
Min-Cost Flow in Unit-Capacity Planar Graphs
Adam Karczmarz
Institute of Informatics, University of Warsaw, Poland
a.karczmarz@mimuw.edu.pl

Piotr Sankowski
Institute of Informatics, University of Warsaw, Poland
sank@mimuw.edu.pl

Abstract
In this paper we give an Õ((nm)2/3 log C) time algorithm for computing min-cost flow (or min-
cost circulation) in unit capacity planar multigraphs where edge costs are integers bounded by C.
For planar multigraphs, this improves upon the best known algorithms for general graphs: the
Õ(m10/7 log C) time algorithm of Cohen et al. [SODA 2017], the O(m3/2 log(nC)) time algorithm
of Gabow and Tarjan [SIAM J. Comput. 1989] and the Õ(

√
nm log C) time algorithm of Lee

and Sidford [FOCS 2014]. In particular, our result constitutes the first known fully combinatorial
algorithm that breaks the Ω(m3/2) time barrier for min-cost flow problem in planar graphs.

To obtain our result we first give a very simple successive shortest paths based scaling algorithm
for unit-capacity min-cost flow problem that does not explicitly operate on dual variables. This
algorithm also runs in Õ(m3/2 log C) time for general graphs, and, to the best of our knowledge,
it has not been described before. We subsequently show how to implement this algorithm faster
on planar graphs using well-established tools: r-divisions and efficient algorithms for computing
(shortest) paths in so-called dense distance graphs.

2012 ACM Subject Classification Theory of computation → Network flows

Keywords and phrases minimum-cost flow, minimum-cost circulation, planar graphs

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.66

Related Version A full version of the paper is available at https://arxiv.org/abs/1907.02274.

Funding Adam Karczmarz: Supported by ERC Consolidator Grant 772346 TUgbOAT and the
Polish National Science Centre 2018/29/N/ST6/00757 grant.
Piotr Sankowski: Supported by ERC Consolidator Grant 772346 TUgbOAT.

1 Introduction

The min-cost flow is the core combinatorial optimization problem that now has been studied
for over 60 years, starting with the work of Ford and Fulkerson [14]. Classical combinatorial
algorithms for this problem have been developed in the 80s. Goldberg and Tarjan [18]
showed an Õ(nm logC) time weakly-polynomial algorithm for the case when edge costs
are integral, and where C is the maximum edge cost. Orlin [31] showed the best-known
strongly polynomial time algorithm running in Õ(m2) time. Faster weakly-polynomial
algorithms have been developed in this century using interior-point methods: Daitch and
Spielman [8] gave an Õ(m3/2 log (U + C)) algorithm, and later Lee and Sidford [28] obtained
an Õ(

√
nm log (U + C)) algorithm, where U is the maximum (integral) edge capacity.

Much attention has been devoted to the unit-capacity case of the min-cost flow problem.
Gabow and Tarjan [15] gave a O(m3/2 log (nC)) time algorithm. Lee and Sidford [28] matched
this bound up to polylogarithmic factors for m = Õ(n), and improved upon it for larger
densities, even though their algorithm solves the case of arbitrary integral capacities. Gabow
and Tarjan’s result remained the best known bound for more than 28 years – the problem

© Adam Karczmarz and Piotr Sankowski;
licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).
Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 66; pp. 66:1–66:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/228086869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-2693-8713
mailto:a.karczmarz@mimuw.edu.pl
mailto:sank@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.ESA.2019.66
https://arxiv.org/abs/1907.02274
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

66:2 Min-Cost Flow in Unit-Capacity Planar Graphs

witnessed an important progress only very recently. In 2017 an algorithm that breaks the
Ω(m3/2) time barrier for min-cost flow problem was given by Cohen et al. [7]. This algorithm
runs in Õ(m10/7 logC) time and is also based on interior-point methods.

It is worth noting that currently the algorithms of [7, 28] constitute the most efficient
solutions for the entire range of possible densities (up to polylogarithmic factors) and are
also the best-known algorithms for important special cases, e.g., planar graphs or minor-free
graphs. Both of these solutions are based on interior point methods and do not shed light on
the combinatorial structure of the problem.

In this paper we study the unit-capacity min-cost flow in planar multigraphs. We improve
upon [7, 28] by giving the first known Õ((mn)2/3 logC) = Õ(m4/3 logC) time algorithm for
computing min-cost s, t-flow and min-cost circulation in planar multigraphs.1 Our algorithm
is fully combinatorial and uses the scaling approach of Goldberg and Tarjan [18]. At each
scale it implements the classical shortest augmenting path approach similar to the one known
from the well-known Hopcroft-Karp algorithm for maximum bipartite matching [19].

Related work. Due to immense number of works on flows and min-cost flows we will not
review all of them. Instead we concentrate only on the ones that are relevant to the sparse
and planar graph case, as that is the regime where our results are of importance. As already
noted above the fastest algorithms for min-cost flows in planar multigraphs are implied by
the algorithms for general case. This, however, is not the case for maximum flow problem.
Here, the fastest algorithms are based on planar graph duality and reduce the problem to
shortest path computations. The undirected s, t-flow problem can be solved in O(n log logn)
time [22], whereas the directed s, t-flow problem can be solved in O(n logn) time [3, 11].
Even for the case with multiple source and sinks, a nearly-linear time algorithm is known [4].

These results naturally raise as an open question whether similar nearly-linear bounds
could be possible for min-cost flow. Until very recently there has been no progress towards
answering this open question. Partial progress was made by devising Õ(n4/3 logC) time [1]
and Õ(n6/5 logC) time [27] algorithms for min-cost perfect matchings in bipartite planar
graphs. Lahn and Raghvendra also give an Õ(n7/5 logC) time minimum cost perfect matching
algorithm for minor-free graphs. These algorithms can be seen as specialized versions of the
Gabow-Tarjan’s algorithm for the assignment problem [15].

Gabow and Tarjan [15] reduced min-cost flow problem to so-called min-cost perfect degree-
constrained subgraph problem on a bipartite multigraph, which they solved by extending
their algorithm for minimum cost perfect matching. Hence it seems plausible that the recent
algorithm of Lahn and Raghvendra [27] can be extended to solve min-cost flow, since their
algorithm builds upon the Gabow-Tarjan algorithm. The reduction presented by Gabow and
Tarjan is not planarity preserving, though. Nevertheless, min-cost perfect matching problem
can be reduced to min-cost flow problem in an efficient and planarity preserving way [29].
The opposite reduction can be done in planarity preserving way as recently shown [33].
However, this reduction is not efficient and produces a graph of quadratic size. Hence, we
cannot really take advantage of it.

Overview and comparison to [1, 27]. We concentrate on the min-cost circulation problem,
which is basically the min-cost flow problem with all vertex demands equal to 0. It is well-
known [17] that the min-cost s, t-flow problem can be solved by first computing some s, t-flow

1 It is known that simple planar graphs have O(n) edges. However, multiple parallel edges (with possibly
different costs) are useful in the unit-capacity min-cost flow problem, as they allow us to encode larger
edge capacities. Therefore, in this paper we work with planar multigraphs.

A. Karczmarz and P. Sankowski 66:3

f of requested value (e.g., the maximum value), and then finding a min-cost circulation on
the residual network Gf . This reduction is clearly planarity-preserving. Since an s, t-flow
of any given value (in particular, the maximum value) can be found in a planar graph in
nearly-linear time (see [11]), this reduction works in nearly-linear time as well.

Our min-cost circulation algorithm resembles the recent works on minimum cost planar
perfect matching [1, 27], in the sense that we simulate some already-good scaling algorithm
for general graphs, but implement it more efficiently using the known and well-established
tools from the area of planar graph algorithms. However, instead of simulating an existing
unit-capacity min-cost flow algorithm, e.g., [15, 17], we use a very simple successive-shortest
paths based algorithm that, to the best our knowledge, has not been described before.

