
Task-Level Pipelining in
Configurable Multicore

Architectures

Ali Azarian

Supervisor: João Manuel Paiva Cardoso

Doctoral Program in Informatics Engineering

January, 2016

© Ali Azarian: January, 2016

Faculty of Engineering, University of Porto (FEUP)

Task-Level Pipelining in Configurable
Multicore Architectures

Ali Azarian

Dissertation submitted to Faculdade de Engenharia da Universidade do Porto

to obtain the degree of

Doctor of Philosophy (Ph.D.) in Informatics Engineering

President: Prof. Dr. Eugénio da Costa Oliveira, University of Porto

Referee: Dr. José Gabriel de Figueiredo Coutinho, Imperial College London

Referee: Prof. Dr. João Luís Ferreira Sobral, University of Minho

Referee: Prof. Dr. Jorge Manuel Gomes Barbosa, University of Porto

January, 2016

This thesis is dedicated to:
Nasrin, Amir hossein and my parents

Abstract

Techniques to speedup and accelerate the execution of sequential applications con-
sidering the multicore synergies provided by contemporary architectures, such as
the ones possible to implement using Field-Programmable Gate Arrays (FPGAs),
are increasingly important. One of the techniques is task-level pipelining, seen as a
suitable technique for multicore based systems, especially when dealing with appli-
cations consisting of producer/consumer (P/C) tasks. In order to provide task-level
pipelining, efficient data communication and synchronization schemes between pro-
ducers and consumers are key. The traditional mechanisms to provide data commu-
nication and synchronization between P/C pairs, such as FIFO-channels and shared
memory based empty/full flag schemes, may not be feasible and/or efficient for all
types of applications.

This thesis proposes an approach for pipelining tasks able to deal with in-order
and out-of-order communication patterns between P/C pairs. In order to provide
efficient communication and synchronization between producer/consumer tasks, we
propose fine- and coarse-grained data synchronization approaches to achieve pipelin-
ing execution in FPGA-based multicore architectures. Our approach is able to
speedup the overall execution of successive, data-dependent tasks, by using multiple
cores and specific customization features provided by FPGAs. An important com-
ponent of our approach is the use of inter-stage buffer schemes to communicate data
and to synchronize the cores associated with the producer/consumer tasks. Recog-
nizing the importance to reduce the number of accesses to shared and/or external
memories, we propose optimization techniques for our fine-grained data synchroniza-
tion approach, specially addressing the reduction of memory accesses. We evaluate
our approaches with a set of representative benchmarks using an FPGA board and
measurements on real hardware. The experimental results show the feasibility of our
approaches in both in-order and out-of-order producer/consumer tasks. Moreover,
the results using our approach reveal noticeable performance improvements for a
number of benchmarks over a single core implementation without using task-level
pipelining.

Keywords: Multicore architectures. Task-level pipelining. FPGA. Producer/-
Consumer data communication.

iii

Resumo

Técnicas que permitam acelerar a execução de aplicações sequenciais têm assum-
ido uma importância cada vez maior no contexto de arquiteturas multinúcleo, in-
cluindo as implementadas utilizando Field-Programmable Gate Arrays (FPGAs) .
Uma dessas técnicas é a execução em pipelining a nível de tarefas, a qual permite
lidar com aplicações que contêm tarefas do tipo produtor/consumidor (P/C). Para
utilização desse pipelining, é importante haver comunicação de dados e formas de sin-
cronização entre produtores e consumidores eficientes. Os mecanismos tradicionais
que possibilitam comunicação e sincronismo entre pares de P/C, tais como canais
FIFO e bits de sinalização vazio/cheio baseados em memória partilhada podem não
ser factíveis e/ou eficientes para todos os tipos de aplicações.

Esta tese propõe uma abordagem para alcançar o pipelining de tarefas, incluindo
tarefas com padrões de comunicação em ordem ou fora de ordem. Reconhecendo a
importância da comunicação e da sincronização entre pares P/C, propõe-se utilizar
abordagens de sincronização com granulosidades fina e grossa, possibilitando a exe-
cução em pipeline de tarefas P/C em sistemas multinúcleo baseados em FPGA. As
abordagens propostas permitem acelerar a execução global de tarefas sucessivas e
com dependência de dados, por meio da utilização de múltiplos núcleos e de carac-
terísticas específicas proporcionadas pelos FPGAs. Um importante componente da
abordagem proposta é a utilização de um buffer para a comunicação de dados e para
a sincronização dos núcleos associados às tarefas produtoras/consumidoras. Além
disso, são propostas técnicas de otimização para essa abordagem de sincronização de
dados de granularidade fina, a fim de reduzir o número de acessos a memórias par-
tilhadas e/ou externas. As abordagens propostas foram avaliadas com a execução
de um conjunto de benchmarks em uma placa de desenvolvimento para FPGAs e
com medições reais. Os resultados das experiências mostram que essas abordagens
são factíveis para tarefas do tipo P/C, tanto com execução em ordem quanto com
execução fora de ordem. Adicionalmente, os resultados revelam melhorias de desem-
penho significativas para a execução de diversos benchmarks quando comparados
com uma implementação com um núcleo e sem pipelining a nível de tarefas.

Keywords: Arquiteturas multinúcleo (multicore). pipelining a nível de tarefas.
FPGA. comunicação de dados produtor/consumidor.

v

Acknowledgments

First and foremost, I would like to express my special appreciation and thanks to my
adviser Professor João Manuel Paiva Cardoso for taking me as his student, for
all the time he spent around my work and for all his support, patience, motivation
and immense knowledge. I would like to thank him for encouraging my research and
for allowing me to grow as a member of his research group. He gave me invaluable
guidance and pivotal feedback throughout and continuously drove me to do better
and better. I could not have imagined having a better adviser and mentor for my
Ph.D. study.

I also wish to express my gratitude to my committee members for serving as my
committee members even at hardship.

However, this work would not have been possible without the support of the
many people I have met during the several years that took this Ph.D., and they also
deserve a mention. I would like to convey my sincere thanks to Adriano Kaminski
Sanches, which has been as a close friend for me during his stay in the lab; my
colleagues from the SPeCS lab, André C. Santos, Ricardo Nobre, João Bispo, Tiago
Carvalho, Pedro Pinto, Luís Reis and Maria Pedroto for all of their technical and
non-technical support, their kindness and the great events we shared together.

Also, I would like to thank Professor Jürgen Becker and Professor Michael Hüb-
ner for the opportunity to work during 11 months at the Institute for Information
Processing Technologies (ITIV) in the Karlsruhe Institute of Technology (KIT, Ger-
many). I thank Stephan Werner for the fruitful discussions that we have had and
his kindness, and to Pedro Santos for his friendship during this stay.

I would like to thank my co-authors Professor João Canas Ferreira for his help
and support and also Professor José Carlos dos Santos Alves for his help to learn
Xilinx EDK.

I wish to thank my wife, Nasrin, for all of her support, patience, love, kindness,
and self-sacrifice. This work could not be possible without her support and self-
sacrifice. Also, I would like to thank my parents (Hassan Azarian and Tahereh
Masjedi) for their kindness, love and support spiritually throughout writing this
thesis and my life in general. In addition, I thank my parents-in-law for their
support and kindness and also my sister-in-law, Neda who has always supported me
until the last day of her life. God rest her soul.

I wish to thank the staff from the department of informatics engineering (DEI),
the academic service and the international office of the faculty of engineering (FEUP)
for their help and support.

This work was partially funded by the Ph.D. grant SFRH/BD/80481/2011 awarded
by the Portuguese Foundation for Science and Technology (FCT - Fundação para a

vii

viii

Ciência e a Tecnologia), to whom I would like to thank for the support.
Last but not the least, I wish to thank Professor Mahmood Ahmadi from Razi

University (Kermanshah, Iran), for his support, encouragement and his great advises
before and during my Ph.D. period.

Ali Azarian

“Learn from yesterday, live for today, hope for tomorrow.
The important thing is not to stop questioning.”

