4,157 research outputs found

    Speculative Segmented Sum for Sparse Matrix-Vector Multiplication on Heterogeneous Processors

    Full text link
    Sparse matrix-vector multiplication (SpMV) is a central building block for scientific software and graph applications. Recently, heterogeneous processors composed of different types of cores attracted much attention because of their flexible core configuration and high energy efficiency. In this paper, we propose a compressed sparse row (CSR) format based SpMV algorithm utilizing both types of cores in a CPU-GPU heterogeneous processor. We first speculatively execute segmented sum operations on the GPU part of a heterogeneous processor and generate a possibly incorrect results. Then the CPU part of the same chip is triggered to re-arrange the predicted partial sums for a correct resulting vector. On three heterogeneous processors from Intel, AMD and nVidia, using 20 sparse matrices as a benchmark suite, the experimental results show that our method obtains significant performance improvement over the best existing CSR-based SpMV algorithms. The source code of this work is downloadable at https://github.com/bhSPARSE/Benchmark_SpMV_using_CSRComment: 22 pages, 8 figures, Published at Parallel Computing (PARCO

    CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector Multiplication

    Full text link
    Sparse matrix-vector multiplication (SpMV) is a fundamental building block for numerous applications. In this paper, we propose CSR5 (Compressed Sparse Row 5), a new storage format, which offers high-throughput SpMV on various platforms including CPUs, GPUs and Xeon Phi. First, the CSR5 format is insensitive to the sparsity structure of the input matrix. Thus the single format can support an SpMV algorithm that is efficient both for regular matrices and for irregular matrices. Furthermore, we show that the overhead of the format conversion from the CSR to the CSR5 can be as low as the cost of a few SpMV operations. We compare the CSR5-based SpMV algorithm with 11 state-of-the-art formats and algorithms on four mainstream processors using 14 regular and 10 irregular matrices as a benchmark suite. For the 14 regular matrices in the suite, we achieve comparable or better performance over the previous work. For the 10 irregular matrices, the CSR5 obtains average performance improvement of 17.6\%, 28.5\%, 173.0\% and 293.3\% (up to 213.3\%, 153.6\%, 405.1\% and 943.3\%) over the best existing work on dual-socket Intel CPUs, an nVidia GPU, an AMD GPU and an Intel Xeon Phi, respectively. For real-world applications such as a solver with only tens of iterations, the CSR5 format can be more practical because of its low-overhead for format conversion. The source code of this work is downloadable at https://github.com/bhSPARSE/Benchmark_SpMV_using_CSR5Comment: 12 pages, 10 figures, In Proceedings of the 29th ACM International Conference on Supercomputing (ICS '15

    Batched Linear Algebra Problems on GPU Accelerators

    Get PDF
    The emergence of multicore and heterogeneous architectures requires many linear algebra algorithms to be redesigned to take advantage of the accelerators, such as GPUs. A particularly challenging class of problems, arising in numerous applications, involves the use of linear algebra operations on many small-sized matrices. The size of these matrices is usually the same, up to a few hundred. The number of them can be thousands, even millions. Compared to large matrix problems with more data parallel computation that are well suited on GPUs, the challenges of small matrix problems lie in the low computing intensity, the large sequential operation fractions, and the big PCI-E overhead. These challenges entail redesigning the algorithms instead of merely porting the current LAPACK algorithms. We consider two classes of problems. The first is linear systems with one-sided factorizations (LU, QR, and Cholesky) and their solver, forward and backward substitution. The second is a two-sided Householder bi-diagonalization. They are challenging to develop and are highly demanded in applications. Our main efforts focus on the same-sized problems. Variable-sized problems are also considered, though to a lesser extent. Our contributions can be summarized as follows. First, we formulated a batched linear algebra framework to solve many data-parallel, small-sized problems/tasks. Second, we redesigned a set of fundamental linear algebra algorithms for high- performance, batched execution on GPU accelerators. Third, we designed batched BLAS (Basic Linear Algebra Subprograms) and proposed innovative optimization techniques for high-performance computation. Fourth, we illustrated the batched methodology on real-world applications as in the case of scaling a CFD application up to 4096 nodes on the Titan supercomputer at Oak Ridge National Laboratory (ORNL). Finally, we demonstrated the power, energy and time efficiency of using accelerators as compared to CPUs. Our solutions achieved large speedups and high energy efficiency compared to related routines in CUBLAS on NVIDIA GPUs and MKL on Intel Sandy-Bridge multicore CPUs. The modern accelerators are all Single-Instruction Multiple-Thread (SIMT) architectures. Our solutions and methods are based on NVIDIA GPUs and can be extended to other accelerators, such as the Intel Xeon Phi and AMD GPUs based on OpenCL

    On the acceleration of wavefront applications using distributed many-core architectures

    Get PDF
    In this paper we investigate the use of distributed graphics processing unit (GPU)-based architectures to accelerate pipelined wavefront applications—a ubiquitous class of parallel algorithms used for the solution of a number of scientific and engineering applications. Specifically, we employ a recently developed port of the LU solver (from the NAS Parallel Benchmark suite) to investigate the performance of these algorithms on high-performance computing solutions from NVIDIA (Tesla C1060 and C2050) as well as on traditional clusters (AMD/InfiniBand and IBM BlueGene/P). Benchmark results are presented for problem classes A to C and a recently developed performance model is used to provide projections for problem classes D and E, the latter of which represents a billion-cell problem. Our results demonstrate that while the theoretical performance of GPU solutions will far exceed those of many traditional technologies, the sustained application performance is currently comparable for scientific wavefront applications. Finally, a breakdown of the GPU solution is conducted, exposing PCIe overheads and decomposition constraints. A new k-blocking strategy is proposed to improve the future performance of this class of algorithm on GPU-based architectures

    Approximate FPGA-based LSTMs under Computation Time Constraints

    Full text link
    Recurrent Neural Networks and in particular Long Short-Term Memory (LSTM) networks have demonstrated state-of-the-art accuracy in several emerging Artificial Intelligence tasks. However, the models are becoming increasingly demanding in terms of computational and memory load. Emerging latency-sensitive applications including mobile robots and autonomous vehicles often operate under stringent computation time constraints. In this paper, we address the challenge of deploying computationally demanding LSTMs at a constrained time budget by introducing an approximate computing scheme that combines iterative low-rank compression and pruning, along with a novel FPGA-based LSTM architecture. Combined in an end-to-end framework, the approximation method's parameters are optimised and the architecture is configured to address the problem of high-performance LSTM execution in time-constrained applications. Quantitative evaluation on a real-life image captioning application indicates that the proposed methods required up to 6.5x less time to achieve the same application-level accuracy compared to a baseline method, while achieving an average of 25x higher accuracy under the same computation time constraints.Comment: Accepted at the 14th International Symposium in Applied Reconfigurable Computing (ARC) 201
    corecore