Our algorithm builds upon the cost-scaling framework of Goldberg and Tarjan [18],
similarly as the recent simple unit-capacity min-cost flow algorithms of Goldberg et al. [17].
In this framework, a notion of ε-optimality of a flow is used. A flow f is ε-optimal with
respect to a price function p if for any edge uv = e ∈ E(Gf) we have c(e)− p(u) + p(v) ≥ −ε.

Roughly speaking, the parameter ε measures the quality of a circulation: any circulation
is trivially C-optimal wrt. p, whereas any 1

n -feasible (wrt. p) circulation is guaranteed to
be optimal. The general scheme is to start with a C-optimal circulation, run O(log(nC))
scales that improve the quality of a circulation by a factor of 2, and this way obtain the
optimal solution.

We show that a single scale can be solved by repeatedly sending flow along a cheapest
s→ t path in a certain graph G′′f with a single source s and a single sink t, that approximates
the residual graph Gf . Moreover, if we send flow simultaneously along a maximal set of
cheapest s→ t paths at once, like in [12, 19], we finish after O(

√
m) augmentations. However,

as opposed to [12, 19], our graph G′′f is weighted and might have negative edges. We overcome
this difficulty as in the classical successive shortest path approach for min-cost flow, by
using distances from the previous flow augmentation as a feasible price function that can
speed-up next shortest path computation. Our algorithm also retains a nice property2 of
the Even-Tarjan algorithm that the total length (in terms of the number of edges) of all the
used augmenting paths is O(m logm).

The crucial difference between our per-scale procedure and those of [15, 17] is that we
do not “adjust” dual variables p(v) at all while the procedure runs: we only use them to
compute G′′f , and recompute them from scratch in nearly-linear time when the procedure
finishes. In particular, the recent results of [1, 27] are quite complicated since, in order to
simulate the Gabow-Tarjan algorithm [15], they impose and maintain additional invariants
about the duals.

The only bottlenecks of our per-scale procedure are (1) shortest paths computation, (2)
picking a maximal set of edge-disjoint s→ t paths in an unweighted graph3.

We implement these on a planar network using standard methods. Let r ∈ [1, n] be some
parameter. We construct a dense distance graph H ′′f (e.g., [13, 16]) built upon an r-division
(e.g., [26]) of G′′f . The graph H ′′f is a compressed representation of the distances in G′′f with
O(n/

√
r) vertices and O(m) edges. Moreover, it can be updated in Õ(r) time per edge used

by the flow. Hence, the total time spent on updating H ′′f is Õ(mr). As we show, running our
per-scale procedure on H ′′f is sufficient to simulate it on G′′f . Computing distances in a dense
distance graph requires Õ(n/

√
r) time [13, 16]. To complete the construction, we show how

2 Gabow-Tarjan algorithm for min-cost bipartite matching has a similar property, which was instrumental
for obtaining the recent results on minimum-cost planar bipartite matching [1, 27].

3 This is sometimes called the blocking flow problem and can be solved for unit capacities in linear time.

ESA 2019

66:4 Min-Cost Flow in Unit-Capacity Planar Graphs

to find a maximal set of edge-disjoint paths in Õ(n/
√
r) amortized time. To this end, we also

exploit the properties of reachability in a dense distance graph, used previously in dynamic
reachability algorithms for planar digraphs [21, 24]. This way, we obtain Õ(

√
mn/
√
r +mr)

running time per scale. This is minimized roughly when r = n2/3/m1/3.
Recall that Lahn and Raghvendra [27] obtained a polynomially better (than ours) bound of

Õ(n6/5 logC), but only for planar min-cost perfect matching problem. To achieve that, they
use an additional idea due to Asathulla et al. [1]. Namely, they observe that by introducing
vertex weights, one can make augmenting paths avoid edges incident to boundary vertices,
thus making the total number of pieces “affected” by augmenting paths truly-sublinear in
n. It is not clear how to apply this idea to the min-cost flow problem without making
additional assumptions about the structure of the instance, like bounded-degree (then, there
are only O(n/

√
r) edges incident to boundary vertices of an r-division), or bounded vertex

capacities (so that only O(1) units of flow can go through each vertex; this is satisfied in the
perfect matching case). This phenomenon seems not very surprising once we recall that such
assumptions lead to better bounds even for general graphs: the best known combinatorial
algorithms for min-cost perfect matching run in O(n1/2m log (nC)) time, whereas for min-cost
flow in O(m3/2 log (nC)) time [15, 17].

Organization of the paper. In Section 2 we introduce the notation and describe the scaling
framework of [18]. Next, in Section 3, we describe the per-scale procedure of unit-capacity
min-cost flow for general graphs. Finally, in Section 4 we give our algorithm for planar
graphs. Due to limited space, some of the missing proofs can only be found in the full version
of the paper.

2 Preliminaries

Let G0 = (V,E0) be the input directed multigraph. Let n = |V | and m = |E0|. Define
G = (V,E) to be a multigraph such that E = E0 ∪ER

0 , E0 ∩ER
0 = ∅, where ER

0 is the set of
reverse edges. For any uv = e ∈ E, there is an edge eR ∈ E such that eR = vu and (eR)R = e.
We have e ∈ E0 iff eR ∈ ER

0 .
Let u : E0 → R+ be a capacity function. A flow is a function f : E → R such that for

any e ∈ E f(e) = −f(eR) and for each e ∈ E0, 0 ≤ f(e) ≤ u(e). These conditions imply
that for e ∈ E0, −u(e) ≤ f(eR) ≤ 0. We extend the function u to E by setting u(eR) = 0
for all e ∈ E0. Then, for all edges e ∈ E we have −u(eR) ≤ f(e) ≤ u(e). The unit capacity
function satisfies u(e) = 1 for all e ∈ E0.

The excess excf (v) of a vertex v ∈ V is defined as
∑
uv=e∈E f(e). Due to anti-symmetry

of f , excf (v) is equal to the amount of flow going into v by the edges of E0 minus the amount
of flow going out of v by the edges of E0. The vertex v ∈ V is called an excess vertex if
excf (v) > 0 and deficit if excf (v) < 0. Let X be the set of excess vertices of G and let D be
the set of deficit vertices. Define the total excess Ψf as the sum of excesses of the excess
vertices, i.e., Ψf =

∑
v∈X excf (v) =

∑
v∈D −excf (v).

A flow f is called a circulation if there are no excess vertices, or equivalently, Ψf = 0.
Let c : E0 → Z be the input cost function. We extend c to E by setting c(eR) = −c(e)

for all e ∈ E0. The cost c(f) of a flow f is defined as 1
2
∑
e∈E f(e)c(e) =

∑
e∈E0

f(e)c(e).
To send a unit of flow through e ∈ E means to increase f(e) by 1 and simultaneously

decrease f(eR) by 1. By sending a unit of flow through e we increase the cost of flow by c(e).
To send a unit of flow through a path P means to send a unit of flow through each edge of P .
In this case we also say that we augment flow f along path P .

The residual network Gf of f is defined as (V,Ef), where Ef = {e ∈ E : f(e) < u(e)}.

A. Karczmarz and P. Sankowski 66:5

Price functions and distances. We call any function p : V → R a price function on G. The
reduced cost of an edge uv = e ∈ E wrt. p is defined as cp(e) := c(e)− p(u) + p(v). We call p
a feasible price function of G if each edge e ∈ E has nonnegative reduced cost wrt. p.

It is known that G has no negative-cost cycles (negative cycles, in short) if and only if
some feasible price function p for G exists. If G has no negative cycles, distances in G (where
we interpret c as a length function) are well-defined. For u, v ∈ V , we denote by δG(u, v) the
distance between u and v, or, in other words, the length of a shortest u→ v path in G.

I Fact 1. Suppose G has no negative cycles. Let t ∈ V be reachable in G from all vertices
v ∈ V . Then the distance to function δG,t(v) := δG(v, t) is a feasible price function of G.