Albert Einstein

ix

Contents

List of Figures xv

List of Tables xvii

List of Abbreviations xx

1 Introduction 1
1.1 Motivation and Problem Overview 4
1.2 Contributions . 6
1.3 Organization . 7

2 Related Work 9
2.1 Producer-Consumer Communications 10

2.1.1 Flag-based Data Communication 10
2.1.2 Streaming Data Over Channels 12

2.2 Loop Pipelining . 20
2.3 Code Transformations . 23
2.4 High-level Synthesis (HLS) for TaLP 26
2.5 Profiling Tools for TaLP . 27
2.6 Parallel Models of Computation (MoC) 28
2.7 Overview . 29

3 Task-Level Pipelining (TaLP) 39
3.1 Partitioning Programs for Multicore Systems 40
3.2 Producer-Consumer (P/C) Pairs . 41

3.2.1 Loops and Dependencies . 44
3.2.2 Data Communication Patterns 45
3.2.3 P/C Data Communication Ratio 46
3.2.4 P/C Communication Schemes 47

3.3 Summary . 53

4 Our TaLP Approach 55
4.1 Fine-grained Approaches . 63

4.1.1 Fine-grained ISB (Inter-Stage Buffer) 64
4.1.2 Fine-grained ISB within Consumer 67

4.2 Coarse-grained Approaches . 68
4.2.1 Coarse-grained One FIFO . 68

xi

xii CONTENTS

4.2.2 Coarse-grained Two FIFOs . 69
4.3 The TaLP Design Flow . 70

4.3.1 Computing Stage Identification 72
4.3.2 Identifying the Dependencies 72
4.3.3 Determining the Communication Patterns and Ratios 73
4.3.4 Granularity and TaLP Scheme Decision 74
4.3.5 Mapping and Scheduling Computing Stages 74
4.3.6 TaLP Performance Impact Evaluation 76
4.3.7 Applying TaLP and Measuring the Speedup 78

4.4 Summary . 78

5 Optimization Techniques 81
5.1 Optimization for Shared Memory Schemes 82
5.2 Optimizations for ISB-based Schemes 83

5.2.1 Hash Functions . 83
5.2.2 Main Memory Accesses: Scheme #1 84
5.2.3 Main Memory Accesses: Scheme #2 86
5.2.4 Main Memory Accesses: Scheme #3 87
5.2.5 Main Memory Accesses: Scheme #4 91

5.3 Summary . 92

6 Experimental Results 95
6.1 Hardware and Software Platforms . 96

6.1.1 FPGA Resources . 97
6.2 Benchmarks . 98
6.3 Performance Evaluation . 100
6.4 Fine-grained Schemes Results . 101

6.4.1 Impact of Data Chunks . 103
6.4.2 Impact of the Local memory Size 104
6.4.3 The Impact of Hash Functions 106
6.4.4 Optimization Results . 108

6.5 Results with Coarse-grained Schemes 109
6.6 Summary . 111

7 Conclusions and Future Work 113
7.1 Main Contributions . 115
7.2 Future Work . 117

Bibliography 119

A Appendix 129
A.1 Implementing the ISB in Hardware 129
A.2 ISB with Two Tables . 135

List of Figures

2.1 Register-Based Synchronization approach for SPPM Applications . . 11
2.2 An example of a producer/consumer pair using multiple FIFOs be-

tween tasks . 15
2.3 An example of P/C pair data communication using a traditional FIFO

channels and using block FIFOs . 15
2.4 An example of a P/C pair network frame processing application using

shared memory pipeline. 19
2.5 SPPM execution. 22
2.6 Polymorphic Threads model. 23
2.7 An overview of the coarse-grained pipeline parallelism approach in

high-level languages. 24

3.1 An example of partitioning a program with dependencies. 41
3.2 An example of pipelining data-dependent computing stages using a

P/C model and with the identification of the data communication
between the producer and the consumer. 42

3.3 The possibilities for computing stages stages. 43
3.4 The dependency graph of a sequential program with five computing

stages. 43
3.5 An example of pipelining data dependent nested loops using P/C pair

model . 44
3.6 Examples of different data communication patterns between P/C pairs 45
3.7 Examples of different data communication patterns with the ratio of

(1 : N) between P/C pairs . 47
3.8 A general example of a data communication pattern between the

producer and the consumer with the ratio of (M : N). 48
3.9 Fine-grained data synchronization scheme using a FIFO between P/C

pairs and a shared memory multicore architecture. 49
3.10 Example of a producer/consumer pair using a FIFO channel. 50
3.11 Examples of inter-stage scheme based on FIFOs and the number of

elements in each stage for out-of-order producer/consumer pairs (a, b). 51
3.12 Fine-grained data synchronization scheme between P/C pairs using

shared memory. 51
3.13 Example of producer/consumer pair using a flag-based shared memory. 52

4.1 An example of hash-based indexing approach with a memory (size=8)
and using the 3 least significant bits of index to access the memory. . 57

xiii

xiv LIST OF FIGURES

4.2 Inter-Stage Buffer using local and/or shared main memory with an
empty/full bit flag. 59

4.3 Inter-Stage Buffer using local and/or shared main memory and the
requests calculation function. 60

4.4 Example of a P/C pair with ratio of (1 : Crmax): window block move-
ment and reducing the number of accesses to the ISB by using a
shadow memory. 60

4.5 An example of Request Calculation function to compute the precise
number of requests when the P/C pairs ratios are (1 : N). 61

4.6 The original code of FIR-Edge with out-of-order data communication
and (1 : N) ratio . 62

4.7 The partitioned code of FIR-Edge using an Inter-Stage Buffer (ISB)
between the P/C pair. 62

4.8 The Window block movements in FIR-Edge with out-of-order data
communication and (1 : N) ratio. 63

4.9 Fine-grained data synchronization scheme using an Inter-Stage Buffer
(ISB) between P/C pairs and a shared main memory. 65

4.10 Fine-grained data synchronization scheme using an Inter-Stage Buffer
(ISB) between P/C pairs and distributed memory. 65

4.11 Fine-grained data synchronization scheme using a FIFO between P/C
pairs and considering the inter-stage buffer (ISB) in the consumer. . . 67

4.12 Coarse-grained data synchronization block diagram using a single FIFO. 69
4.13 An architecture for coarse-grained data synchronization using two

FIFOs. 70
4.14 Full view of the TaLP design flow. 71
4.15 Identifying the dependencies in the original code of FIR-Edge. 73
4.16 A Block diagram of a possible solution to provide TaLP for sequential

programs with more than two computing stages. 76
4.17 An example of a sequential program with two stages and the unbal-

ancing of the execution time of the stages. 78

5.1 Fine-grained data synchronization scheme using a FIFO between P/C
pairs and an extra FIFO connected to the consumer 82

5.2 An example of optimization scheme #1 to approximately represent
the presence in external memory of produced data. 85

5.3 An optimization scheme #1 for loads from the external memory. . . . 86
5.4 An optimization scheme #2 for loads from the external memory. . . . 87
5.5 An example using a second variable (p) to reduce the number of false

positives . 88
5.6 The concurrent implementation of the optimization scheme #3. . . . 89
5.7 An optimization scheme #3 for each store from the producer into the

local or external memory, and for each load from the local or external
memory to the consumer. 90

5.8 An optimization scheme #4 when the ISB stores data into local or
external memory when the producer indexes are different from the
requested ones. 92

LIST OF FIGURES xv

6.1 FPGA prototype system block diagram 96
6.2 The impact of temporary buffering chunks of data by the consumer

on performance when using FIFO and on-chip buffering in consumer . 104
6.3 The impact of increasing the ISB buffer size on speedup and the per-

centage of data communicated between stages using the local memory
results . 105

6.4 The impact of using different hash functions for mapping data into
local memory in the ISB Scheme . 107

6.5 Speedups achieved by considering coarse-grained data synchroniza-
tion schemes using a single FIFO. 110

6.6 Speedups achieved by considering coarse-grained data synchroniza-
tion schemes using two FIFOs. 111

A.1 FPGA prototype system block diagram including ISB as an IP-core . 130
A.2 Speedups when using the ISB IP-core using only local memory over

the original ISB scheme without optimization and the ISB with opti-
mizations . 132

A.3 ISB using two local tables with an empty/full bit flag. 136

List of Tables

2.1 Summary of the related work. 33

5.1 General purpose hash function algorithms 84

6.1 The configuration of MicroBlaze processors used in our target archi-
tecture. 97

6.2 Hardware FPGA resources usage for each architecture schemes used . 98
6.3 Benchmarks used in the experiments (Comm.: Communication). . . . 100
6.4 The execution clock cycles and the theoretical Upperbound of the

benchmarks . 101
6.5 Speedups obtained when considering fine-grained data synchroniza-

tion schemes with TaLP . 102
6.6 Minimum sizes required to achieve the maximum usage of local mem-

ory for different hash functions . 107
6.7 Speedups obtained when using an ISB scheme w/ and w/o optimization108

A.1 The overall data communication clock cycles between the producer’s
core and the consumer’s core in the ISB scheme 131

A.2 FPGA hardware resources usage for the ISB implemented using one
MicroBlaze and the ISB as an IP core. 134

A.3 FPGA hardware resources usage for each systems used to implement
the ISB scheme: the system with two MicroBlaze (P/C) + the ISB
(MicroBlaze); and the system with two MicroBlaze + ISB (IP core)
(MB: MicroBlaze). 135

A.4 Speedups achieved when considering an ISB scheme using one and
two local tables and implemented using a MicroBlaze core vs. a single
core baseline architecture. 136

xvii

List of Abbreviations

CAKE Computer Architecture for a Killer Experience
CLF Concurrent lock-free
CMP Chip Multiprocessors
CPT Cycles Per token Transfer
DCT Discrete cosine transform
DiscoPoP Discovery of Potential Parallelism
DSL Domain-Specific Language
FDCT Fast Discrete Cosine Transform
FDTD Finite-Deference Time-Domain
FIR Finite Impulse Response
FPGA Field-Programmable Gate Array
FSM Finite State Machine
GPU Graphics Processing Unit
HLS High-level Synthesis
IP Intellectual Property
IPD Input Port Domains
ISB Inter-Stage Buffer
KPN Kahn Process Network
MB MicroBlaze
MoC Models of Computation
NPB NAS Parallel Benchmark
OPD Output Port Domains
P/C Producer-Consumer
PAM Pipeline Application Modeling
PEACH2 High-Performance Communication Channel
RTL Register-Transfer Level
SDF Synchronous Data Flow
SMT Simultaneous Multithreading
SPPM Synchronized Pipelined Parallelism Model
TAB Tag-less Access Buffer
TaLP Task-level Pipelining

xix

xx List of Abbreviations

TTL Task Transaction Level

CHAPTER 1
Introduction

Chapter Outline

1.1 Motivation and Problem Overview . 4

1.2 Contributions . 6

1.3 Organization . 7

Computer performance has been driven largely by decreasing the size of chips

while increasing the number of transistors they contain. Based on Moore’s

law [Moo65], the number of transistors on integrated circuits doubles about every

two years or even faster (18 months). This ongoing trend led the computer compa-

nies industry for many years. However, based on physical limitations, the transistors

cannot shrink forever. Therefore, the computer companies and manufactures have

struggled to power dissipation and heat generation. Even performance-enhancing

approaches like running multiple instructions per thread have bottomed out. For

these reasons, the chip performance increase has begun slowing.

