+1)
i(i−1)...1 xi for

this sum occurs for i ≤ k, and its value is Ω
((

1
1−x

)m)
up to a lower order factor of O(k).

So by the binomial theorem the expression is at most(
n

k

)
bn−k(1− x)n−knO(1) =

(
1 + b− 1

c

)n
nO(1).

Specifically, the maximum term for Equation (1) occurs when m+i
i = 1

x , that is when
n−t
k−t = cb, and therefore, t = cbk−n

cb−1 . J

I Lemma 7. If there exist constants b, c ≥ 1 and an algorithm for Φ-Extension with
running time bn−|X|ckNO(1) then there exists a randomized algorithm for Φ-Extension with
running time

(
1 + b− 1

c

)n−|X|
NO(1).

Proof. Our proof is similar to Lemma 2.1 in [5]. Let B be an algorithm for Φ-Extension
with running time bn−|X|ckNO(1). We now present a randomized algorithm A, for the same
problem for an input instance (I,X, k′) with k′ ≤ k.
1. Choose an integer t ≤ k′ depending on b, c, n, k′ and |X|, the choice of which will be

discussed later. Then select a random subset Y of UI\X of size t.
2. Run Algorithm B on the instance (I,X ∪ Y, k′ − t) and return the answer.
Algorithm A has a running time upper bounded by bn−|X|−tck′−tNO(1). Algorithm A returns
yes for (I,X, k′) when B returns yes for (I,X ∪ Y, k′ − t). In this case there exists a set
S ⊆ UI\(X ∪ Y) of size at most k′ − t ≤ k − t such that S ∪ X ∪ Y ∈ FI . This, Y ∪ S
witnesses that (I,X, k) is indeed a yes-instance.

Next we lower bound the probability that A returns yes if there exists a set S ⊆ UI\X of
size exactly k′ such that X ∪ S ∈ FI . The algorithm A picks a set Y of size t at random
from UI\X. There are

(
n−|X|
t

)
possible choices for Y . If A picks one of the

(
k′

t

)
subsets of S

as Y then A returns yes. Thus, given that there exists a set S ⊆ UI\X of size k′ such that
X ∪ S ∈ FI , we have that

Pr[A returns yes] ≥ Pr[Y ⊆ S] =
(
k′

t

)
/

(
n− |X|

t

)
.

ICALP 2017

69:6 Exact Algorithms via Multivariate Subroutines

Let p(k′) =
(
k′

t

)
/
(
n−|X|
t

)
. For each k′ ∈ {0, ..., k}, our main algorithm runs A independently

1
p(k′) times with parameter k′. The algorithm returns yes if any of the runs of A return yes.
If (I,X, k′) is a yes-instance, then the main algorithm returns yes with probability at least

min
k′≤k

{
1− (1− p(k′))

1
p(k′)

}
≥ 1− 1

e
>

1
2 .

Next we upper bound the running time of the main algorithm, which is

∑
k′≤k

1
p(k′)b

n−|X|−tck
′−tNO(1) ≤ max

k′≤k

(
n−|X|
t

)(
k′

t

) bn−|X|−tck
′−tNO(1) (2)

≤ max
k′≤n−|X|

(
n−|X|
t

)(
k
t

) bn−|X|−tck−tNO(1). (3)

The choice of t in algorithm A is chosen to minimize the value of (n−|X|
t)

(k
t)

bn−|X|−tck−t. For
fixed n and |X| the running time of the algorithm is upper bounded by

max
0≤k≤n−|X|

{
min

0≤t≤k

{(
n−|X|
t

)(
k
t

) bn−|X|−tck−tNO(1)

}}
. (4)

By application of Lemma 6 we choose t = cbk−(n−|X|)
cb−1 to obtain the upper bound(

1 + b− 1
c

)n−|X| (n− |X|)O(1), which, combined with n < N , completes the proof. J

Running algorithm A with X = ∅ and for each value of k ∈ {0,, n} results in an algorithm
for Φ-Subset with running time

(
1 + b− 1

c

)n
NO(1), proving Theorem 1.