For A,B ⊆ V (G) we sometimes write δG(A,B) to denote min{δG(u, v) : u ∈ A, v ∈ B}.

Planar graph toolbox. An r-division of a simple undirected plane graph G is a collection
of O(n/r) edge-induced subgraphs of G, called pieces, whose union is G and such that each
piece P has O(r) vertices and O(

√
r) boundary vertices. The boundary vertices ∂P of a piece

P are the vertices of P shared with some other piece.
An r-division with few holes has an additional property that for each piece P , (1) P is

connected, (2) there exist O(1) faces of P whose union of vertex sets contains ∂P .
Let G1, . . . , Gλ be some collection of plane graphs, where each Gi has a distinguished

boundary set ∂Gi lying on O(1) faces of Gi. A distance clique DC(Gi) of Gi is defined as a
complete digraph on ∂Gi such that the cost of the edge uv in DC(Gi) is equal to δGi

(u, v).

I Theorem 2 (MSSP [6, 25]). Suppose a feasible price function on Gi is given. Then the
distance clique DC(Gi) can be computed in O((|V (Gi)|+ |E(Gi)|+ |∂Gi|2) log |V (Gi)|)) time.

The graph DDG = DC(G1) ∪ . . . ∪DC(Gλ) is called a dense distance graph4.

I Theorem 3 (FR-Dijkstra [13, 16]). Given a feasible price function of DDG, single-
source shortest paths in DDG can be computed in O

(∑λ
i=1 |∂Gi|

log2 n
log2 logn

)
time, where

n = |V (DDG)|.

Scaling framework for minimum-cost circulation. The following fact characterizes mini-
mum circulations.

I Fact 4 ([32]). Let f be a circulation. Then c(f) is minimum iff Gf has no negative cycles.

It follows that a circulation f is minimum if there exists a feasible price function of Gf .

IDefinition 5 ([2, 18, 34]). A flow f is ε-optimal wrt. price function p if for any uv = e ∈ Ef ,
c(e)− p(u) + p(v) ≥ −ε.

The above notion of ε-optimality allows us, in a sense, to measure the optimality of a
circulation: the smaller ε, the closer to the optimum a circulation f is. Moreover, if we deal
with integral costs, 1

n+1 -optimality is equivalent to optimality.

I Lemma 6 ([2, 18]). Suppose the cost function has integral values. Let circulation f be
1

n+1 -optimal wrt. some price function p. Then f is a minimum cost circulation.

4 Dense distance graphs have been defined differently multiple times in the literature. We use the definition
of [16, 30] that captures all the known use cases (see [16] for discussion).

ESA 2019

66:6 Min-Cost Flow in Unit-Capacity Planar Graphs

Proof. Suppose f is not minimum-cost. By Fact 4, f is not minimum-cost iff Gf contains
a simple negative cycle C. Note that the cost of C is the same with respect to the cost
functions c and cp, as the prices cancel out. Therefore

∑
e∈C cp(e) ≥ −

n
n+1 > −1. But the

cost of this cycle is integral and hence is at least 0, a contradiction. J

Let C = maxe∈E0{|c(e)|}. Suppose we have a procedure Refine(G, f0, p0, ε) that, given
a circulation f0 in G that is 2ε-optimal wrt. p0, computes a pair (f ′, p′) such that f ′ is a
circulation in G, and it is ε-optimal wrt. p′. We use the general scaling framework, due to
Goldberg and Tarjan [18], as given in Algorithm 1. By Lemma 6, it computes a min-cost
circulation in G in O(log(nC)) iterations. Therefore, if we implement Refine to run in
T (n,m) time, we can compute a minimum cost circulation in G in O(T (n,m) log (nC)) time.

Algorithm 1 Scaling framework for min-cost circulation.
1: procedure MinimumCostCirculation(G)
2: f(e) := 0 for all e ∈ G
3: p(v) := 0 for all v ∈ V
4: ε := C/2
5: while ε > 1

n+1 do . f is 2ε-optimal wrt. p
6: (f, p) := Refine(G, f, p, ε)
7: ε := ε/2
8: return f . f is circulation 1

n+1 -optimal wrt. p, i.e., a minimum-cost circulation

3 Refinement via Successive Approximate Shortest Paths

In this section we introduce our implementation of Refine(G, f0, p0, ε). For simplicity, we
start by setting c(e) := c(e)− p0(u) + p0(v). After we are done, i.e., we have a circulation
f ′ that is ε-optimal wrt. p′, (assuming costs reduced with p0), we will return (f ′, p′ + p0)
instead. Therefore, we now have c(e) ≥ −2ε for all e ∈ Ef0 .

Let f1 be the flow initially obtained from f0 by sending a unit of flow through each edge
e ∈ Ef0 such that c(e) < 0. Note that f1 is ε-optimal, but it need not be a circulation.

We denote by f the current flow which we will gradually change into a circulation. Recall
that X is the set of excess vertices of G and D is the set of deficit vertices (with respect
to the current flow f). Recall a well-known method of finding the min-cost circulation
exactly [5, 20, 23]: repeatedly send flow through shortest X → D paths in Gf . The sets X
and D would only shrink in time. However, doing this on Gf exactly would be too costly.
Instead, we will gradually convert f into a circulation, by sending flow from vertices of X to
vertices of D but only using approximately (in a sense) shortest paths.

Let round(y, z) denote the smallest integer multiple of z that is greater than y.
For any e ∈ E, set c′(e) = round(c(e) + ε/2, ε/2). We define G′f to be the “approximate”

graph Gf with the costs given by c′ instead of c.
For convenience, let us also define an extended version G′′f of G′f to be G′f with two

additional vertices s (a super-excess-vertex) and t (a super-deficit-vertex) added. Let
M =

∑
e∈E |c′(e)|+ ε. We also add to G′′f the following auxiliary edges:

1. an edge vt for all v ∈ V , we set c′(vt) = 0 if v ∈ D and c′(vt) = M otherwise,
2. an edge sx with c′(sx) = 0 for all x ∈ X.
Clearly, δG′′

f
(s, t) = δG′

f
(X,D) and every vertex in G′′f can reach t.

A. Karczmarz and P. Sankowski 66:7

Our algorithm can be summarized very briefly, as follows. Start with f = f1. While
X 6= ∅, send a unit of flow along any shortest path P from X to D in G′f (equivalently: from
s to t in G′′f). Once finished, return f and δG′′

f
,t as the price function. The correctness of

this approach follows from the following two facts that we discuss later on:
1. G′f is negative-cycle free at all times,
2. after the algorithm finishes, f is a circulation in G that is ε-optimal wrt. δG′′

f
,t.

If implemented naively, the algorithm would need O(m) negative-weight shortest paths
computations to finish. If we used Bellman-Ford method for computing shortest paths, the
algorithm would run in O(nm2) time. To speed it up, we apply two optimizations.

First, as in the successive shortest paths algorithm for general graphs [10, 35], we observe
that the distances δG′′

f
,t computed before sending flow through a found shortest s→ t path

constitute a feasible price function of G′′f after augmenting the flow. This allows us to replace
Bellman-Ford algorithm with Dijkstra’s algorithm and reduce the time to O(m2 + nm logn).
Next, instead of augmenting the flow along a single shortest X → D path, we send flow
through a maximal set of edge-disjoint shortest X → D paths, as in Hopcroft-Karp algorithm
for maximum bipartite matching [19]. Such a set can be easily found in O(m) time when the
distances to t in G′′f are known. This way, we finish after only O(

√
m) phases of shortest

path computation and flow augmentation. The pseudocode is given in Algorithm 2.

