56 research outputs found

    Accelerating sequential programs using FastFlow and self-offloading

    Full text link
    FastFlow is a programming environment specifically targeting cache-coherent shared-memory multi-cores. FastFlow is implemented as a stack of C++ template libraries built on top of lock-free (fence-free) synchronization mechanisms. In this paper we present a further evolution of FastFlow enabling programmers to offload part of their workload on a dynamically created software accelerator running on unused CPUs. The offloaded function can be easily derived from pre-existing sequential code. We emphasize in particular the effective trade-off between human productivity and execution efficiency of the approach.Comment: 17 pages + cove

    Enhancing the performance of Decoupled Software Pipeline through Backward Slicing

    Get PDF
    The rapidly increasing number of cores available in multicore processors does not necessarily lead directly to a commensurate increase in performance: programs written in conventional languages, such as C, need careful restructuring, preferably automatically, before the benefits can be observed in improved run-times. Even then, much depends upon the intrinsic capacity of the original program for concurrent execution. The subject of this paper is the performance gains from the combined effect of the complementary techniques of the Decoupled Software Pipeline (DSWP) and (backward) slicing. DSWP extracts threadlevel parallelism from the body of a loop by breaking it into stages which are then executed pipeline style: in effect cutting across the control chain. Slicing, on the other hand, cuts the program along the control chain, teasing out finer threads that depend on different variables (or locations). parts that depend on different variables. The main contribution of this paper is to demonstrate that the application of DSWP, followed by slicing offers notable improvements over DSWP alone, especially when there is a loop-carried dependence that prevents the application of the simpler DOALL optimization. Experimental results show an improvement of a factor of ?1.6 for DSWP + slicing over DSWP alone and a factor of ?2.4 for DSWP + slicing over the original sequential code

    Single-Producer/Single-Consumer Queues on Shared Cache Multi-Core Systems

    Full text link
    Using efficient point-to-point communication channels is critical for implementing fine grained parallel program on modern shared cache multi-core architectures. This report discusses in detail several implementations of wait-free Single-Producer/Single-Consumer queue (SPSC), and presents a novel and efficient algorithm for the implementation of an unbounded wait-free SPSC queue (uSPSC). The correctness proof of the new algorithm, and several performance measurements based on simple synthetic benchmark and microbenchmark, are also discussed

    FastFlow: Efficient Parallel Streaming Applications on Multi-core

    Full text link
    Shared memory multiprocessors come back to popularity thanks to rapid spreading of commodity multi-core architectures. As ever, shared memory programs are fairly easy to write and quite hard to optimise; providing multi-core programmers with optimising tools and programming frameworks is a nowadays challenge. Few efforts have been done to support effective streaming applications on these architectures. In this paper we introduce FastFlow, a low-level programming framework based on lock-free queues explicitly designed to support high-level languages for streaming applications. We compare FastFlow with state-of-the-art programming frameworks such as Cilk, OpenMP, and Intel TBB. We experimentally demonstrate that FastFlow is always more efficient than all of them in a set of micro-benchmarks and on a real world application; the speedup edge of FastFlow over other solutions might be bold for fine grain tasks, as an example +35% on OpenMP, +226% on Cilk, +96% on TBB for the alignment of protein P01111 against UniProt DB using Smith-Waterman algorithm.Comment: 23 pages + cove

    Lock-free Concurrent Data Structures

    Full text link
    Concurrent data structures are the data sharing side of parallel programming. Data structures give the means to the program to store data, but also provide operations to the program to access and manipulate these data. These operations are implemented through algorithms that have to be efficient. In the sequential setting, data structures are crucially important for the performance of the respective computation. In the parallel programming setting, their importance becomes more crucial because of the increased use of data and resource sharing for utilizing parallelism. The first and main goal of this chapter is to provide a sufficient background and intuition to help the interested reader to navigate in the complex research area of lock-free data structures. The second goal is to offer the programmer familiarity to the subject that will allow her to use truly concurrent methods.Comment: To appear in "Programming Multi-core and Many-core Computing Systems", eds. S. Pllana and F. Xhafa, Wiley Series on Parallel and Distributed Computin
    • …
    corecore