4 Derandomization

In this section we prove Theorem 2, by derandomizing the algorithm in Theorem 1.

I Theorem 2. If there is an algorithm for Φ-Extension with running time bn−|X|ckNO(1)

then there is an algorithm for Φ-Subset with running time (1 + b− 1
c)n+o(n)NO(1).

Given a set U and an integer q ≤ |U | let
(
U
q

)
represent the set of sets which contain q elements

of U . From [5] we define a pseudo-random object, the set-inclusion-family, as well as an
almost optimal sub-exponential construction of these objects.

I Definition 8. Let U be a universe of size n and let 0 ≤ q ≤ p ≤ n. A family C ⊆
(
U
q

)
is an

(n, p, q)-set-inclusion family, if for every set S ∈
(
U
p

)
, there is a set Y ∈ C such that Y ⊆ S.

Let κ(n, p, q) =
(
n
q

)
/
(
p
q

)
. We also make use of the following theorem.

I Theorem 9 ([5]). There is an algorithm that given n, p and q outputs an (n, p, q)-set-
inclusion-family C of size at most κ(n, p, q) · 2o(n) in time κ(n, p, q) · 2o(n).

We are now ready to prove Lemma 10, by a very similar proof to Lemma 7.

I Lemma 10. If there exists constants b, c ≥ 1 and an algorithm for Φ-Extension with
running time bn−|X|ckNO(1) then there exists a deterministic algorithm for Φ-Extension
with running time

(
1 + b− 1

c

)n−|X| · 2o(n) ·NO(1).

S. Gaspers and E. J. Lee 69:7

Proof. Let B be an algorithm for Φ-Extension with running time bn−|X|ckNO(1). We can
then adapt Algorithm A from the proof of Lemma 7. Let A′ be a new algorithm which has
an input instance (I,X, k′) with k′ ≤ k. Choose t = cbk′−(n−|X|)

cb−1 .

1. Compute an (n− |X|, k′, t)-set-inclusion-family C using the algorithm from Theorem 9 of
size at most κ(n− |X|, k′, t) · 2o(n), in κ(n− |X|, k′, t) · 2o(n) time.

2. For each set Y in the set-inclusion-family C run algorithm B on the instance (I,X∪Y, k′−t)
and return Yes of at least one returns Yes and No otherwise.

The running time of A′ is upper bounded by κ(n− |X|, k′, t) · 2o(n) · bn−|X|−tck′−tNO(1), a
term encountered in Equation 2 with a new subexponential factor in n,

max
k′≤k

(
n−|X|
t

)(
k′

t

) · bn−|X|−tck
′−tNO(1) · 2o(n).

From here the proof follows that of Lemma 7. J

The proof of Theorem 2 follows by inclusion of the factor 2o(n).

5 Enumeration

We now proceed to prove Theorems 3 and 4 on combinatorial upper bounds and enumeration
algorithms. Consider the following random process.

1. Choose an integer t based on b, c, n and k, then randomly sample a subset X of size t
from UI .

2. Uniformly at random pick a set S from Fk−tI,X , and output W = X ∪ S. In the special
case where Fk−tI,X is empty output the empty set.

I Theorem 3. Let c, b ≥ 1 and Φ be an implicit set system. If Φ is (b, c)-uniform then
|FI | ≤

(
1 + b− 1

c

)n
nO(1) for every instance I.