Algorithm 2 Refinement via successive shortest paths.
Require: f0 is a circulation in G 2ε-feasible wrt. p0
Require: DistancesTo(H, t, p) computes the vector of distances (i.e., δG,t) from all v ∈

V (H) to t ∈ V (H), where p is a feasible price function of H.
Require: SendFlow(f,E∗) returns a flow f ′ such that f ′(e) equals f(e) + 1 if e ∈ E∗,

f(e)− 1 if eR ∈ E∗, and f(e) otherwise.
Output: (f, p), where f is a circulation in G ε-feasible wrt. p
1: procedure Refine(G, f0, p0, ε)
2: c(e) := c(e)− p0(u) + p0(v) for all e = uv ∈ E.
3: f := SendFlow(f0, {e ∈ Ef0 : c(e) < 0})
4: p(v) := 0 for all v ∈ V
5: while X 6= 0 do . p is a feasible price function of G′′f
6: Construct G′′f out of G′f .
7: p := DistancesTo(G′′f , t, p)
8: Q0, . . . , Qk := a maximal set of edge-disjoint s→ t paths in G′′f consisting solely

of edges satisfying c′p(e) = 0.
9: f := SendFlow(f,E((Q0 ∪ . . . ∪Qk) ∩G′f))

10: return (f,DistancesTo(G′′f , t, p) + p0) . f is ε-feasible wrt. δG′′
f
,t + p0

3.1 Analysis
Below we state some key properties of our refinement method. The proofs are can be found
in the full version of the paper.

I Lemma 7. Suppose G′′f has no negative cycles. Then f is ε-optimal wrt. δG′′
f
,t.

Proof. Recall that Gf and G′f have the same sets of edges, only different costs. Let
uv = e ∈ Gf . Set p := δG′′

f
,t. By Fact 1, c′(e)− p(u) + p(v) ≥ 0. Note that c(e) ≥ c′(e)− ε.

Hence, c(e)− p(u) + p(v) ≥ c′(e)− p(u) + p(v)− ε ≥ −ε. J

ESA 2019

66:8 Min-Cost Flow in Unit-Capacity Planar Graphs

I Lemma 8. If X 6= ∅, then there exists a path from X to D in Gf .

Before we proceed further, we need to introduce more notation. Let ∆ denote the length
of the shortest X → D path in G′f (∆ changes in time along with f).

Let q = Ψf1 . Clearly, q ≤ m. For i = 1, . . . , q, denote by fi+1 the flow (with total excess
q − i) obtained from fi by sending a unit of flow through an arbitrarily chosen shortest
X → D path Pi of G′fi

.
For i = 1, . . . , q, let ∆i be the value ∆ when f = fi. We set ∆q+1 =∞.

I Lemma 9. Let p∗i : V ∪ {s, t} → {k · ε/2 : k ∈ Z} be defined as p∗i = δG′′
fi
,t. Then:

1. G′fi
has no cycles of non-positive cost,

2. for any e ∈ Pi, the reduced cost of eR wrt. p∗i is positive,
3. p∗i is a feasible price function of both G′′fi

and G′′fi+1
,

4. 0 < ∆i ≤ ∆i+1.

By Lemmas 8 and 9, our general algorithm computes a circulation fq+1 such that p∗q is
a feasible price function of G′fq+1

. Since fq+1 has no negative cycles, by Lemma 7, fq+1 is
ε-optimal wrt. δG′′

f
,t. We conclude that the algorithm is correct.

The following lemma is the key to the running time analysis.

I Lemma 10. If X 6= ∅ (equivalently, if ∆ <∞), then Ψf ·∆ ≤ 6εm.

3.2 Efficient Implementation
As mentioned before, we could use Lemma 9 directly: start with flow f1 and p∗0 ≡ 0. Then,
repeatedly compute a shortest X → D path Pi along with the values p∗i using Dijkstra’s
algorithm on G′′f (with the help of price function p∗i−1 to make the edge costs non-negative),
and send flow through Pi to obtain fi+1. However, we can also proceed as in Hopcroft-Karp
algorithm and augment along many shortest X → D paths of cost ∆ at once. We use the
following lemma.

I Lemma 11. Let p be a feasible price function of G′′f . Suppose there is no s→ t path in
G′′f consisting of edges with reduced (wrt. p) cost 0. Then ∆ = δG′

f
(X,D) > p(s)− p(t).

Suppose we run the simple-minded algorithm. Assume that at some point f = fi, and we
have p∗i computed. Any s→ t path in G′′fi

with reduced (wrt. p∗i) cost 0 corresponds to some
shortest X → D path (of length ∆i) in G′f . Additionally, we have p∗i (s) = 0 and p∗i (t) = ∆i.

Let Q0, . . . , Qk be some maximal set of edge-disjoint s → t paths in G′′fi
with reduced

cost 0. By Lemma 9, we could in principle choose Pi = Q0, Pi+1 = Q1, . . . , Pi+k = Qk and
this would not violate the rule that we repeatedly choose shortest X → D paths.

Moreover, p∗i is a feasible price function of G′′fi+1
for any choice of Pi = Qj , j = 0, . . . , k.

Hence, the reduced cost wrt. p∗i of any eR ∈ Qj , is non-negative. Therefore, in fact p∗i is
a feasible price function of all G′′fi+1

, G′′fi+2
, . . . , G′′fi+k+1

. On the other hand, since for all
e ∈ Pi ∪ . . . ∪ Pi+k, the reduced cost (wrt. p∗i) of eR is positive, and the set Q0, . . . , Qk was
maximal, we conclude that there is no s→ t path in G′′fi+k+1

consisting only of edges with
reduced cost (wrt. p∗i) 0. But p∗i (s)− p∗(t) = ∆i, so by Lemma 11 we have ∆i+k+1 > ∆i.

Since we can choose a maximal set Q0, . . . , Qk using a DFS-style procedure in O(m) time
(for details, see Section 4.3, where we take a closer look at it to implement it faster in the
planar case), we can actually move from fi to fi+k+1 and simultaneously increase ∆ in O(m)
time. Since p∗i is a feasible price function of G′′fi+k+1

, the new price function p∗i+k+1 can be
computed, again, using Dijkstra’s algorithm. The total running time of this algorithm is
O(m+ n logn) times the number of times ∆ increases.

A. Karczmarz and P. Sankowski 66:9

I Lemma 12. The value ∆ changes O(
√
m) times.

Proof. By Lemma 9, ∆ can only increase, and if it does, it increases by at least ε/2. After it
increases 2

√
m times, ∆ ≥ ε

√
m. But then, by Lemma 10, Ψf is no more than 6

√
m. As each

change of ∆ is accompanied with some decrease of Ψf , ∆ can change O(
√
m) times more. J

I Theorem 13. Refine as implemented in Algorithm 2 runs in O((m+ n logn)
√
m).

We can in fact improve the running time to O(m
√
m) by taking advantage of so-called

Dial’s implementation of Dijkstra’s algorithm [9]. The details are deferred to the full version.

3.3 Bounding the Total Length of Augmenting Paths
I Fact 14. For every e ∈ E we have c′(e) + c′(eR) > ε.

Proof. We have c′(e) > c(e) + ε/2. Hence, c′(e) + c′(eR) > c(e) + ε/2 + c(eR) + ε/2 = ε. J

There is a subtle reason why we set c′(e) to be round(c(e) + ε/2, ε/2) instead of
round(c(e), ε). Namely, this allows us to obtain the following bound.

I Lemma 15. For any i = 1, . . . , q we have c′(fi+1)− c′(fi) < ∆i − 1
2 |Pi| · ε.

Proof. We have

c′(fi+1)− c′(fi) = 1
2
∑
e∈E

(fi+1(e)− fi(e))c′(e) = 1
2
∑
e∈Pi

(c′(e)− c′(eR)).

By Fact 14, −c′(eR) < c′(e)− ε for all e ∈ E. Hence

c′(fi+1)− c′(fi) <
∑
e∈Pi

c′(e)− 1
2 |Pi| · ε = ∆i −

1
2 |Pi| · ε. J

I Lemma 16. Let f∗ be any flow. Then c(f0)− c(f∗) ≤ 2εm.

