7,440 research outputs found

    Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus, and Minor-Free Graphs

    Full text link
    A (1 + eps)-approximate distance oracle for a graph is a data structure that supports approximate point-to-point shortest-path-distance queries. The most relevant measures for a distance-oracle construction are: space, query time, and preprocessing time. There are strong distance-oracle constructions known for planar graphs (Thorup, JACM'04) and, subsequently, minor-excluded graphs (Abraham and Gavoille, PODC'06). However, these require Omega(eps^{-1} n lg n) space for n-node graphs. We argue that a very low space requirement is essential. Since modern computer architectures involve hierarchical memory (caches, primary memory, secondary memory), a high memory requirement in effect may greatly increase the actual running time. Moreover, we would like data structures that can be deployed on small mobile devices, such as handhelds, which have relatively small primary memory. In this paper, for planar graphs, bounded-genus graphs, and minor-excluded graphs we give distance-oracle constructions that require only O(n) space. The big O hides only a fixed constant, independent of \epsilon and independent of genus or size of an excluded minor. The preprocessing times for our distance oracle are also faster than those for the previously known constructions. For planar graphs, the preprocessing time is O(n lg^2 n). However, our constructions have slower query times. For planar graphs, the query time is O(eps^{-2} lg^2 n). For our linear-space results, we can in fact ensure, for any delta > 0, that the space required is only 1 + delta times the space required just to represent the graph itself

    Faster Separators for Shallow Minor-Free Graphs via Dynamic Approximate Distance Oracles

    Full text link
    Plotkin, Rao, and Smith (SODA'97) showed that any graph with mm edges and nn vertices that excludes KhK_h as a depth O(logn)O(\ell\log n)-minor has a separator of size O(n/+h2logn)O(n/\ell + \ell h^2\log n) and that such a separator can be found in O(mn/)O(mn/\ell) time. A time bound of O(m+n2+ϵ/)O(m + n^{2+\epsilon}/\ell) for any constant ϵ>0\epsilon > 0 was later given (W., FOCS'11) which is an improvement for non-sparse graphs. We give three new algorithms. The first has the same separator size and running time O(\mbox{poly}(h)\ell m^{1+\epsilon}). This is a significant improvement for small hh and \ell. If =Ω(nϵ)\ell = \Omega(n^{\epsilon'}) for an arbitrarily small chosen constant ϵ>0\epsilon' > 0, we get a time bound of O(\mbox{poly}(h)\ell n^{1+\epsilon}). The second algorithm achieves the same separator size (with a slightly larger polynomial dependency on hh) and running time O(\mbox{poly}(h)(\sqrt\ell n^{1+\epsilon} + n^{2+\epsilon}/\ell^{3/2})) when =Ω(nϵ)\ell = \Omega(n^{\epsilon'}). Our third algorithm has running time O(\mbox{poly}(h)\sqrt\ell n^{1+\epsilon}) when =Ω(nϵ)\ell = \Omega(n^{\epsilon'}). It finds a separator of size O(n/\ell) + \tilde O(\mbox{poly}(h)\ell\sqrt n) which is no worse than previous bounds when hh is fixed and =O~(n1/4)\ell = \tilde O(n^{1/4}). A main tool in obtaining our results is a novel application of a decremental approximate distance oracle of Roditty and Zwick.Comment: 16 pages. Full version of the paper that appeared at ICALP'14. Minor fixes regarding the time bounds such that these bounds hold also for non-sparse graph