Proof. Let I be an instance, k ≤ n. We will prove that the number of sets in FI of size
exactly k is upper bounded by |FI | ≤

(
1 + b− 1

c

)n
nO(1), where k is chosen arbitrarily. We

follow the random process described above, which picks a set W of size k from FI .
For each set Z ∈ FI of size exactly k, let EZ denote the event that the set W output in

step 2 is equal to Z. We then have the following lower bound on the probability of the event
EZ :

Pr[EZ] = Pr[X ⊆ Q ∧ S = Z\X] = Pr[X ⊆ Z]× Pr[S = Z\Z|X ⊆ Z] = (k
t)

(n
t)
· 1
|Fk−t

I,X |
Since Φ is (b, c)-uniform then

∣∣∣Fk−tI,X

∣∣∣ ≤ bn−|X|cknO(1) and X is selected such that |X| = t,
this results in the lower bound

Pr[EZ] ≥
(
k
t

)(
n
t

)b−(n−t)c−(k−t)n−O(1).

A choice of t is made to minimize the lower bound, and this choice is given by Lemma 6
which states that for every k ≤ n there exists a t ≤ k such that we obtain a new lower bound

Pr[EZ] ≥
(

1 + b− 1
c

)−n
· nO(1)

for every Z ∈ FI of size k. For every individual set Z ∈ FI , the event EZ occurs disjointly,
and we have that

∑
Z∈FI ,|Z|=k Pr[EZ] ≤ 1. This fact with the lower bound of Pr[EZ] implies

an upper bound on the number of sets in FI of (1 + b− 1
c)nnO(1), completing the proof. J

ICALP 2017

69:8 Exact Algorithms via Multivariate Subroutines

I Theorem 4. Let c, b ≥ 1 and Φ be an implicit set system. If Φ is efficiently (b, c)-uniform
then there is an algorithm that given as input I enumerates FI in time

(
1 + b− 1

c

)n+o(n)
NO(1).

Proof. We alter the random process used to prove Theorem 3 to a deterministic one:
1. Construct a (n, k, t)-set inclusion family C using Theorem 6 from [5]. Loop over X ∈ C.
2. For each X ∈ C, loop over all sets S ∈ Fk−tI,X .
Then we output W = X ∪ S from these two loops. Looping over C instead of random
sampling for X incurs a 2o(n) overhead in the running time. As Φ is efficiently (b, c)-uniform,
the inner loop requires (1 + b− 1

c)nNO(1) time. In order to avoid enumerating duplicates,
we save the sets which have been output in a trie and check first in linear time if a set has
already been output. The product of the running times for these two nested loops results in
the running time claimed by the theorem statement. J

6 Case Studies

This section briefly outlines case studies which used Theorem 2 and Theorem 4 in order to
design faster deterministic algorithms.

6.1 Preliminaries
Let G = (V,E) be a graph with a set of vertices V and a set of edges E ⊆ {uv : u, v ∈ V }.
The degree d(u) of a vertex u is the number of neighbors of u in G. The degree of a graph
∆(G) is the maximum d(u) across all u ∈ V . A graph G′ = (V ′, E′) is a subgraph of G if
V ′ ⊆ V and E′ ⊆ E and G′ is an induced subgraph of G if, in addition, G has no edge uv
with u, v ∈ V ′ but uv /∈ E′. In this case, we also denote G′ by G[V ′]. A forest is an acyclic
graph. A subset F ⊆ V is acyclic if G[F] is a forest. An acyclic subset F ⊆ V is maximal in
G if it is not a subset of any other acyclic subset. For an acyclic subset F ⊆ V , we denote
the set of maximal acyclic supersets of F asMG(F) and the set of maximum (i.e., largest)
acyclic supersets of F asM∗G(F).

Let T be a subgraph of G. Define Id(T, t) as an operation on G which contracts all
edges of T into one vertex t, removing induced loops. This may create multiedges in G.
Define Id∗(T, t) as the operation Id(T, t) followed by removing all vertices connected to t by
multiedges. A non-trivial component of a graph G is a connected component on at least two
vertices. The following propositions from [6] will be useful.