In recent years, multicore processors and parallel platforms are providing the op-

portunity to increase the performance of applications by using multicores in a single

processor. Multicore architectures have spread to all computation domains from

embedded systems to personal computers to high-performance supercomputers. In

addition, reconfigurable computing devices such as Field Programmable Gate Ar-

rays (FPGAs) [BR96] are also provided the opportunity for computing and storage

resources to the specific needs of an application. FPGAs provide several sufficient

1

2 Introduction

capabilities (e.g., hardware customization) for implementing or prototyping multi-

core systems. FPGAs also have the advantage of being able to be reprogrammed in

the field to add new unforeseen features or corrections (e.g., a new bitstream can be

uploaded remotely, instantly).

Nowadays, other accelerators such as GPUs (Graphic Processing Units) have

also a potential for high performance for many applications using a large number

of cores which run in parallel to accelerate the execution of applications. However,

GPUs requires the use of specific programming tools and techniques to achieve high

performance. Also, the advantages of using GPUs are depend on the parallelism

potential of the applications. Thus, GPUs are not suitable as accelerators for some

applications.

To efficiently exploit the advantages of multicore architectures, parallel program-

ming and parallelization techniques to speedup the processing of an application are

becoming more and more important. The computations performed by a given pro-

gram provide opportunities for parallel execution at different levels of parallelism

such as data-level, task-level, and pipeline parallelism [HP11]. A variety of applica-

tions in the domain of image, video and signal processing (see, e.g., the PARSEC

benchmark suite [BKSL08]) consists of linear sequential stages which can be depen-

dent or independent with each other. In most of these sequential programs, the

output of a stage is the input of the next stage. One possibility to improve per-

formance is to provide pipelining schemes to allow the processing of the next input

before the subsequent stages have completed their process. In pipeline parallelism

[MSM04], the stages can operate simultaneously and process different data. A par-

allel execution in pipeline parallelism is obtained by partitioning the data into a

stream of data elements that flow through the pipeline stages one after another.

In the domain of pipeline parallelism, task-level pipelining is also an important

technique to speedup processing of an application, especially when dealing with

applications consisting of producer/consumer (P/C) tasks (see, e.g., [KKK+09]) in

multicore based systems. In these applications, producer tasks output data to be

processed by the consumer tasks. Using task-level pipelining, a consumer computing

stage (e.g., consisting of a loop or a set of nested loops and also identified herein as

Introduction 3

task) may start execution, before the end of the producer computing stage, based

on data availability. Performance gains can be achieved as the consumer can process

data as soon as it becomes available. Task-level pipelining may provide additional

speedups over the ones achieved when exploring other forms of parallelism. In the

presence of multicore-based systems, task-level pipelining can be achieved by map-

ping each task to a distinct core and by synchronizing their execution according to

data availability. It can accelerate the overall execution of applications by partially

overlapping the execution of data-dependent tasks (herein: Computing Stages).

We can distinguish two types of data synchronization granularity between pro-

ducers and consumers: Fine-grained and Coarse-grained data synchronization. In

fine-grained schemes, each data element is used to synchronize computing stages. In

coarse-grained data synchronization schemes, instead of each data element, chunks

of elements or an entire array of elements (e.g., an image) is considered to synchro-

nize computing stages.

For transferring data from producer stages to consumer stages, a common data

structure is required which can be seen as a data buffer that can be accessed by both

producer and consumer tasks. The producer stores the data elements into the buffer

and the consumer loads data elements from the buffer for further processing. The

size, implementation and the synchronization mechanisms of the buffer between the

producer and the consumer can be a challenge. The synchronization mechanism be-

tween the producer and the consumer needs to ensure the correctness and efficiency

of data communications.

This dissertation focuses on the communication and synchronization mechanisms

between P/C stages of pipelining for both in-order and out-of-order communication

pattern and also providing task-level pipelining in the context of FPGA implemen-

tation of multicore architectures. In the next section, we address the motivation,

problem statement and the challenges related to the topic.

4 Introduction

1.1 Motivation and Problem Overview

FPGAs [BR96] allow hardware customization capabilities. The hardware resources

provided by FPGAs allow the implementation of multicore architectures (e.g., using

softcore processors, custom hardware components), specific memory architectures,

and specific interconnections between the components of the system (including in-

terconnections between cores). These allow the implementation of complex System-

On-a-Chip (SoC) solutions using an FPGA device [BR96] and implying acceptable

Non-Recurring Engineering (NRE) costs. The hardware customization provided

adds a design dimension to multicore/multi-CPU architectures. This design dimen-

sion can be explored in order to make more efficient the pipelining of producer/-

consumer tasks. For example, specific communication channels and buffers can be

implemented in order to communicate data between producers and consumers. The

use of custom on-chip channels may promote data communications and synchro-

nization between producers and consumers to on-chip and thus without needing to

access external memories (i.e., memories outside the FPGA device). Possibly, not

all data can be communicated on-chip due to the high memory requirements this

might imply, but an efficient data communication scheme between producers and

consumers may promote to on-chip as much as possible those communications.

In order to provide efficient data communication and synchronization mecha-

nisms in multicore architectures, using a suitable communication structure between

the producer and the consumer is essential. The simplest implementation of task-

level pipelining uses a FIFO (first-in, first-out) channel between cores implementing

P/C pairs. The FIFO can store data elements in the order they are produced to

establish data synchronization between the producer and consumer. The FIFO is

a suitable data communication scheme when the sequence of producing data is the

same as the sequence of consuming data (referred herein as in-order data commu-

nication pattern or simply in-order). In this case, the data communication between

the producer and consumer can use a FIFO storing one data element in each stage.

Although using FIFO channels between producers and consumers is an efficient so-

lution for in-order P/C pairs, it may not be efficient or feasible for out-of-order

1.1 Motivation and Problem Overview 5

P/C pairs and it might be necessary to use other data communication mechanisms

[TKD05]. In out-of-order P/C pairs, the sequence of producing data is different

from the sequence of consuming data.

In the presence of out-of-order P/C pairs, recent approaches address compiler-

based task-level pipelining (see e.g., [TKD03b, TKD02], and [TKD05]). In those

approaches, an extra storage and buffer memory are introduced, based on the order

of the communication pattern between the producer and consumer, determined at

compile time [TKD05]. The data communication in these approaches considers

unbounded FIFOs that may prevent its use in a number of implementations. Also,

they use memory access reordering techniques. Another recent approach, [ZHX+15]

also use block FIFOs which is block-based data streaming technique to provide out-

of-order data communication between P/C pairs. The problem with this approach

is that the data communication between each block FIFOs is limited to the in-order

data communication between P/C pairs.

This dissertation deals with a number of research questions regarding the task-

level pipelining for in-order and out-of-order applications which can be posed as

follows:

• Question 1. How can we provide task-level pipelining in the context of FPGA

implementations using multiple microprocessors?

• Question 2. How can we synchronize the communications between P/C

stages of the pipeline for both different in-order and out-of-order communica-

tion patterns at run-time?

• Question 3. How can we synchronize the communications between P/C

stages of the pipeline with different ratios of production or consumption?

• Question 4. What is the suitable scheme for inter-stage communication be-

tween cores according to application demands?

• Question 5. What is the impact on the performance for task-level pipelining

when using different inter-stage communication schemes?

• Question 6. How to reduce the number of accesses to the main memory when

communicating data between P/C pairs?

6 Introduction

1.2 Contributions

Although approaches to pipeline sequences of data-dependent loops have been ad-

dressed previously (e.g., [ZHD03, Car05, Sni02], and [WL06]), the work presented

here is novel in three main aspects. First, we use fine-grained and coarse-grained,

data-driven synchronization schemes between P/C stages of the pipeline. The imple-

mentation uses a hash-based scheme to limit local buffer size. Other techniques have

focused on finding appropriate sized synchronization buffers [ZSHD02] to enforce the

same P/C order thus sacrificing concurrency. Our fine- and coarse-grained synchro-

nization schemes are similar in spirit to the empty/full tagged memory scheme used

in the context of shared memory multiprocessor architectures (see, [Smi82, Smi86]).