    Counting Shortest Two Disjoint Paths in Cubic Planar Graphs with an NC Algorithm

    Get PDF
    Given an undirected graph and two disjoint vertex pairs s1,t1s_1,t_1 and s2,t2s_2,t_2, the Shortest two disjoint paths problem (S2DP) asks for the minimum total length of two vertex disjoint paths connecting s1s_1 with t1t_1, and s2s_2 with t2t_2, respectively. We show that for cubic planar graphs there are NC algorithms, uniform circuits of polynomial size and polylogarithmic depth, that compute the S2DP and moreover also output the number of such minimum length path pairs. Previously, to the best of our knowledge, no deterministic polynomial time algorithm was known for S2DP in cubic planar graphs with arbitrary placement of the terminals. In contrast, the randomized polynomial time algorithm by Bj\"orklund and Husfeldt, ICALP 2014, for general graphs is much slower, is serial in nature, and cannot count the solutions. Our results are built on an approach by Hirai and Namba, Algorithmica 2017, for a generalisation of S2DP, and fast algorithms for counting perfect matchings in planar graphs

    Exact Distance Oracles for Planar Graphs

    Full text link
    We present new and improved data structures that answer exact node-to-node distance queries in planar graphs. Such data structures are also known as distance oracles. For any directed planar graph on n nodes with non-negative lengths we obtain the following: * Given a desired space allocation S[nlglgn,n2]S\in[n\lg\lg n,n^2], we show how to construct in O~(S)\tilde O(S) time a data structure of size O(S)O(S) that answers distance queries in O~(n/S)\tilde O(n/\sqrt S) time per query. As a consequence, we obtain an improvement over the fastest algorithm for k-many distances in planar graphs whenever k[n,n)k\in[\sqrt n,n). * We provide a linear-space exact distance oracle for planar graphs with query time O(n1/2+eps)O(n^{1/2+eps}) for any constant eps>0. This is the first such data structure with provable sublinear query time. * For edge lengths at least one, we provide an exact distance oracle of space O~(n)\tilde O(n) such that for any pair of nodes at distance D the query time is O~(minD,n)\tilde O(min {D,\sqrt n}). Comparable query performance had been observed experimentally but has never been explained theoretically. Our data structures are based on the following new tool: given a non-self-crossing cycle C with c=O(n)c = O(\sqrt n) nodes, we can preprocess G in O~(n)\tilde O(n) time to produce a data structure of size O(nlglgc)O(n \lg\lg c) that can answer the following queries in O~(c)\tilde O(c) time: for a query node u, output the distance from u to all the nodes of C. This data structure builds on and extends a related data structure of Klein (SODA'05), which reports distances to the boundary of a face, rather than a cycle. The best distance oracles for planar graphs until the current work are due to Cabello (SODA'06), Djidjev (WG'96), and Fakcharoenphol and Rao (FOCS'01). For σ(1,4/3)\sigma\in(1,4/3) and space S=nσS=n^\sigma, we essentially improve the query time from n2/Sn^2/S to n2/S\sqrt{n^2/S}.Comment: To appear in the proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, SODA 201

    Min-Cost Flow in Unit-Capacity Planar Graphs

    Get PDF
    In this paper we give an O~((nm)^(2/3) log C) time algorithm for computing min-cost flow (or min-cost circulation) in unit capacity planar multigraphs where edge costs are integers bounded by C. For planar multigraphs, this improves upon the best known algorithms for general graphs: the O~(m^(10/7) log C) time algorithm of Cohen et al. [SODA 2017], the O(m^(3/2) log(nC)) time algorithm of Gabow and Tarjan [SIAM J. Comput. 1989] and the O~(sqrt(n) m log C) time algorithm of Lee and Sidford [FOCS 2014]. In particular, our result constitutes the first known fully combinatorial algorithm that breaks the Omega(m^(3/2)) time barrier for min-cost flow problem in planar graphs. To obtain our result we first give a very simple successive shortest paths based scaling algorithm for unit-capacity min-cost flow problem that does not explicitly operate on dual variables. This algorithm also runs in O~(m^(3/2) log C) time for general graphs, and, to the best of our knowledge, it has not been described before. We subsequently show how to implement this algorithm faster on planar graphs using well-established tools: r-divisions and efficient algorithms for computing (shortest) paths in so-called dense distance graphs
    corecore