I Proposition 11. [6] Let G = (V,E) be a graph, F ⊆ V be an acyclic subset of vertices
and T be a non-trivial component of G[F]. Denote by G′ the graph obtained from G by the
operation Id∗(T, t) and let F ′ = F ∪ {t}\T . Then for X ′ = X ∪ {t}\T where X,X ′ ⊆ V

X ∈MG(F) if and only if X ′ ∈MG′(F ′), and
X ∈M∗G(F) if and only if X ′ ∈M∗G′(F ′).

Using operation Id∗ on each non-trivial component of G[F], results in an independent
set F ′.

I Proposition 12. [6] Let G = (V,E) be a graph and F be an independent set in G such that
V \F = N(t) for some t ∈ F . Consider the graph G′ = G[N(t)] and for every pair of vertices
u, v ∈ N(t) having a common neighbor in F\{t} add an edge uv to G′. Denote the obtained
graph by H and let I ⊆ N(t). Then F ∪I ∈MG(F) if and only if I is a maximal independent
set in H . In particular, F ∪ I ∈ M∗G(F) if and only if I is a maximum independent set
in H.

S. Gaspers and E. J. Lee 69:9

For an acyclic subset F , a so-called active vertex t ∈ F and a neighbor v ∈ N(t) \ F ,
we will now define the concept of generalized neighbors of v, also known as (v)-generalized
neighbors. Denote byK the set of vertices of F adjacent to v other than t. Let G′ be the graph
obtained after the operation Id(K ∪ {v}, u). A vertex w ∈ V (G′)\{t} is a (v)-generalized
neighbor in G if w is a neighbor of u in G′. Denote by gd(v) the generalized degree of v
which is the number of (v)-generalized neighbors for a given v.

6.2 Feedback Vertex Set
First we describe the extension variant of Feedback Vertex Set

Feedback Vertex Set Extension
Input: A graph G = (V, E), vertex subset X ⊆ V and an integer k

Question: Does there exist subset S ⊆ V \X such that S ∪X is a FVS and |S| ≤ k?

Instead of directly finding the feedback vertex set in a graph, we present algorithm mif(G,F, k)
[6] which computes for a given graph G and an acylic set F the maximum size of an induced
forest F ′ containing F with |F ′| ≥ n − k. This means that G − F is a minimal feedback
vertex set of size at most k. This algorithm can easily be turned into an algorithm computing
at least one such set.

During the execution of mif one vertex t ∈ F is called an active vertex. Algorithm mif
then branches on a chosen neighbor of t. Let v ∈ N(t). Let k be the set of all vertices of
F\{t} that are adjacent to v and parameter k which represents a bound on the size of the
feedback vertex set.

As well as describing the algorithm we simultaneously perform the running time analysis
which uses the Measure and Conquer framework and Lemma 13 at its core.

I Lemma 13. [10] Let A be an algorithm for a problem P , B be an algorithm for a class
C of instances of P , c ≥ 0 and r > 1 be constants, and µ(·), µB(·), η(·) be measures for P ,
such that for any input instance I from C, µB(·) ≤ µ(I), and for any input instance I, A
either solves P on I ∈ C by invoking B with running time O(η(I)c+1rµB(I)), or reduces I to
k instances I1, ..., Ik, solves these recursively, and combines their solutions to solve I, using
time O(η(I)c) for the reduction and combination steps (but not the recursive solves),

(∀i) η(Ii) ≤ η(I)− 1, and
k∑
i=1

rµ(Ii) ≤ rµ(I). (5)

Then A solves any instance I in time O(η(I)c+1rµ(I)).

Branching constraints of the form
∑j
i=1 2−δi ≤ 1 are given as branching vectors (δ1, ..., δj).

6.2.1 Measure
To upper bound the exponential time complexity of the algorithm mif we use the measure

µ = |N(t)\F |w1 + |V \(F ∪N(t))|w2 + k · wk.

In other words, each vertex in F has weight 0, each vertex in N(t) has weight w1, each other
vertex has weight w2 and each unit of budget for the feedback vertex set has weight wk, in
the measure with an active vertex t.