Second, the control scheme decouples the control units of each stage and uses inter-

stage buffers (ISBs) to signal the availability of data elements to the subsequent

stage. This approach allows out-of-order execution of loop iterations between tasks

constrained by data dependencies. The overall benefit of these features is that we

are able to achieve almost the theoretical speedup and to reduce the size of the

buffers to communicate data between computing stages. Lastly, we describe the

application of this technique in the context of configurable multicore architectures

implemented using FPGA devices showing how task-level pipelining can be applied

to multicore architectures and the impact on the results of different customized

inter-stage buffers.

This dissertation makes the following specific contributions:

• Contribution 1. It presents a technique for pipelining the execution of se-

quences of data-dependent loops using fine-/coarse-grained synchronization.

• Contribution 2. It implements customized multicore architectures for the

inter-stage communication to achieve pipelining execution of P/C pairs.

• Contribution 3. It presents techniques to improve out-of-order P/C pairs

when a consumer uses more than once a data element output by a producer.

• Contribution 4. It presents a technique to improve the inter-stage buffer

communication scheme.

1.3 Organization 7

• Contribution 5. It presents an evaluation of the proposed approach using

measurement on real hardware.

1.3 Organization

This dissertation is composed of seven chapters and one appendix. Bibliographic

references and information about the author are also provided. The remainder of

this dissertation is organized as follows:

• Chapter 2 –Related Work. This chapter discusses and includes an overview

over related work to our research, namely on producer/consumer synchroniza-

tion and communication models; loop pipelining approaches to pipeline tasks;

and code transformation and profiling tools to support task-level pipelining.

• Chapter 3 –Task-Level Pipelining. This chapter describes the main con-

cepts of task-level pipelining and the traditional schemes to implement tasks-

level pipelining in multicore architectures. This chapter also describes the

partitioning of programs for multicore architectures using producer-consumer

communication model. In addition, we present different types of communica-

tion patterns and ratios and dependencies between producer/consumer pairs.

• Chapter 4 –TaLP Approach. This chapter presents our approach to task-

level pipelining and describes our fine-grained and coarse-grained data syn-

chronization approaches to provide task-level pipelining. In addition, we in-

troduce and discuss a possible design-flow for task-level pipelining in multicore

architectures implemented in FPGAs.

• Chapter 5 –Optimization Techniques. This chapter presents optimization

techniques for traditional FIFO-based schemes and also for our fine-grained

inter-stage buffer scheme. The techniques on reducing the number of accesses

to the main memory.

• Chapter 6 –Experimental Results. This chapter presents the experimen-

tal evaluation of our approach, the results achieved with optimization schemes,

8 Introduction

and implementation details of our multicore architectures. The evaluation

considers the measurements using FPGA development board and the selected

benchmarks include some typical kernels of embedded applications, such as

signal and image processing.

• Chapter 7 –Conclusions and Future Work. This chapter summarizes and

discusses the most important aspects and contributions of this dissertation, the

overall relevance of the subjects approached, and also future research activities.

CHAPTER 2
Related Work

Chapter Outline

2.1 Producer-Consumer Communications . 10

2.1.1 Flag-based Data Communication . 10

2.1.2 Streaming Data Over Channels . 12

2.2 Loop Pipelining . 20

2.3 Code Transformations . 23

2.4 High-level Synthesis (HLS) for TaLP . 26

2.5 Profiling Tools for TaLP . 27

2.6 Parallel Models of Computation (MoC) . 28

2.7 Overview . 29

This chapter presents a review of the related work around the concepts, ap-

proaches, implementations and tools to provide task-level pipelining (TaLP).

In this chapter, first, we analyze the studies related to the synchronization and com-

munication models in multicore architectures using the producer-consumer model for

the communications and the synchronizations between tasks. Second, we provide a

summary of recent approaches related to software pipelining to accelerate the execu-

tion of tasks. Those approaches include loop pipelining and coarse-grained pipeline

parallelism mechanisms and code transformation techniques to support TaLP. Ad-

ditionally, we describe high-level synthesis (HLS) and profiling tools to support the

implementation and the evaluation of the parallelization potential of the applica-

tions in the context of TaLP. These tools can determine the data dependencies

9

10 Related Work

between the tasks and also estimate the speedup of a program using different forms

of parallelism. Finally, we review other parallel models of computation (MoC) which

support pipeline parallelism and TaLP.

2.1 Producer-Consumer Communications

The producer-consumer communication and synchronization model [BA82] has been

used in many studies as a model for inter-process communication in multiprogram-

ming systems [Jef93] and also for fine-grained non-strict structured data pipelin-

ing [IKA99]. Several recent studies investigate synchronization and communication

models for the communications between parallel processors in multicore architec-

tures to increase the performance at the task level. By considering the variety of

approaches and implementations used, we can categorize these studies into two main

groups: the studies using flag-based data structures schemes (e.g., empty/full bit)

for the synchronizations, and the studies dealing with data streaming over channels

(e.g., FIFO channels) to communicate and to synchronize the execution of tasks in

multicore architectures. In the following sections, we describe these studies and how

their approaches can support TaLP.

2.1.1 Flag-based Data Communication

Flag-based synchronization models are usually based on the synchronization bit

with two status (empty and full). The empty/full bit scheme has been introduced

by Smith et al. [Smi82, Smi86]. They used an empty/full tagged memory approach

for the synchronization between processors in the HEP multiprocessor computer

system. The HEP computer system which is a large scale parallel computer uses

MIMD architecture and a shared memory to provide concurrent processing. In this

approach, to provide data sharing between the processors, they used shared memory

locations. In these memory locations, the access state has two status (empty or

full). The data can be loaded from the memory if the access state of the memory

location is set to full. In a similar way, the data can be stored into the memory

if the access state of the memory location is set to empty. The empty/full tagged

2.1 Producer-Consumer Communications 11

Figure 2.1: Register-Based Synchronization approach for SPPM Applications
(source: [FJ08]).

memory approach has been used to read an empty location of the memory on the

HEP-1 busy-waited rather than trapping. This scheme has been used in many other

approaches and implementations.

For instance, Fide et al. [FJ08] have used the Register-based Synchronization

(RBS) approach which is one of the flag-based synchronization schemes between

cores. The RBS approach uses a hardware shared register to provide the synchro-

nization support between cores (e.g., the producer and the consumer) and also the

Synchronized Pipelined Parallelism Model (SPPM) [VJ04]. The SPPM model is

a parallel execution approach which enforces blocking synchronization between the

producer and the consumer. In the RBS scheme, the shared register has an empty/-

full status bit, which is similar to the empty/full tagged memory scheme. Figure 2.1

shows the RBS approach for SPPM applications. When the producer reaches the

synchronization point, it sets the register to the full status, which wakes the con-

sumer. When the consumer is done, instead of spin waiting and consuming system

resources, it goes into the idle mode to save power and energy and also changes the

flag register to the empty status. When the register status changes, the consumer

wakes up and the process repeats. Therefore, the producer can continue operat-

ing while the consumer is still consuming the previous produced data or when the

consumer is in the idle mode.

In this study, the authors used three benchmarks to evaluate their pipelining

approach: Red-Black Solver, Finite-Deference Time-Domain (FDTD) and ARC4

12 Related Work

Stream cipher. The results show performance improvements of 2− 5% per itera-

tion for Red-Block solver; 6− 11% for FDTD, and a negligible improvement for

ARC4 when using the RBS synchronization technique. One of the bottlenecks of

RBS scheme is the limitation of the number of shared registers for the communica-

tion transfers between producer and consumer pairs. However, this technique can

improve the synchronization and communication support for multi-threaded appli-

cations.

The flag-based data structures can be implemented in different ways such as

tables to implement the synchronization and communication between tasks. For

instance, Bardizbanyan et al. [BGW+13] presents an efficient data accessing ap-

proach using a tag-less access buffer (TAB) to improve data access energy and

performance. The TAB is located between the register file and the L1 data cache in

the memory hierarchy. In this approach, the compiler detects the memory accesses

and replace them with a TAB access. The compiler allocates a TAB entry before

memory accesses by inserting TAB instructions. These instructions prefetch the L1

data cache line into the TAB. Although this approach provides a technique to access

data references in a more energy-efficient manner, it provides small performance im-

provements. The results show 34.7% reduction of data-access energy with four TAB

entries. The four-entry TAB configuration reduces energy in the L1 data cache and

data translation lookaside buffer (DTLB) by 35.4% and 41.9%.

In the next section, we describe other studies dealing with data streaming over

channels such as FIFO channels to communicate and to synchronize the execution

of tasks in multicore architectures. In addition, we describe studies using shared or

distributed memories for the synchronization and communication between tasks.

2.1.2 Streaming Data Over Channels

Many studies deal with data streaming between cores over channels to communi-

cate and to synchronize the execution of tasks in multicore architectures. In these

studies, they use standard FIFOs as data communication channels between cores

when the sequence of producing data is the same than the sequence of consuming

data (e.g., streaming applications where a set of computations is applied in sequence

2.1 Producer-Consumer Communications 13

on an input data stream). However, when the sequence of producing data is dif-

ferent from the sequence of consuming data, a simple FIFO might not be sufficient

to implement the communication between producer and consumer pairs and other

data structures implemented as shared or distributed memory can be used as data

communication and synchronization between cores. In the following section, we de-

scribe the studies which proposed data communication and synchronization models

to overlap the execution of tasks using FIFOs or shared memory as a communication

and synchronization between P/C tasks.