Proof. We have

c(f0)− c(f∗) = 1
2
∑
e∈E

(f0(e)− f∗(e))c(e).

If f0(e) > f∗(e), then eR ∈ Ef0 and hence c(eR) ≥ −2ε, and thus c(e) ≤ 2ε. Otherwise, if
f0(e) < f∗(e) then e ∈ Ef0 and c(e) ≥ −2ε.

In both cases (f0(e)−f∗(e))c(e) ≤ 2ε. Therefore, since |E| = 2m, c(f0)−c(f∗) ≤ 2εm. J

I Lemma 17. Let f∗ be any flow. Then |c′(f∗)− c(f∗)| ≤ εm.

Proof. Recall that we had 0 < c′(e)− c(e) ≤ ε. Hence |f∗(e)(c′(e)− c(e))| ≤ ε and:

|c′(f∗)−c(f∗)| = 1
2

∣∣∣∣∣∑
e∈E

f∗(e)(c′(e)− c(e))

∣∣∣∣∣ ≤ 1
2
∑
e∈E
|f∗(e)(c′(e)−c(e))| ≤ 1

2
∑
e∈E

ε = εm.J

The inequalities from Lemmas 15, 16 and 17 combined give us the following important
property of the set of paths we augment along.

I Lemma 18. The total number of edges on all the paths we send flow through is O(m logm).

ESA 2019

66:10 Min-Cost Flow in Unit-Capacity Planar Graphs

Proof. By Lemma 16 and the fact that c(f1) ≤ c(f0), we have:

c(f1)− c(fq+1) ≤ c(f0)− c(fq+1) ≤ 2εm.

On the other hand, by Lemma 17 and Lemma 15, we obtain:

c(f1)− c(fq+1) ≥ (c′(f1)− εm) + (−c′(fq+1)− εm) = c′(f1)− c′(fq+1)− 2εm

=
q∑
i=1

(c′(fi)− c′(fi+1))− 2εm ≥
q∑
i=1

(1
2 |Pi| · ε−∆i)− 2εm.

By combining the two inequalities and applying Lemma 10, we get:
q∑
i=1

1
2 |Pi| ≤ 4m+

q∑
i=1

∆i

ε
≤ 4m+

q∑
i=1

6m
Ψfi

= 4m+
q∑
i=1

6m
q − i+ 1 = O(m logm). J

4 Unit-Capacity Min-Cost Circulation in Planar Graphs

In this section we show that the refinement algorithm per scale from Section 3 can be
simulated on a planar digraph more efficiently. Specifically, we prove the following theorem.

I Theorem 19. Refine can be implemented on a planar graph in Õ((nm)2/3) time.

Let r ∈ [1, n] be a parameter. Suppose we are given an r-division with few holes P1, . . . ,Pλ
of G such that for any i we have λ = O(n/r), |V (Pi)| = O(r), |∂Pi| = O(

√
r), ∂Pi lies

on O(1) faces of Pi, and the pieces are edge-disjoint. We set ∂G =
⋃λ
i=1 ∂Pi. Clearly,

|∂G| = O(n/
√
r).

In the full version we show that we can reduce our instance to the case when the above
assumptions are satisfied in nearly-linear time.

Since m might be ω(n), we cannot really guarantee that |E(Pi)| = O(r), This will not be
a problem though, since, as we will see, for all the computations involving the edges of Pi
(e.g., computing shortest paths in Pi, or sending a unit of flow through a path of Pi) of all
edges uv = e ∈ E(Pi) we will only care about an edge e ∈ E(Pi) ∩ Gf with minimal cost
c′(e). Therefore, since Pi is planar, at any time only O(r) edges of Pi will be needed.

Recall that the per-scale algorithm for general graphs (Algorithm 2) performed O(
√
m)

phases, each consisting of two steps: a shortest path computation (to compute the price
function p∗ from Lemma 9), followed by the computation of a maximal set of edge-disjoint
augmenting paths of reduced (wrt. p∗) cost 0. We will show how to implement both steps
in Õ(n/

√
r) amortized time, at the additional total data structure maintenance cost (over

all phases) of Õ(mr). Since there are O(
√
m) steps, this will yield Õ(nm)2/3) time by

appropriately setting r.
We can maintain the flow f explicitly, since it undergoes only O(m logn) edge updates (by

Lemma 18). However, we will not compute the entire price function p∗ at all times explicitly,
as this is too costly. Instead, we will only compute p∗ limited to the subset ∂G ∪ {s, t}.

For each Pi, define P ′f,i = G′f ∩ Pi. We also define P ′′f,i to be P ′f,i with vertices {s, t}
added, and those edges sv, vt of G′′f that satisfy v ∈ V (Pi) \ ∂Pi. This way, P ′′f,i ⊆ G′′f and
E(P ′′f,i) ∩E(P ′′f,j) = ∅ for i 6= j. The costs of edges e ∈ E(P ′′f,i) are the same as in G′′f , i.e.,
c′(e). Besides, for each i we will store a “local” price function pi that is feasible only for P ′′f,i,

After the algorithm finishes, we will know how the circulation looks like precisely. However,
the general scaling algorithm requires us to also output price function p such that f is an
ε-optimal circulation wrt. p. f is ε-optimal wrt. p∗ in the end, but we will only have it
computed for the vertices ∂G ∪ {s, t}. Therefore, we extend it to all remaining vertices of G.

A. Karczmarz and P. Sankowski 66:11

I Lemma 20. Suppose we are given the values of p∗ on ∂Pi and a price function pi feasible
for P ′′f,i. Then we can compute the values p∗(u) for all v ∈ V (P ′′f,i) in O(r log r) time.

Hence, in order to extend p∗ to all vertices of G once the final circulation is found, we apply
Lemma 20 to all pieces. This takes O

(
n
r · r log r

)
= O(n logn) time.

4.1 Dijkstra Step
Let us start with an implementation of the Dijkstra step computing the new price function p∗.
First, for each piece Pi we define the compressed version H ′′f,i of P ′′f,i as follows. Let
V (H ′′f,i) = ∂Pi ∪ {s, t}. The set of edges of H ′′f,i is formed by:

a distance clique DC(P ′′f,i) between vertices ∂Pi in P ′′f,i,
for each v ∈ ∂Pi, an edge sv of cost δP′′

f,i
(s, v) if this distance is finite,

for each v ∈ ∂Pi, an edge vt of cost δP′′
f,i

(v, t) if this distance is finite,
an edge st of cost δP′′

f,i
(s, t) if this distance is finite.

Recall that we store a price function pi of P ′′f,i. Therefore, by Theorem 2, DC(P ′′f,i) can be
computed in O(r log r) time. All needed distances δP′′

f,i
(s, v) and δP′′

f,i
(v, t) can be computed

in O(r log r) time using Dijkstra’s algorithm (again, with the help of price function pi).
Now define H ′′f to be

⋃λ
i=1 H

′′
f,i with edges sv and vt of G′′f that satisfy v ∈ ∂G added.

I Fact 21. For any u, v ∈ V (H ′′f), δH′′
f

(u, v) = δG′′
f
(u, v).

Observe thatH ′′f is a dense distance graph in terms of the definition of Section 2: it consists
of O(n/r) distance cliques DC(P ′′f,i) with O(

√
r) vertices each, and O(n/

√
r) additional edges

which also can be interpreted as 2-vertex distance cliques.
Hence, given a feasible price function on H ′′f , we can compute distances to t in H ′′f on it

using Theorem 3 in O
(
n/
√
r log2 n

log2 logn

)
time. Since V (H ′′f) = ∂G ∪ {s, t}, the price function

p∗ we have is indeed sufficient. The computed distances to t form the new price function p∗
on ∂G ∪ {s, t} as in the algorithm for general graphs (see Algorithm 2).

4.2 Sending Flow Through a Path
In the general case updating the flow after an augmenting path has been found was trivial.
However, as we operate on a compressed graph, the update procedure has to be more involved.