ICALP 2017

69:10 Exact Algorithms via Multivariate Subroutines

6.2.2 Algorithm
The description of mif consists of a sequence of cases and subcases. The first case which
applies is used, and inside a given case the hypotheses of all previous cases are assumed to
be false. Preprocessing procedures come before main procedures.

Preprocessing

1. If G consists of j ≥ 2 connected components G1, G2, ..., Gj , then the algorithm is called
on each component. For Fi = Gi ∩ F for all i ∈ {1, 2, ..., j} and

∑j
i=1 ki ≤ k then

mif(G,F, k) =
j∑
i=1

mif(Gi, Fi, ki) .

2. If F is not independent, then apply operation Id∗(T, vT) on an arbitrary non-trivial
component T of F . If T contains the active vertex then vT becomes active. Let G′ be
the resulting graph and let F ′ be the set of vertices of G′ obtained from F . Then

mif(G,F, k) = mif(G′, F ′, k) + |T | − 1 .

Main Procedures

1. If k < 0 then mif(G,F, k) = 0.
2. If F = ∅ and ∆(G) ≤ 1 thenMG(F) = {V } and mif(G,F, k) = |V |.
3. If F = ∅ and ∆(G) ≥ 2 then the algorithm chooses a vertex t ∈ G of degree at least 2.

Then t is either contained in a maximum induced forest or not. The algorithm branches
on two subproblems and returns the maximum:

mif(G,F, k) = max{mif(G,F ∪ {t}, k), mif(G\{t}, F, k − 1)}.

The first branch reduces the weight of t to zero, as it is in F , and at least 2 neighbors
have a reduced degree from w2 to w1. In the second branch we remove t from the graph,
meaning it will be in the feedback vertex set. We thus also gain a reduction of wk in the
measure. Hence this rule induces the branching constraint

(w2 + 2(w2 − w1), w2 + wk).

4. If F contains no active vertex then choose an arbitrary vertex t ∈ F as an active vertex.
Denote the active vertex by t from now on.

5. If V \F = N(t) then the algorithm constructs the graph H from Proposition 12 and
computes a maximum independent set I in G of maximum size n− k. Then

mif(G,F, k) = |F |+ |I|.

6. If there is v ∈ N(t) with gd(v) ≤ 1 then add v to F .

mif(G,F, k) = mif(G,F ∪ {v}, k).

7. If there is v ∈ N(t) with gd(v) ≥ 4 then either add v to F or remove v from G.

mif(G,F, k) = max{mif(G,F ∪ {v}, k), mif(G\{v}, F, k − 1)}.

The first case adds v to F reducing the measure by w1, and a minimum of 4(w2−w1) for
all the (v)-generalized neighbors. The other case removes v this decreasing the measure
by wk. Hence this rule induces the branching constraint

(w1 + 4(w2 − w1), w1 + wk).

S. Gaspers and E. J. Lee 69:11

8. If there is v ∈ N(t) with gd(v) = 2 then denote the (v)-generalized neighbors by u1 and
u2. Either add v to F or remove v from G but add u1 and u2 to F . If adding u1 and u2
to F induces a cycle, we just ignore the last branch.

mif(G,F, k) = max{mif(G,F ∪ {v}, k), mif(G\{v}, F ∪ {u1, u2}, k − 1)}.

Let i ∈ {0, 1, 2} be the number of vertices adjacent to v with weight w2. The first case
adds v to F , and hence all i w2-weight neighbors of v reduce to w1, and the other 2− i
vertices of weight w1 induce a cycle, hence we remove them from G and reduce the
measure by (2− i)wk. The second case removes v and adds both u1 and u2 to F . This
causes a reduction of iw2 for the relevant vertices and (2− i)w1 for the other vertices, and
a single wk reduction due to the removal of v. This rule induces the branching constraint

(w1 + i(w2 − w1) + (2− i)w1 + (2− i)wk, w1 + iw2 + (2− i)w1 + wk).