FIFO Channels

A relevant FIFO-based approach is the one proposed by Ziegler et al. [ZSHD02,

ZHD03]. It uses a coarse-grained synchronization scheme to overlap some execution

steps of sequences of loops or functions. Their approach communicates data to sub-

sequent stages using a FIFO mechanism. Each FIFO stage stores an array element

or a set of array elements (e.g., a row of pixels in an image). Array elements in

each FIFO stage can be consumed by a different order than the one they have been

produced. Examples with the same order of producer-consumer only need FIFO

stages with one array element. In the other case, each stage must store a sufficient

number of array elements in order that all of them are consumed (by any order)

before the next FIFO stage is considered. This is the major bottleneck of their

technique since a FIFO stage may need to store many values as a consequence of

using coarse-grained (the grain is related to the size of the FIFO stages) instead of

fine-grained synchronization, and the number of data elements stored in each FIFO

stage must be known at compile time.

Smith [Smi86] described an analysis to determine the communication require-

ments by this pipelining technique. The work in [Smi86] has been in the context

of design space exploration and concerning speedups only one example is referred

(with a speedup of 1.76×). Regarding their approach, our can be thought as a more

generic approach, and also eliminating some previous constraints.

In another major studies, Turjan et al. (see, e.g., [TKD03b, TKD02, TKD05])

proposed a compiler-based approach considering FIFO buffers between tasks to solve

14 Related Work

the data communication problem for out-of-order tasks. The focus of their approach

is based on reorderings mechanism which can prevent the problem of out-of-order

P/C pairs when using a FIFO channel. Based on the order of each P/C pair, a

controller inside of the consumer core checks whether a FIFO channel is sufficient

for every P/C pair or an additional memory is required [TKD03a]. This software

approach is based on the Ehrhart theory [JB07] and assumes unbounded FIFO

channels to synchronize the communication between the producer and the consumer.

Figure 2.2 presents an example of a producer and consumer process in their

approach. In this example, the producer and the consumer communicate together

point to point over unbounded FIFO channels using a blocking-read synchronization.

As shown, in each iteration of the P/C pairs, the producer writes data into different

FIFOs and also the consumer reads data from different FIFOs. An input port

domain (IPDs) of a consumer stage is the union of the iterations at which the

process’s function stage reads data from the same FIFO. In a similar way, an output

port domain (OPDs) of a producer stage is the union of the iterations at which the

process’s function writes data to the same FIFO. Each OPD is uniquely connected

to another IPD via a FIFO. Over this FIFO, data are communicated to the mapping

given by the mapping matrix M . By considering the mapping matrix, the data can

be re-ordered in the order that consumer expects the data.

Recently, Zhang et al. [ZHX+15] presented an open-source system-level FPGA

compilation framework called CMOST. In this study, they used a block-based data

streaming technique to provide data communication between P/C pairs. In this

approach, they proposed an extension of the traditional streaming framework (com-

munication via FIFOs between the producer and the consumer) by introducing block

FIFOs. Figure 2.3 presents an example of data communication between P/C pairs

when using block FIFOs. As shown, the traditional FIFO is suitable only when

the data communicated between the streaming stages are in the same order at the

producer and consumer sides.

In this approach, the access pattern of the producer tasks and the consumer

tasks are automatically reordered to create streaming buffers, and the corresponding

address mapping is also performed to use the switching buffer allocated. Using

2.1 Producer-Consumer Communications 15
REALIZATIONS OF THE EXTENDED LINEARIZATION MODEL 5

5 6 7 85 6 7 81 2 3 40

0

1 2 3 40

0

for j = 3:1:N,

for i = 1:1:N−2,

end
end

for x = 2:1:N−1,

for y = 2:1:N−1,

end
end

if j > i+1,
FIFO1.Put(token);
end

token = Fp(i,j);

Fp(token);

if j <= i+1,
FIFO2.Put(token);
end

if x <= y,

end
token = FIFO0.Get();

if x <= y,
token = FIFO1.Get();
end

N=

4

6

7

8

3

5

1

2

j

NODE DOMAIN

OPD

i

Mapping M(x,y)=(x−1,y+1)
N=

4

6

7

8

3

5

1

2

x
y

IPD

NODE DOMAIN

OPD1

FIFO2

FIFO0

OPD1

IPD1

IPD2

Producer FIFO1 Consumer

Figure 2. A Producer and Consumer process. Of the Producer we show
the output port domains (OPDs) and of the Consumer, we show the in-
put port domains (IPDs). Each OPD is uniquely connected to another IPD
via a FIFO. Over this FIFO, tokens are communicated that adhere to the
mapping given by the mapping matrix � . In this example, OPD1 is con-
nected to IPD2 via FIFO1. The Producer/Consumer with the FIFO form
an instance of the classical consumer/producer pair.

port in(i+1, j-1) that gets the token from this channel.
Since the KPN processes are sequential processes, no two atomic ports

in a port domain are active at the same time. That is, there is an order
among the atomic output ports in an output port domain, and there is an
order among the atomic input ports in the corresponding input port do-
main. In [9], we have defined the rank function that expresses in a pseudo-
polynomial form this order of execution in a particular domain. The rank
function is derived using the Ehrhart theory that expresses the number
of integral points inside of a polytope as a pseudo-polynomial expres-
sion [10]. A pseudo-polynomial is a polynomial with periodic coefficients.
This theory has been extended recently for parameterized polytopes [11].

Figure 2.2: An example of a producer/consumer pair using multiple FIFOs between
tasks and reordering the consumer (source: [TKD03a]).

Figure 2.3: An example of P/C pair data communication using a traditional FIFO
channels and using block FIFOs (source: [ZHX+15]).

block FIFOs between P/C pairs provides the out-of-order data communications in

each block FIFOs. The authors used 5 real applications (MPEG, NAMD, Smith

16 Related Work

Waterman, Black Scholes and Medical Imaging) to evaluate their approach. They

measured the speedup and energy using a Xilinx Virtex-7 (VC707) FPGA-based

board [Xil15a] and also compared the results with the 6-core CPU Intel Xeon E5-

2640 [Int11]. The results show that CMOST can achieve speedups over 8× for

MPEG, NAND and Smith Waterman benchmarks, and over 1.1× for Black Scholes

and Medical Imaging benchmarks. Although the results for some benchmarks are

considerable, the bottleneck is that in many applications, the consumer may request

the data from the previous produced blocks or request data from the blocks which

still are not available by the producer. Also, the size of the block FIFO can be also

a bottleneck by considering different architectures. However, the authors mentioned

that for these such cases, they need to add extra memory and reordering the pattern

of producing and consuming data.

Shared Memory

When using shared memory synchronization, the tasks can read/write data in a

global shared region. Therefore, shared memory can be used as a data synchroniza-

tion and communication channel between cores. Also, flag-based synchronization

models can be implemented using shared memory. In the context of the imple-

mentation of data structures using the empty/full scheme, the memory structure

of multicore architectures can be classified into two categories: shared memory and

distributed memory. Although many multicore systems are using both shared and

distributed memory, we focus on studies which are using shared memory as a data

synchronization and communication channel between cores to accelerate the execu-

tion of tasks in multicore architectures. Many studies have been focusing on perfor-

mance improvements of the applications when using a shared memory synchroniza-

tion model. These studies are mostly reducing energy and the latency of accessing

shared memory. Here, we classify the studies which have used shared memory in

multicore architectures into two main groups: performance improvement of appli-

cations when using shared memory as a data communication and synchronization

channel between cores; inter-task data communications using producer-consumer

model and shared memory.

2.1 Producer-Consumer Communications 17

First studies have been conducted by using two cores and a shared memory as

synchronization and communication model. For instance, Byrd et al. [BF99] used

a range of producer- and consumer initiated mechanism and their performance on

a set of benchmarks in distributed shared memory multiprocessors. More recently,

Miyanjima et al. [MKH+13, MKH+14] proposed an approach to achieve TaLP on

multiple accelerators using a high-performance communication channel (PEACH2)

which communicates data using shared memory between accelerators. In their ap-

proach, tasks are assigned to the accelerators and data can be computed using a

sequence of GPUs in a pipeline manner. In [MKH+14], the authors achieved 52% of

performance improvements compared to a single GPU by implementing TaLP using

a shared memory synchronization mechanism. In this study, 100 images (1280×720

pixel of resolution) where processed using a sobel image filter consisting of three

tasks.