Generally speaking, we will repeatedly find some shortest s→ t path Q = e1 . . . ek in H ′′f ,
translate it to a shortest s→ t path P in G′′f and send flow through it. It is easy to see by
the definition of H ′′f that Q can be translated to a shortest s→ t path in G′′f and vice versa.
Each edge ej can be translated to either some subpath inside a single graph P ′′f,i, or an edge
of G′′f of the form sv or vt, where v ∈ ∂G. This can be done in O(r logn) time by running
Dijkstra’s algorithm on P ′′f,i with price function pi. We will guarantee that path P obtained
by concatenating the translations of individual edges ej contains no repeated edges of G′′f .

We now show how to update each H ′′f,i after sending flow through the found path P .
Note that we only need to update H ′′f,i if E(P) ∩ E(P ′′f,i) 6= ∅. In such case we call Pi an
affected piece. Observe that some piece can be affected at most O(m logm) times since the
total number of edges on all shortest augmenting paths P in the entire algorithm, regardless
of their choice, is O(m logm) (see Lemma 18).

To rebuild H ′′f,i to take into account the flow augmentation we will need a feasible price
function on P ′′f,i after the augmentation. However, we cannot be sure that what we have,
i.e., pi, will remain a good price function of P ′′f,i after the augmentation. By Lemma 9,
luckily, we know that p∗ is a feasible price function after the augmentation for the whole

ESA 2019

66:12 Min-Cost Flow in Unit-Capacity Planar Graphs

graph G′′f . In particular, p∗ (before the augmentation) limited to V (P ′′f,i) is a feasible
price function of P ′′f,i after the augmentation. Hence, we can compute new pi equal to
p∗ using Lemma 20 in O(r log r) time. Given a feasible price function pi on P ′′f,i after f
is augmented, we can recompute H ′′f,i in O(r log r) time as discussed in Section 4.1. We
conclude that the total time needed to update the graph H ′′f subject to flow augmentations
is O(mr log r logm) = O(mr logn logm).

4.3 A Path Removal Algorithm
In this section we consider an abstract “path removal” problem, that generalizes the problem
of finding a maximal set of edge-disjoint s→ t paths. We will use it to reduce the problem of
finding such a set of paths on a subgraph of G′′f consisting of edges with reduced cost 0 wrt.
p∗ to the problem of finding such a set of paths on the zero-reduced cost subgraph of H ′′f .

Suppose we have some directed acyclic graph H with a fixed source s and sink t, that
additionally undergoes some limited adversarial changes. We are asked to efficiently support
a number of rounds, until t ceases to be reachable from s. Each round goes as follows.
1. We first find either any s→ t path P , or detect that no s→ t path exists.
2. Let E+ ⊆ V ×V , and P ⊆ E− ⊆ E(H) be some adversarial sets of edges. LetH ′ = (V,E′),

where E′ = E(H) \ E− ∪ E+. Assume that for any v ∈ V (H), if v cannot reach t in H,
then v cannot reach t in H ′ either. Then the adversarial change is to remove E− from E

and add E+ to E, i.e., set E(H) = E′.

Let n̄ = |V (H)| and let m̄ be the number of edges ever seen by the algorithm, i.e., the
sum of |E(H)| and all |E+|. We will show an algorithm that finds all the paths P in O(n̄+m̄)
total time. Let us also denote by ¯̀ the sum of lengths of all returned paths P . Clearly,
¯̀≤ m̄.

A procedure handling the phase 1 of each round, i.e., finding a s→ t path or detecting
that there is none, is given in Algorithm 3. The second phase of each round simply modifies
the representation of the graph H accordingly. Throughout all rounds, we store a set W
of vertices w of H for which we have detected that there is no more w → t path in H.
Initially, W = ∅. Each edge e ∈ E(H) can be scanned or unscanned. Once e is scanned, it
remains scanned forever. The adversarial edges E+ that are inserted to E(H) are initially
unscanned. The following lemmas establishing the correctness and efficiency of the crucial
parts of Algorithm 3 are all proved in the full version.

Algorithm 3 Path-finding procedure. Returns a s → t path in H or detects there is none.
1: procedure FindPath(H)
2: Q := an empty path with a single endpoint s . Q is an s → s path
3: while s /∈ W and the other endpoint y of Q is not equal to t do . Q is an s → y path
4: if there exists an unscanned edge yv = e ∈ E(H) such that v /∈ W then
5: mark e scanned
6: Q := Qe

7: else
8: W := W ∪ {y}
9: remove the last edge of Q unless Q is empty
10: if Q = ∅ then
11: report t not reachable from s and stop
12: else
13: return Q and Q := 0.

A. Karczmarz and P. Sankowski 66:13

I Lemma 22. Algorithm 3 correctly finds an s→ t path in H or detects there is none.

I Lemma 23. The total number of times line 9 is executed, through all rounds, is O(n̄).

I Lemma 24. Line 6 of Algorithm 3 is executed O(n̄+ ¯̀) times through all rounds.

I Lemma 25. The total time used by Algorithm 3, through all rounds, is O(n̄+ m̄).

4.4 Finding a Maximal Set of Shortest Augmenting Paths
Recall that for a general graph, after computing the price function p∗ we found a maximal
set of edge-disjoint s → t paths in the graph Z ′′f , defined as a subgraph of G′′f consisting
of edges with reduced cost 0 (wrt. p∗). To accomplish that, we could in fact use the path
removal algorithm from Section 4.3 run on Z ′′f : until there was an s → t path in Z ′′f , we
would find such a path P , remove edges of P (i.e., set E− = P and E+ = ∅), and repeat.
Since in this case we never add edges, the assumption that t cannot become reachable from
any v due to updating Z ′′f is met.

Let Y ′′f be the subgraph of the graph H ′′f from Section 4.1 consisting of edges with reduced
(wrt. p∗) cost 0. Since all edges of H ′′f correspond to shortest paths in G′′f , all edges of
Y ′′f correspond to paths in G′′f with reduced cost 0. Because Z ′′f is acyclic by Lemma 9,
Y ′′f is acyclic as well. Moreover, for any two edges e1, e2 ∈ E(Y ′′f), if there is a path going
through both e1 and e2 in Y ′′f , then the paths represented by e1 and e2 are edge-disjoint
in Z ′′f (as otherwise Z ′′f would have a cycle). Therefore, any path Q in Y ′′f translates to a
simple path in Z ′′f ⊆ G′′f .

We will now explain why running Algorithm 3 on Y ′′f can be used to find a maximal set
of edge-disjoint s → t paths. Indeed, by Fact 21, Y ′′f contains an s → t path iff Z ′′f does.
Since Y ′′f is just a compressed version of Z ′′f , and Z ′′f undergoes edge deletions only (since we
only remove the found paths), the updates to Y ′′f cannot make some t reachable from some
new vertex v ∈ V (Y ′′f). Technically speaking, we should think of Y ′′f as undergoing both edge
insertions and deletions: whenever some path Q ⊆ Y ′′f is found, we include Q in E− and send
the flow through a path corresponding to Q in G′′f , as described in Section 4.2. But then for
all affected pieces Pi, H ′′f,i is recomputed and thus some of the edges of Q might be reinserted
to Y ′′f again. These edges should be seen as forming the set E+, whereas the old edges of
the recomputed graphs H ′′f,i belong to E−. In terms of the notation of Section 4.3, when
running Algorithm 3 on Y ′′f , we have n̄ = O(n/

√
r). The sum of values ¯̀ from Section 4.3

over all phases of the algorithm is, by Lemma 18, O(m logm). Similarly, again by Lemma 18,
the sum of the values m̄ from Section 4.3 over all phases, is O(m3/2 +mr2 logm) (since each
time E+ might be as large as r2 times the number of affected pieces).