9. If all vertices in N(t) have exactly three generalized neighbors then at least one of these
vertices must have a generalized neighbor outside N(t), since the graph is connected
and the condition of the case Main 6 does not hold. Denote such a vertex by v and its
generalized neighbors by u1, u2 and u3 in such a way that u1 6∈ N(t). Then we either
add v to F ; or remove v from G but add u1 to F ; or remove v and u1 from G and add
u2 and u3 to F . Similar to the previous case, if adding u2 and u3 to F induces a cycle,
we just ignore the last branch.

mif(G,F) = max{mif(G,F ∪ {v}, k), mif(G\{v}, F ∪ {u1}, k − 1),
mif(G\{v, u1}, F ∪ {u2, u3}, k − 2)}.

Let i ∈ {1, 2, 3} be the number of vertices adjacent to v with weight w2. The first and
last cases are analogous to the analysis done in Main 8. The second case removes v from
the forest hence adding it to the minimum feedback vertex set and reducing the measure
by w1 + wk. A reduction of w2 is gained by adding u1 to F . Then this rule induces the
branching constraint

(w1 + i(w2 − w1) + (3− i)w1 + (3− i)wk, w1 + w2 + wk, w1 + iw2 + (3− i)w1 + 2wk).

6.2.3 Results
I Theorem 14. Let G be a graph on n vertices. Then a minimal feedback vertex set in G
can be found in time O(1.7117n).

Proof. Using the algorithm above along with the measure µ, the following values of weights
can be shown to satisfy all the branching vector constraints generated above.

w1 = 0.2775 w2 = 0.6250 wk = 0.2680

These weights result in an upper bound for the running time of mif as O(1.5422n · 1.2041k)
for computing a maximally induced forest of size a least n−k, and hence we have the running
time for Feedback Vertex Set Extension of O(1.5422n−|X| · 1.2041k). By Theorem 2
this results in a O(1.7117n) algorithm for computing a minimal feedback vertex set. J

6.3 Minimal Vertex Covers
The following result on minimal vertex covers of size at most k is needed in the next section.

ICALP 2017

69:12 Exact Algorithms via Multivariate Subroutines

I Theorem 15. Let γ be a constant with 0.169925 ≈ 2 log2 3 − 3 ≤ γ ≤ 1. For every
n ≥ k ≥ 0, and every graph G on n vertices, the number of minimal vertex covers of size at
most k of G is at most 2βn+γk, where β = (1− γ)/2.

For γ = 1
3 , this implies that G has at most 2(n+k)/3 minimal vertex covers of size at most k.

6.4 Minimal Feedback Vertex Sets
We apply a similar methodology to enumerating minimal feedback vertex sets on an undirected
graph with n vertices. The algorithm is similar in construction to one used in [6] yet a large
amount of case analysis was added, along with potential functions in combination with the
Measure and Conquer framework.

I Theorem 16. For a graph G with n vertices, all minimal feedback vertex sets can be
enumerated in time O(1.8527n).

6.5 Minimal Hitting Sets
Based on [2] we once again apply a multivariate analysis to enumerating all minimal hitting
sets on a hypergraph of rank 3.

I Theorem 17. For a hypergraph H with n vertices and rank 3, all minimal hitting sets can
be enumerated in time O(1.6627n).

7 Conclusion

The main contribution of this paper is a framework allowing us to turn many bnckNO(1)

time algorithms for subset and subset enumeration problems into (1 + b− 1
c)nNO(1) time

algorithms, generalizing a recent framework of Fomin et al. [5].
The main complications in using the framework are, firstly, that new algorithms or

running-time analyses are often needed, and, secondly, that such analyses need solutions
to non-convex programs in the Measure and Conquer framework. In the usual Measure
and Conquer analyses [7],the objective is to upper bound a single variable (α) which upper
bounds the exponential part of the running time (2αn) subject to convex constraints. Thus,
it is sufficient to solve a convex optimization problem to minimize the running time [10, 12]
resulting from the constraints derived from the analysis. Here, the objective function
(2α − 2−wk) is non-convex. While experimenting with a range of solvers (Couenne, IPOPT,
MINOS, SNOPT), either guaranteeing to find a global optimum (slow and used for optimality
checks) or only a local optimum (faster and used mainly in the course of the algorithm
design), we experienced on one hand that the local optima found by solvers are often the
global optimum, but on the other hand that weakening non-tight constraints can sometimes
lead to a better globally optimum solution.