The second group of studies has considered the inter-task communication in the

producer-consumer model to improve the performance of applications by using a

shared memory synchronization mechanism. For instance, Bei Li et al. [LW05]

presents an implementation of Task Transaction Level (TTL) on the shared mem-

ory CAKE (Computer Architecture for a Killer Experience) architecture [EHM+05]

which is a multiprocessor platform. In this study, they provide an efficient implemen-

tation of TTL inter-task communication on the CAKE tile architecture to improve

the performance of streaming applications. The CAKE tile architecture consists of

multiple general purpose CPUs (MIPS or TriMedia), various IP blocks, shared L2

caches and an interconnect network. The communication channels are implemented

in the shared memory which consists of a channel buffer and channel administra-

tion’s values. The channel buffer is a part of memory where the transferred data are

stored (an ordered FIFO) and the channel administrations is a part of the memory

where the status of the channel buffer such as buffer size, base addresses, and the

synchronization constructs are stored. Bei Li et al. [LW05] also used shared mem-

ory for the synchronization between producer-consumer tasks implementing with

ordered FIFOs. In addition, they use the CakeSim simulation framework [SH01]

based on the TSS (Tool for System Simulation) model, a cycle-accurate C language

18 Related Work

to evaluate the performance when using the CAKE tile architecture. The results

show 80% improvements on the number of clock cycles per token transfer (CPT)

and 23% reduction of the total clock cycles for running a JPEG decoder application.

In terms of inter-core communications on multicore architectures, many stud-

ies have been focusing on approaches which provide higher performance and power

efficiencies when using shared memory as a communication and synchronization

channel between cores. For instance, Zhiyi et al. [YXY+14] present a 16-core

processor with shared memory and message passing inter-core communications to

achieve higher performance and power efficiency for signal processing applications

using both inter-core mechanisms. This 16-core processor consists of processor cores

(PCore) and memory cores (MCore). Each PCore can be a source or destination

processor core. The authors use a cluster-based memory hierarchy including the

shared memory for embedded applications such as low-density parity-check (LDPC)

decoder, a 3780-point fast fourier transform (FFT) module, a H.264 decoder and a

long term evolution (LTE) channel estimator. The shared memory communication

in this study can be summarized in three steps: source PCore stores data to shared

memory in MCore; source PCore sends the synchronization signal to the destination

PCore and destination PCore loads data from shared memory when synchronization

signal is received. The results show that this FPGA-based approach has a consid-

erable energy efficiency and performance compared to RAW [WTS+97] and CELL

architectures [KDH+05].

Giacomoni et al. [GMV08] present a high-rate core-to-core software buffering

communication mechanism called "FastForward" for multi-threaded pipeline par-

allel applications, such as network frame processing applications, which is imple-

mented on multicore architectures. The FastForward technique is an optimization of

single-producer/single-consumer concurrent lock-free (CLF) queues [Lam77], which

provides very low latency and low communication overhead (36-40 ns per get or

put operation) between processors and also provides higher (up to 4×) speedups for

pipelining fine-grained stages compare to the other solutions such as Lamport’s CLF

queues [Lam77] (200 ns per operation). As the queues in the FastForward technique

are single-producer (the program thread) and single consumer (a delegate thread),

2.1 Producer-Consumer Communications 19

Task Parallelism is the most basic form of parallelism and con-
sists of running multiple independent tasks in parallel, usually
for relatively long durations (e.g., applications and TCP net-
work connections). This form of parallelism is limited by the
availability of independent tasks at any given moment.

Data Parallelism is a method for parallelizing a single task by pro-
cessing independent data elements in parallel. Bracketing rou-
tines fan out data elements and then collect processed results.
This technique scales well from a few processing cores to an
entire cluster (e.g., MapReduce [6]). The flexibility of the tech-
nique relies upon stateless processing routines (filters) implying
that the data elements must be fully independent.

Pipeline Parallelism is a method for parallelizing a single task
by segmenting the task into a series of sequential stages. This
method applies when there exists a partial or total order in a
computation preventing the use of data or task parallelism. By
processing data elements in order, local state may be maintained
in each stage. Parallelism is achieved by running each stage si-
multaneously on subsequent data elements. This form of paral-
lelism is limited only by inter-stage dependences and the dura-
tion of the longest stage.

2.2 Example: Network Frame Processing
Network frame processing provides an interesting case study for
pipeline parallelism as such systems are both useful (e.g., intru-
sion detection, firewalls, and routers) and may exhibit high data
rates that stress both the hardware (e.g., bus arbitration) and soft-
ware (e.g., locking methods). Consider Gigabit Ethernet; the stan-
dard specifies support for 1,488,095 frames per second (fps). This
means that a new frame can arrive every 672 ns, requiring the soft-
ware to be capable of removing the frame from the data structures
shared with the network card, processing the frame, and potentially
inserting it into the output network interface’s data structures within
672 ns (approximately 1500 cycles on a 2.0 GHz machine).

Using FastForward, we have built pipeline-parallel applications
capable of capturing and forwarding at record breaking, for com-
modity hardware, rates of 1.428 million and 1.33 million fps, the
limit of the evaluation network hardware. These results highlight
the ability of general purpose commodity hardware to effectively
implement multi-stage pipelines similar to those used on hardware
network processors (e.g., Intel’s IXP series). In these applications, a
3-stage pipeline was used to achieve approximately a 3x increase in
available processing time. Below, we see that since each stage must
take no more than 672 ns, this increase requires the very low over-
head stage-to-stage communication provided only by FastForward
on general purpose machines. Data parallelism is impractical for
such applications (e.g., firewalls) as there may be many inter-frame
data dependencies. Performance results measured on real hardware
are presented in Section 5.7.

A basic forwarding application may be decomposed into three
stages (see Figure 1), with each being alloted the full frame compu-
tation time period and therefore tripling the available frame manip-
ulation time. The output (OP) and input (IP) stages handle transfer-
ring each frame to and from the network interfaces. The applica-
tion (APP) stage performs the actual application related frame pro-
cessing. By executing the three stages concurrently it is possible
to fully overlap every stage in every time step. The frame process-
ing time can be extended to 4x and beyond if the application stage
can be further decomposed. If each stage executes in no more than
672ns per frame, the pipeline will be able to sustain the maximum
frame rate on gigabit Ethernet.

Communication overhead is the limiting factor for such fine-
grain stages. We found that on a 2.0 Ghz AMD Opteron based sys-
tem, lock-based queues cost at least 200 ns per operation (enqueue

Processors

IP (P1) APP (P2) OP (P3)

IP APP OP

P1
(IP)

P2
(APP)

P3
(OP)

IP (P1) APP (P2) OP (P3)

IP (P1) APP (P2) OP (P3)

IP (P1) APP (P2)

IP (P1)

T/3 T/3 T/3 T/3 T/3

T

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Time

Execution
Stages for

Single Frame

Pipelined
Execution

< 672 ns

Figure 1. The Frame Shared Memory pipeline.

1 enqueue(data) {
2 lock(queue);
3 if (NEXT(head) == tail) {
4 unlock(queue);
5 return EWOULDBLOCK;
6 }
7 buffer[head] = data;
8 head = NEXT(head);
9 unlock(queue);

10 return 0;
11 }

1 dequeue(data) {
2 lock(queue);
3 if (head == tail) {
4 unlock(queue);
5 return EWOULDBLOCK;
6 }
7 data = buffer[tail];
8 tail = NEXT(tail);
9 unlock(queue);

10 return 0;
11 }

Figure 2. Locking queue implementation.

or dequeue). Since each stage has a dequeue and an enqueue opera-
tion, this consumes about 60% (2×30%) of the available per-frame
processing time. To address this, we developed FastForward to pro-
vide a communication primitive costing only 36–40 ns (28.5–31 ns
on a 2.66 GHz machine) per operation.

3. FastForward
This section presents the design of FastForward and the optimiza-
tion techniques used to achieve a 3.7–5x improvement over the next
best solution. Section 3.1 and 3.2 begin by explaining the shortcom-
ings with existing approaches. Section 3.3 describes FastForward’s
new cache-optimized single-producer/single-consumer concurrent-
lock-free (CLF) queue to overcome the bottlenecks in prior ap-
proaches on cache-coherent systems. Section 3.4 describes how to
further optimize FastForward’s performance by temporally slipping
the producer and consumer. Section 3.5 describes how a hardware
prefetch unit may further improve performance. Section 3.6 dis-
cusses large payload support. We begin with a baseline discussion
of traditional lock-based queues.

3.1 Lock Based Queues
Efficient pipeline parallelism requires that the buffering commu-
nication mechanism used to provide core-to-core communication
provide the smallest overhead possible. In the network frame pro-

Figure 2.4: An example of a P/C pair network frame processing application using
shared memory pipeline (source: [GMV08]).

for the synchronization, the full condition on the producer side and the empty con-

dition on the consumer side needs to be checked frequently in a spin loop which

might be critical for performance. In this study, they used a 2 GHz dual-processor

dual-core AMD Opteron 270 for their evaluations.

Figure 2.4 shows an example of the network frame processing application. In

this example, the execution stage for a single frame can be decomposed into three

stages: input (IP) and output stage (OP) which transfer each frame to/from the

network interface; the application (APP) stage which performs the computations of

the frames. When considering the maximum frame rate in Gb Ethernet (1,488,095

frames per second), a new frame can arrive every 672 ns. As shown, as soon as each

frame is available by the input stage, the application stage can process the input

frame and then store the output frame into the shared memory.