Recall that there are O(
√
m) phases, and the total time needed to maintain the graph H ′′f

subject to flow augmentations is O(mr log r logm) (see Section 4.2). For each phase, running
a Dijkstra step to compute p∗ using FR-Dijkstra, followed by running Algorithm 3 directly
until there are no s→ t paths in Y ′′f would lead to O

(√
m
(
n√
r

log2 n
log2 logn

)
+m3/2 +mr2 logm

)
total time, i.e., would not yield any improvement over the general algorithm. However, we
can do better by implementing Algorithm 3 on Y ′′f more efficiently.

I Lemma 26 ([21, 24]). Let Z be the subgraph of P ′f,i consisting of edges with reduced cost
0 with respect to some feasible price function p. There exists O(

√
r) pairs of subsets (Ai,1,

Bi,1), (Ai,2, Bi,2), . . . of ∂Pi such that for each v ∈ ∂Pi:
The number of sets Ai,j (Bi,j) such that v ∈ Ai,j (v ∈ Bi,j, resp.) is O(log r).
Each Bi,j is totally ordered according to some order ≺i,j.

ESA 2019

66:14 Min-Cost Flow in Unit-Capacity Planar Graphs

For any j such that v ∈ Ai,j , there exist li,v,j , ri,v,j ∈ Bi,j such that the subset Ri,v of ∂Pi
reachable from v in Z can be expressed as

⋃
j:v∈Ai,j

{w ∈ Bi,j : li,v,j �i,j w �i,j ri,v,j}.
The sets Ai,j, Bi,j and the vertices li,v,j , ri,v,j for all v, j can be computed in O(

√
r log r)

time based on the distance clique between ∂Pi in P ′f,i and the values of p∗ on ∂Pi.

Recall that in Section 4.3, to bound the total running time, it was enough to bound the
total time spent on executing lines 4, 6 and 9. We will show that using Lemma 26, in terms
of the notation from Section 4.3, we can make the total time spent on executing line 4 only
Õ(n̄+ ¯̀) instead of O(m̄), at the cost of increasing the total time of executing line 9 to Õ(n̄).

Specifically, at the beginning of each phase we compute the data from Lemma 26 for
all pieces Pi. Since for all i we have the distance cliques DC(P ′′f,i) computed, this takes
O
(
n
r ·
√
r log r

)
= O(n/

√
r logn) time. We will also recompute the information of Lemma 26

for an affected piece Pi after H ′′f,i is recomputed. As the total number of times some piece is
affected is O(m logm), this takes O(m

√
r log r logm) time through all phases.

Whenever the data of Lemma 26 is computed for some piece Pi, for each pair (Ai,j , Bi,j)
we store Bi,j ∩W in a dynamic predecessor/successor data structure Di,j , sorted by ≺i,j .
For each v ∈ ∂Pi and j such that v ∈ Ai,j we store a vertex nexti,v,j initially equal to
li,v,j . It is easy to see that these auxiliary data structures can be constructed in time
linear in their size, i.e., O(

√
r log r) time. Hence, the total cost of computing them is

O(
√
mn/
√
r logn+m

√
r log r logm) = O

(√
m
(
n√
r

log2 n
log2 logn

)
+mr logn logm

)
.

Now, to implement line 9, when y is inserted into W we go through all pieces Pi such
that y ∈ ∂Pi and all Bi,j such that y ∈ Bi,j . For each such (i, j), we remove y from Di,j

in O(log logn) time. Recall that the sum of numbers of such pairs (i, j) over all v ∈ ∂G is
O(
∑λ
i=1 |∂Pi| log r) = O(n/

√
r logn). Hence, by Lemma 23 the total time spent on executing

line 9 in a single phase is O(n/
√
r logn log logn).

Finally, we implement line 4 as follows. The unscanned edges of Y ′′f that are not between
boundary vertices are handled in a simple-minded way as in Lemma 25. There are only
O(n/

√
r) of those, so we can neglect them. In order to be able to efficiently find some

unscanned edge yv such that y, v ∈ ∂G and v /∈ W , we keep for any v ∈ ∂G a set Uv of
pieces Pi such that v ∈ ∂Pi and there may still be some unscanned edges from v to w ∈ ∂Pi
in H ′′f,i. Similarly, for each Pi ∈ Uv we maintain a set Uv,i of data structures Di,j such that
nexti,v,j 6= nil. Whenever the data of Lemma 26 is computed for Pi, Pi is inserted back to
Uv for all v ∈ ∂Pi, and the sets Uv,i are recomputed with no additional asymptotic overhead.
To find an unscanned edge yv, for each Pi ∈ Uy we proceed as follows. We attempt to find
an unscanned edge yv in Pi. If we succeed or Uy is empty, we stop. Otherwise we remove Pi
from Uy and repeat, i.e., try another Pj ∈ Uy, unless Uy is empty. To find an unscanned
edge yv from a piece Pi, we similarly try to find an unscanned edge yv in subsequent data
structures Di,j ∈ Uv,i, and remove the data structures for which we fail from Uv,i. For a
single data structure Di,j , we maintain an invariant that an edge yw, w ∈ Di,j has been
scanned iff w ≺i,j nexti,v,j . Hence, to find the next unscanned edge, we first find x ∈ Di,j

such that nexti,v,j �i,j x and x is smallest possible. This can be done in O(log logn) time
since Di,j is a dynamic successor data structure. If x does not exist or ri,v,j ≺ x, then, by
Lemma 26, there are no more unscanned edges yw such that w ∈ Di,j , and thus we remove
Di,j from Uv,i. Otherwise, we return an edge yx and set nexti,v,j to be the successor of x in
Di,j (or possibly nexti,v,j := nil if none exists), again in O(log logn) time.

Observe that all “failed” attempts to find an edge yv, where v ∈ ∂G can be charged
to an insertion of some Pi to Uy or to an insertion of some Di,j to Uy,i. The total
number of such insertions is again O

(√
m n√

r
logn+m

√
r log r logm

)
. A successful at-

A. Karczmarz and P. Sankowski 66:15

tempt, on the other hand, costs O(log logn) worst-case time. Since line 4 is executed
O(
√
mn/
√
r +m logn) times through all phases, the total time spent on executing line 4 is

again O
(√

m
(
n√
r

log2 n
log2 logn

)
+mr logn logm

)
. By setting r = n2/3

m1/3 ·
(

logn
logm·log2 logn

)2/3
we

obtain the main result of this paper.

I Theorem 27. The min-cost circulation in a planar multigraph can be found in
O
(

(nm)2/3 · log5/3 n log1/3 m
log4/3 logn · log (nC)

)
time.

References
1 Mudabir Kabir Asathulla, Sanjeev Khanna, Nathaniel Lahn, and Sharath Raghvendra. A Faster

Algorithm for Minimum-Cost Bipartite Perfect Matching in Planar Graphs. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New
Orleans, LA, USA, January 7-10, 2018, pages 457–476, 2018. doi:10.1137/1.9781611975031.
31.

2 Dimitri P. Bertsekas and Paul Tseng. Relaxation Methods for Minimum Cost Ordinary
and Generalized Network Flow Problems. Operations Research, 36(1):93–114, 1988. doi:
10.1287/opre.36.1.93.

3 Glencora Borradaile and Philip N. Klein. An O(n log n) algorithm for maximum st-flow in a
directed planar graph. J. ACM, 56(2):9:1–9:30, 2009. doi:10.1145/1502793.1502798.

4 Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-
Nilsen. Multiple-Source Multiple-Sink Maximum Flow in Directed Planar Graphs in Near-
Linear Time. SIAM J. Comput., 46(4):1280–1303, 2017. doi:10.1137/15M1042929.

5 Robert G Busacker and Paul J Gowen. A procedure for determining a family of minimum-cost
network flow patterns. Technical report, RESEARCH ANALYSIS CORP MCLEAN VA, 1960.

6 Sergio Cabello, Erin W. Chambers, and Jeff Erickson. Multiple-Source Shortest Paths in
Embedded Graphs. SIAM J. Comput., 42(4):1542–1571, 2013. doi:10.1137/120864271.

