3,657 research outputs found

    Minimal Disconnected Cuts in Planar Graphs

    Get PDF
    The problem of finding a disconnected cut in a graph is NP-hard in general but polynomial-time solvable on planar graphs. The problem of finding a minimal disconnected cut is also NP-hard but its computational complexity was not known for planar graphs. We show that it is polynomial-time solvable on 3-connected planar graphs but NP-hard for 2-connected planar graphs. Our technique for the first result is based on a structural characterization of minimal disconnected cuts in 3-connected inline image-free-minor graphs and on solving a topological minor problem in the dual. In addition we show that the problem of finding a minimal connected cut of size at least 3 is NP-hard for 2-connected apex graphs. Finally, we relax the notion of minimality and prove that the problem of finding a so-called semi-minimal disconnected cut is still polynomial-time solvable on planar graphs

    Max s,ts,t-Flow Oracles and Negative Cycle Detection in Planar Digraphs

    Full text link
    We study the maximum s,ts,t-flow oracle problem on planar directed graphs where the goal is to design a data structure answering max s,ts,t-flow value (or equivalently, min s,ts,t-cut value) queries for arbitrary source-target pairs (s,t)(s,t). For the case of polynomially bounded integer edge capacities, we describe an exact max s,ts,t-flow oracle with truly subquadratic space and preprocessing, and sublinear query time. Moreover, if (1ϵ)(1-\epsilon)-approximate answers are acceptable, we obtain a static oracle with near-linear preprocessing and O~(n3/4)\tilde{O}(n^{3/4}) query time and a dynamic oracle supporting edge capacity updates and queries in O~(n6/7)\tilde{O}(n^{6/7}) worst-case time. To the best of our knowledge, for directed planar graphs, no (approximate) max s,ts,t-flow oracles have been described even in the unweighted case, and only trivial tradeoffs involving either no preprocessing or precomputing all the n2n^2 possible answers have been known. One key technical tool we develop on the way is a sublinear (in the number of edges) algorithm for finding a negative cycle in so-called dense distance graphs. By plugging it in earlier frameworks, we obtain improved bounds for other fundamental problems on planar digraphs. In particular, we show: (1) a deterministic O(nlog(nC))O(n\log(nC)) time algorithm for negatively-weighted SSSP in planar digraphs with integer edge weights at least C-C. This improves upon the previously known bounds in the important case of weights polynomial in nn, and (2) an improved O(nlogn)O(n\log{n}) bound on finding a perfect matching in a bipartite planar graph.Comment: Extended abstract to appear in SODA 202

    Faster Shortest Paths in Dense Distance Graphs, with Applications

    Full text link
    We show how to combine two techniques for efficiently computing shortest paths in directed planar graphs. The first is the linear-time shortest-path algorithm of Henzinger, Klein, Subramanian, and Rao [STOC'94]. The second is Fakcharoenphol and Rao's algorithm [FOCS'01] for emulating Dijkstra's algorithm on the dense distance graph (DDG). A DDG is defined for a decomposition of a planar graph GG into regions of at most rr vertices each, for some parameter r<nr < n. The vertex set of the DDG is the set of Θ(n/r)\Theta(n/\sqrt r) vertices of GG that belong to more than one region (boundary vertices). The DDG has Θ(n)\Theta(n) arcs, such that distances in the DDG are equal to the distances in GG. Fakcharoenphol and Rao's implementation of Dijkstra's algorithm on the DDG (nicknamed FR-Dijkstra) runs in O(nlog(n)r1/2logr)O(n\log(n) r^{-1/2} \log r) time, and is a key component in many state-of-the-art planar graph algorithms for shortest paths, minimum cuts, and maximum flows. By combining these two techniques we remove the logn\log n dependency in the running time of the shortest-path algorithm, making it O(nr1/2log2r)O(n r^{-1/2} \log^2r). This work is part of a research agenda that aims to develop new techniques that would lead to faster, possibly linear-time, algorithms for problems such as minimum-cut, maximum-flow, and shortest paths with negative arc lengths. As immediate applications, we show how to compute maximum flow in directed weighted planar graphs in O(nlogp)O(n \log p) time, where pp is the minimum number of edges on any path from the source to the sink. We also show how to compute any part of the DDG that corresponds to a region with rr vertices and kk boundary vertices in O(rlogk)O(r \log k) time, which is faster than has been previously known for small values of kk

    Decremental Single-Source Reachability in Planar Digraphs

    Full text link
    In this paper we show a new algorithm for the decremental single-source reachability problem in directed planar graphs. It processes any sequence of edge deletions in O(nlog2nloglogn)O(n\log^2{n}\log\log{n}) total time and explicitly maintains the set of vertices reachable from a fixed source vertex. Hence, if all edges are eventually deleted, the amortized time of processing each edge deletion is only O(log2nloglogn)O(\log^2 n \log \log n), which improves upon a previously known O(n)O(\sqrt{n}) solution. We also show an algorithm for decremental maintenance of strongly connected components in directed planar graphs with the same total update time. These results constitute the first almost optimal (up to polylogarithmic factors) algorithms for both problems. To the best of our knowledge, these are the first dynamic algorithms with polylogarithmic update times on general directed planar graphs for non-trivial reachability-type problems, for which only polynomial bounds are known in general graphs
    corecore