By executing the input, the application and the output stages in parallel, the

execution time of the stages can fully overlap in every time step. In order to reduce

the communication overhead factor, the FastForward approach was developed to

provide a fast communication primitive. This primitive only needs 36-40 ns per

operation, a substantial gain when compared with lock-based queues, which require

200 ns per operation.

In summary, although the use of shared memory communication and synchro-

20 Related Work

nization might be easy for programmers, it can face several challenges limiting in

future many-core processors due to low scalability, high overhead and power con-

sumption [YXY+14]. For instance, in a shared memory system, the traffic of com-

munications when accessing the common memory is constrained by the shared bus.

In addition, the synchronization primitives to provide mutual exclusion are com-

plex and error-prone. Therefore, using shared memory can increase the potential

for race conditions and deadlocks [SRI14]. Although using non-blocking synchro-

nization, proposed first by Herlihy [Her91], can guarantee the correctness of the

memory accesses, implementing a non-blocking communication scheme is typically

complex for the programmer [Sut08] and might not provide higher performance for

communication and synchronization between cores.

2.2 Loop Pipelining

Loop pipelining is one of the pipeline parallelism techniques to accelerate the execu-

tion of applications. Many studies described and analyzed the performance improve-

ment of the applications by pipelining loops (see, e.g., [AJLA95]). Numerous stud-

ies have attempted to describe and analyze the performance of pipelining software

loops onto reconfigurable architectures (see, e.g., [RCD07, Car05, Sni02, MKH+13,

CW00]), especially when mapping innermost loops to FPGAs. Also, some of these

studies used the producer-consumer pipelining model. In general, we can classify

the studies related to loop pipelining into two main traditional groups:

• pipelining nested loops

• pipelining sequences of loops

In this section, we focus on approaches to pipeline sequences of loops.

In the context of loop pipelining of nested inner loops, Callahan et al. [CHW00]

present an approach to accelerate the execution of loops using the Garp-C compiler

and the Grap architecture. The approach uses a reconfigurable co-processor to

reduce the overall execution of different types the loops (e.g., multiple control paths,

multiple exits). In the approach used by Callahan et al. [CW00], only the loops of

the application can be pipelined by the reconfigurable array. However, it depends

2.2 Loop Pipelining 21

on the scheduling by the Garp-C compiler and also pipelining two data-dependent

loops is not addressed. The results show 87% performance improvements compared

to the original sequential execution time without using loop pipelining.

Ziegler et al. [ZSHD02] present a pipelining scheme at coarse-grained levels for

accelerating loops by overlapping the execution of sequences of loops or functions.

The idea is to allow sequences of loops or functions to start computing as soon as

the required data items are produced in a previous function or by a specific iteration

of a previous loop. This overlapping can reduce the overall execution of loops or

functions. The compiler can also identify the computing stages and the dependencies

between the iterations of loops, which can help to identify the potential for this

coarse-grained pipelining, by analyzing the source code of the program.

Software pipelining has been focused on intense research efforts (see, e.g., [KKK+09,

DG07, JA90, IKA99]) in order to generate a multi-threaded software-pipelined

schedule for multicore architectures and to increase the execution rate of loops.

For instance, Douillet et al. [DG07] present a solution to generate and extract

threads, to schedule instructions and assign the threads to each core automatically

in the context of multicore architectures. In order to provide the synchronization

between cores, they use Lamport’s clock on each thread unit. This approach has

been implemented in the Open64 compiler [OPE05] re-targeted for the IBM Cy-

clops64 architecture, a dedicated petaflop platform for running high performance

applications. The experimental results showed this approach can scale up well when

the number of thread units increases across all the benchmarks tested, ranging from

57.5 to 81 relative speedup for 99 thread units.

By considering the importance of data communication between the sequences of

loops, many studies have investigated data communication schemes between produc-

ers and consumers. In the context of producer-consumer synchronization schemes

for task-level pipelining, several studies such as [RCD07, TKD05, BF99, Car05,

ECR+10, VJ07] have been made. Additionally, [TKD05, TKD03b, TKD02] the

producer-consumer synchronization is the main synchronization scheme for pipelin-

ing tasks. FIFO channels have been used for data communication between producers

and consumers. In [VJ07], Vadlamani et al. proposed the Synchronized Pipelined

22 Related Work

Figure 2.5: SPPM execution (source: [VJ07]).

Parallelism Model (SPPM) for parallelizing applications on Simultaneous Multi-

threading (SMT) and Chip Multiprocessors (CMP). Figure 2.5 shows the logical

representation of the SPPM model. As shown, the main memory holds the input

and output data blocks. The producer loads the input data from the main memory

and then send the produced results item to the consumer for further processing.

The consumer can start processing data items as soon as data are available by the

producer and then stores the final results into the main memory. In this approach,

the producer and the consumer communicate through the shared memory.

Vadlamani et al. [VJ07] recognized that this model is not sufficient on CMPs

when using private caches. In order to solve this problem, they developed the Poly-

morphic Threads (PolyThreads) model. In this model, the communication between

cores is different from the SPPM model. In PolyThreads model, each core can have

both the producer and the consumer code. As shown in Figure 2.6, when a thread’s

producer code is finished with a block, it sends a signal to other thread’s producer

to start and load the next input block from the main memory and also transforms

itself into a consumer for the data just produced by itself. This approach reduces

the overall miss rate and improves the performance of the parallelized applications.

2.3 Code Transformations 23

Figure 2.6: Polymorphic Threads model (source: [VJ07]).

2.3 Code Transformations

In order to explore and support parallel execution of computing stages (e.g., loops),

the data dependencies between the tasks need to be determined. An application

can be split into a producer-consumer pair and then map sections of the code into

each core. Several recent studies investigated the difficulties of decomposing one

application into many tasks and exploiting the parallelization among these tasks.

Also, other studies focused on the detection of data dependencies between tasks.

Here, we classify these studies into three main groups: the studies based on compiler

support, using directive-driven programming models, and programming languages.

In order to use the benefits of multicore architectures, an application needs to be

mapped into a multicore architecture to provide higher performance. Code transfor-

mations and task partitioning for multicore architectures are one of the most widely

studied topics. Most approaches have focused on identification of the pieces of code

(e.g., loops) which can be fully executed in parallel. As traditional programming

languages are not suitable for multicore architectures, many studies have been done

to provide and to improve parallel programming languages. However, the number

of approaches which can identify the level of parallelism are very limited. There-

fore, there is a strong need for techniques which can help the developer to manually

partition an application to provide higher performance in multicore architectures.

For instance, Larsen et al. [LKM11] introduced two compiler directives which help

the programmers to express the data dependencies between tasks. In their exper-

iments, the compiler directives can enable reductions of 40% to 57% in potential

24 Related Work

Figure 2.7: An overview of the coarse-grained pipeline parallelism approach in high-
level languages (source: [TCA07]).

dependencies of the program.

Thies et al. [TCA07] present an approach to exploit coarse-grained pipeline par-

allelism in high-level languages such as C. The authors use streaming applications

such as MPEG-2 decoding, MP3 decoding, GMTI radar processing, and three stan-

dard performance evaluation corporation (SPEC) benchmarks [SPE15] with regular

flow of data between tasks. The output of their approach is a stream graph of the

application and a set of macros to provide communication between tasks and to

parallelize the program. In this study, to provide TaLP the programmer needs to

determine the boundaries of pipelining stages and then insert pipeline annotations

which are responsible for recording all communications across boundaries between

the stages of the C program (see, Figure 2.7).

The pipeline annotations express the pipes and are responsible for sending and

receiving all variables used in the given computing stage and finally terminate the

computations and collect data. If the programmer is satisfied with the parallelism

of the program (presented in the stream graph), he/she needs to recompile the an-

notated program against a set of macros that are emitted by their analysis tool. If

the programmer is not satisfied with the parallelism analyzed by the tool, the anno-

tation needs to be moved to eliminate cyclic dependencies between stages. In this

approach, the authors achieved a mean speedup of 2.78× over a 4-core architecture

containing two AMD Opteron 270 dual-core processors.

Gordon et al. [GTA06] used StreamIt, an architecture-independent programming

2.3 Code Transformations 25

language for high-performance streaming applications [TKA02]), to map streaming

applications into a 16-core RAW architecture [WTS+97]. In this approach, the

authors provide a robust compiler system using a combination of task, data and

pipeline parallelism techniques to achieve high multicore performance across a range

of input programs. In the StreamIt language, a program is represented as a set of

autonomous actors which communicate through FIFO data channels. This compiler-

based system uses two parallelism techniques, one for data parallelism and other

for pipeline parallelism. When targeting the RAW architecture, a coarse-grained

data parallelism achieved a mean speedup of 9.9× over a single core and 4.4× over

a task-parallel baseline. Similarly, coarse-grained software pipelining (instruction-

level) achieved a 7.7× speedup over a single core and a 3.4× speedup over a task

parallel baseline.