7 Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. Negative-Weight
Shortest Paths and Unit Capacity Minimum Cost Flow in Õ (m10/7 log W) Time (Extended
Abstract). In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 752–771,
2017. doi:10.1137/1.9781611974782.48.

8 Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy generalized flow via
interior point algorithms. In Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 451–460, 2008.
doi:10.1145/1374376.1374441.

9 Robert B. Dial. Algorithm 360: shortest-path forest with topological ordering [H]. Commun.
ACM, 12(11):632–633, 1969. doi:10.1145/363269.363610.

10 Jack Edmonds and Richard M. Karp. Theoretical Improvements in Algorithmic Efficiency for
Network Flow Problems. J. ACM, 19(2):248–264, 1972. doi:10.1145/321694.321699.

11 Jeff Erickson. Maximum Flows and Parametric Shortest Paths in Planar Graphs. In
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 794–804, 2010. doi:
10.1137/1.9781611973075.65.

12 Shimon Even and Robert Endre Tarjan. Network Flow and Testing Graph Connectivity.
SIAM J. Comput., 4(4):507–518, 1975. doi:10.1137/0204043.

13 Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest paths,
and near linear time. J. Comput. Syst. Sci., 72(5):868–889, 2006. doi:10.1016/j.jcss.2005.
05.007.

14 L. R. Ford and D. R. Fulkerson. Constructing Maximal Dynamic Flows from Static Flows.
Operations Research, 6(3):419–433, 1958.

ESA 2019

http://dx.doi.org/10.1137/1.9781611975031.31
http://dx.doi.org/10.1137/1.9781611975031.31
http://dx.doi.org/10.1287/opre.36.1.93
http://dx.doi.org/10.1287/opre.36.1.93
http://dx.doi.org/10.1145/1502793.1502798
http://dx.doi.org/10.1137/15M1042929
http://dx.doi.org/10.1137/120864271
http://dx.doi.org/10.1137/1.9781611974782.48
http://dx.doi.org/10.1145/1374376.1374441
http://dx.doi.org/10.1145/363269.363610
http://dx.doi.org/10.1145/321694.321699
http://dx.doi.org/10.1137/1.9781611973075.65
http://dx.doi.org/10.1137/1.9781611973075.65
http://dx.doi.org/10.1137/0204043
http://dx.doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1016/j.jcss.2005.05.007

66:16 Min-Cost Flow in Unit-Capacity Planar Graphs

15 Harold N. Gabow and Robert Endre Tarjan. Faster Scaling Algorithms for Network Problems.
SIAM J. Comput., 18(5):1013–1036, 1989. doi:10.1137/0218069.

16 Pawel Gawrychowski and Adam Karczmarz. Improved Bounds for Shortest Paths in Dense
Distance Graphs. In 45th International Colloquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pages 61:1–61:15, 2018. doi:10.4230/
LIPIcs.ICALP.2018.61.

17 Andrew V. Goldberg, Sagi Hed, Haim Kaplan, and Robert E. Tarjan. Minimum-Cost Flows
in Unit-Capacity Networks. Theory Comput. Syst., 61(4):987–1010, 2017. doi:10.1007/
s00224-017-9776-7.

18 Andrew V. Goldberg and Robert E. Tarjan. Finding Minimum-Cost Circulations by Successive
Approximation. Math. Oper. Res., 15(3):430–466, 1990. doi:10.1287/moor.15.3.430.

19 John E. Hopcroft and Richard M. Karp. An n5/2 Algorithm for Maximum Matchings in
Bipartite Graphs. SIAM J. Comput., 2(4):225–231, 1973. doi:10.1137/0202019.

20 Masao Iri. A new method of solving transportation-network problems. Journal of the Operations
Research Society of Japan, 1960.

21 Giuseppe F. Italiano, Adam Karczmarz, Jakub Łącki, and Piotr Sankowski. Decremental
single-source reachability in planar digraphs. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 1108–1121, 2017. doi:10.1145/3055399.3055480.

22 Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Improved
algorithms for min cut and max flow in undirected planar graphs. In Proceedings of the 43rd
ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011,
pages 313–322, 2011. doi:10.1145/1993636.1993679.

23 William S. Jewell. Optimal Flow through Networks with Gains. Operations Research, 10(4):476–
499, 1962. URL: http://www.jstor.org/stable/168050.

24 Adam Karczmarz. Decremental Transitive Closure and Shortest Paths for Planar Digraphs
and Beyond. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 73–92, 2018.
doi:10.1137/1.9781611975031.5.

25 Philip N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British
Columbia, Canada, January 23-25, 2005, pages 146–155, 2005. URL: http://dl.acm.org/
citation.cfm?id=1070432.1070454.

26 Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator de-
compositions for planar graphs in linear time. In Symposium on Theory of Comput-
ing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 505–514, 2013.
doi:10.1145/2488608.2488672.

27 Nathaniel Lahn and Sharath Raghvendra. A Faster Algorithm for Minimum-Cost Bipartite
Matching in Minor-Free Graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
569–588, 2019. doi:10.1137/1.9781611975482.36.

28 Yin Tat Lee and Aaron Sidford. Path Finding Methods for Linear Programming: Solving
Linear Programs in Õ(vrank) Iterations and Faster Algorithms for Maximum Flow. In 55th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014, pages 424–433, 2014. doi:10.1109/FOCS.2014.52.

29 Gary L. Miller and Joseph Naor. Flow in Planar Graphs with Multiple Sources and Sinks.
SIAM J. Comput., 24(5):1002–1017, 1995. doi:10.1137/S0097539789162997.

30 Yahav Nussbaum. Network flow problems in planar graphs. PhD thesis, Tel Aviv University,
2014.

31 James B. Orlin. A Faster Strongly Polynominal Minimum Cost Flow Algorithm. In Proceedings
of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA, pages 377–387, 1988. doi:10.1145/62212.62249.

http://dx.doi.org/10.1137/0218069
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.61
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.61
http://dx.doi.org/10.1007/s00224-017-9776-7
http://dx.doi.org/10.1007/s00224-017-9776-7
http://dx.doi.org/10.1287/moor.15.3.430
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1145/3055399.3055480
http://dx.doi.org/10.1145/1993636.1993679
http://www.jstor.org/stable/168050
http://dx.doi.org/10.1137/1.9781611975031.5
http://dl.acm.org/citation.cfm?id=1070432.1070454
http://dl.acm.org/citation.cfm?id=1070432.1070454
http://dx.doi.org/10.1145/2488608.2488672
http://dx.doi.org/10.1137/1.9781611975482.36
http://dx.doi.org/10.1109/FOCS.2014.52
http://dx.doi.org/10.1137/S0097539789162997
http://dx.doi.org/10.1145/62212.62249

A. Karczmarz and P. Sankowski 66:17

32 Thomas L Saaty and Robert G Busacker. Finite graphs and networks: An introduction with
applications. McGraw-Hill Book Company, 1965.

33 Piotr Sankowski. NC algorithms for weighted planar perfect matching and related problems.
In 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018,
July 9-13, 2018, Prague, Czech Republic, pages 97:1–97:16, 2018. doi:10.4230/LIPIcs.ICALP.
2018.97.

34 Éva Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica,
5(3):247–256, 1985. doi:10.1007/BF02579369.

35 Nobuaki Tomizawa. On some techniques useful for solution of transportation network problems.
Networks, 1(2):173–194, 1971.

ESA 2019

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.97
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.97
http://dx.doi.org/10.1007/BF02579369

	Introduction
	Preliminaries
	Refinement via Successive Approximate Shortest Paths
	Analysis
	Efficient Implementation
	Bounding the Total Length of Augmenting Paths

	Unit-Capacity Min-Cost Circulation in Planar Graphs
	Dijkstra Step
	Sending Flow Through a Path
	A Path Removal Algorithm
	Finding a Maximal Set of Shortest Augmenting Paths