Acknowledgements. We thank Daniel Lokshtanov, Fedor V. Fomin, and Saket Saurabh
for discussions inspiring some of this work.

References
1 Jesper Makholm Byskov. Enumerating maximal independent sets with applications to

graph colouring. Oper. Res. Lett., 32(6):547–556, 2004. doi:10.1016/j.orl.2004.03.002.

http://dx.doi.org/10.1016/j.orl.2004.03.002

S. Gaspers and E. J. Lee 69:13

2 Manfred Cochefert, Jean-François Couturier, Serge Gaspers, and Dieter Kratsch. Faster
algorithms to enumerate hypergraph transversals. In Latin American Symposium on The-
oretical Informatics, pages 306–318. Springer, 2016.

3 Rodney G. Downey and Michael R. Fellows. Fundamentals of parameterized complexity,
volume 4. Springer, 2013.

4 David Eppstein. Small maximal independent sets and faster exact graph coloring. J. Graph
Algorithms Appl., 7(2):131–140, 2003.

5 Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms
via monotone local search. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing (STOC 2016), pages 764–775. ACM, 2016. doi:10.1145/2897518.
2897551.

6 Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin, and Igor Razgon. On the minimum
feedback vertex set problem: Exact and enumeration algorithms. Algorithmica, 52(2):293–
307, 2008.

7 Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach
for the analysis of exact algorithms. Journal of the ACM, 56(5), 2009. doi:10.1145/
1552285.1552286.

8 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010. An
EATCS Series: Texts in Theoretical Computer Science.

9 Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large induced subgraphs via triangu-
lations and cmso. SIAM Journal on Computing, 44(1):54–87, 2015.

10 Serge Gaspers. Exponential Time Algorithms – Structures, Measures, and Bounds. VDM,
2010. URL: http://amzn.com/3639218256.

11 Serge Gaspers and Edward Lee. Exact algorithms via multivariate subroutines, April 2017.
arXiv e-prints. URL: https://arxiv.org/abs/1704.07982, arXiv:1704.07982.

12 Serge Gaspers and Gregory B. Sorkin. A universally fastest algorithm for Max 2-Sat, Max 2-
CSP, and everything in between. Journal of Computer and System Sciences, 78(1):305–335,
2012. doi:10.1016/j.jcss.2011.05.010.

13 Igor Razgon. Exact computation of maximum induced forest. In Scandinavian Workshop
on Algorithm Theory, pages 160–171. Springer, 2006.

14 Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent set. In
International Symposium on Algorithms and Computation, pages 328–338. Springer, 2013.

ICALP 2017

http://dx.doi.org/10.1145/2897518.2897551
http://dx.doi.org/10.1145/2897518.2897551
http://dx.doi.org/10.1145/1552285.1552286
http://dx.doi.org/10.1145/1552285.1552286
http://amzn.com/3639218256
https://arxiv.org/abs/1704.07982
http://arxiv.org/abs/1704.07982
http://dx.doi.org/10.1016/j.jcss.2011.05.010

	Introduction
	Results
	Random Sampling and Multivariate Subroutines
	Derandomization
	Enumeration
	Case Studies
	Preliminaries
	Feedback Vertex Set
	Measure
	Algorithm
	Results

	Minimal Vertex Covers
	Minimal Feedback Vertex Sets
	Minimal Hitting Sets

	Conclusion