Note that pipeline parallelism in [GTA06] is applied to chains of producers and

consumers which are directly connected in the stream graph. Similarly, in the pre-

vious work in [TKA02], they also exploited pipeline parallelism by mapping clusters

of producers and consumers to different cores. In terms of high-level language an-

notations, Benkner et al. [BBM+12] also proposed the use of C/C++ to develop

pipeline applications and to specify pipeline patterns on heterogeneous many-core

architectures. In this approach, the authors also provide a source-to-source compiler

which translates the pipelined applications to an object-oriented coordination layer

on top of a heterogeneous task-based runtime system. They use a face detection

benchmark and implement it in a pipelined manner using OpenCV [OPE16]. The

results considering the use of one CPU and one GPU show speedup improvements

of 3.14× compared to the execution time of using only one CPU.

In image processing pipelines, Ragan-Kelley [RKAP+12, RKBA+13] presented a

language and a domain-specific language (DSL) compiler called Halide, for optimiz-

ing parallelism in image processing applications (a Laplacian filter with 99 stages

is used as example). Halide is an open-source domain-specific language to express

complex image processing pipelines. The results show that using Halide programs

improves the performance up to 5× than optimized hand-written programs imple-

mented in C and CUDA.

26 Related Work

2.4 High-level Synthesis (HLS) for TaLP

Nowadays, the complexity of applications and the hardware resources available in

contemporary FPGAs are very high. It is expected those complexities continue to

increase this poses many challenges when considering the mapping of applications to

FPGAs. Using high-level abstractions and synthesis (HLS) 1 methods can increase

the productivity of designers by increasing the abstraction level in both software

and hardware domains [CM08].

HLS tools rely on a portfolio of code transformations, optimizations, and on the

exploration of customization parallelism and pipelining.

Commercial HLS tools provide some support to TaLP. For instance, Catapult-

C [Bol08] and Vivado HLS [Xil12] are able to generate hardware with TaLP. In

Vivado HLS, the optimization is named as dataflow pipelining and it is achieved by

adding channels between blocks (functions or loops). Similarly, Catapult-C provides

TaLP using hierarchical synthesis and local memories are placed between function

datapaths.

The approach proposed by Rodrigues et al. [RCD07] considers an inter-stage

buffer with empty/flag and local storage, but without access to the main memory

to synchronize the execution of hardware datapaths of producer and consumer tasks

in a data-driven way. In this approach, each computing stage is translated to a spe-

cific datapath and Finite State Machine (FSM) which interfaces to the inter-stage

buffer. Their approach deals with both in-order and out-of-order P/C communica-

tion patterns, but critically needs to statically determine the worst-case size of the

local storage of the inter-stage buffer in order to avoid deadlocks. They use register-

transfer level (RTL) cycle accurate simulations to determine the size of the local

buffer and thus their approach depends on the simulation of the worst cases. Their

scheme was used in the context of a compiler of software programming languages to

specific customizable architectures suitable for implementation in FPGAs.

1HLS is also called behavioral and architectural-level synthesis.

2.5 Profiling Tools for TaLP 27

2.5 Profiling Tools for TaLP

Providing auto-parallelize programs with a complex control and data flow is one of

the most challenging issues in parallel computing. Many studies have attempted to

identify the potential parallelism in sequential programs. For instance, in [RVD10]

the authors present a tool that consists of a profile-driven discovery of parallelism

and also of automatic program transformations. The tool can analyze the mem-

ory dependencies in order to discover thread-level parallelism in a given program.

However, the tool does not address TaLP.

Recently, many researchers such as [RVD10, KC12, LAUH+15] have focused on

exposing dependencies using profiling techniques to identify the potential parallelism

in sequential programs. For instance, the most recent study in [LAUH+15] present a

profiling tool called DiscoPoP (Discovery of Potential Parallelism) which is based on

identifying computational units following the read-compute-write pattern. This tool

performs various types of static and dynamic analyses, and profiles the control and

data dependencies of the input program. DiscoPoP also covers both loop and task

parallelism. In the experiments, they use NAS parallel benchmarks [NAS15] and

PARSEC [BKSL08]. In this approach, the authors found 92.5% of the parallel loops

in NAS Parallel Benchmark programs and they achieved up to 2.67× speedup for

independent tasks and up to 3.62× when using pipelining considering a maximum

of four threads.

In terms of thread-level parallelism, Sean et al. [RVD10] presented a profile-

based tool to determine pipelining parallelism potential in sequential programs. The

authors evaluate their results by measuring the speedup on real hardware on a 32-

thread Sun UltraSPARC T1 and on a 8-thread Intel i7 quad-core. The results show

speedup improvements of 5.18× for bzip2 compression and 11.8× for an MPEG2-

encoder on a Sun UltraSPARC T1.

The Pareon Profile from Vector Fabrics [vec16] is one of the commercial profiling

tools which support TaLP. This tool uses a graphical user interface (GUI) and

determines which serial code section has the capability for parallelization. The

Pareon Profile tool can analyze the data dependencies between computing stages

28 Related Work

and characterize them by type and whether if it is possible to split the task or not.

The main advantage of the Pareon Profile tool is that the user can determine the

capabilities to estimate parallelization speedups for the sequential applications. Note

that the speedup estimation is based on a detailed execution time model, including

processor instruction and memory cycles, inter-thread synchronization overhead,

and task scheduling.

For example, by selecting one of the loops in a program, the tool can show

whether a selected loop can be parallelized using data partitioning by considering

the dependencies between the selected loop and other loops of the program.

Although these tools have many features to determine the capability of paral-

lelism for each task, they might not support all types of multicore architectures. In

addition, these tools (e.g., Pareon Profile) cannot partition the program properly

into different cores by considering the pipeline balancing between computing stages.

Note that the most advantages of the profiling tools is to the best of our knowledge

to determine the part of the program which have the potential parallelism and also

detecting the dependencies between computing stages when considering TaLP as

well.

2.6 Parallel Models of Computation (MoC)

Recently, many studies (see, e.g., [NMSD09, CTLA12, ZNS13, MKTdK07]) have

been focused on the use of traditional computation models such as Kahn Process

Network (KPN) [Kah74], Synchronous Data Flow (SDF) [LM87b], and Communi-

cating Sequential Processes [Hoa78]. In these studies, the models have been con-

sidered as graphs, where nodes represent units of computation and edges represent

unbounded FIFO communication channels.

In order to provide a better load performance and scheduling, several approaches

have been focused on modeling pipeline applications with SDF [LM87a] graphs and

on determining the data dependencies between tasks. The SDF graphs are adopted

to describe mostly streaming applications and partitioning them for multicore ar-

chitectures. However, it does not mean that every application (e.g., a C program)

2.7 Overview 29

can be translated to an equivalent SDF graph. Because of these, in [LF13] the

authors present an approach named Pipeline Application Modeling (PAM), which

is a methodology to build an SDF graph describing all the aspects of a pipeline

application including mapping, scheduling and the pipeline assignment.

Similarly, for the KPN computation model, several approaches have attempted

to map KPN applications onto different multicore architectures such as on Intel IXP

[MKWS07] or Cell BE [NMSD09]. For instance, Meijer et al. [MKTdK07] presented

a process splitting transformation for KPN computation model. The splitting pro-

cess in this study consists of a producer, a transformer, and a consumer. To define

the data dependencies between a producer- consumer pair, they use the Compaan

compiler [KRD00]. They address static affine nested loop programs and the com-

piler is able to analyze the data communication patterns between producers and

consumers. In addition, for each subset of the process iteration space (partitioned

piece), they use a unique FIFO channel. If the nested loop can be partitioned into

four parts, the communication channel between producer-consumer pairs requires

four separated FIFOs. The results show a 21% performance improvement by reduc-

ing the total execution time of the JPEG decoder application using GCC for the

compilation.

2.7 Overview

Table 2.1 presents an overview of the related work. This table summarizes the main

contributions, tools, techniques and technologies used in the approaches presented.

The first category of approaches such as [BF99, LW05, GMV08, TKD03b, TKD02,

TKD05, Smi86, Smi82] use the producer-consumer communication model to improve

the execution performance of tasks. When considering the importance of synchro-

nization and communication between the producer and consumer, these studies can

be categorized into two main groups: first, the studies focused on the synchroniza-

tion improvements between cores; second, the studies researching data streaming

communications between P/C pairs over channels.

30 Related Work

In the case of P/C synchronizations, the empty/full bit scheme, such as the one

presented in [Smi82], as a model to synchronize the communication in multicore

architectures is popular. Many approaches use the flag-based approach in a variety

of implementations such as register-based synchronization (RBS) [FJ08], table-based

and hash-based indexing approaches. For instance, the RSB scheme uses registers

to implement the empty/full bit flag. However, in this scheme, the limitation of

the number of shared registers between P/C pairs might reduce the communication

transfers between P/C pairs. The approach proposed in this thesis use the hash-

based indexing approach to reduce the size of the inter-stage buffer between P/C

pairs when using an empty/full flag as a synchronization model. Note that the

flag-based synchronization approach can be implemented also in different memory

architectures such as shared memory and/or distributed memory in a multicore

system.

Although some of the studies use distributed memory (see, e.g., [BF99]) or a

cluster-based memory (see, e.g., [YXY+14]) to provide the synchronization between

cores, we consider the studies which use shared memory for data communication

and deal with the P/C communication model to improve the performance of the

applications (see, e.g., [BF99, MKH+13, MKH+14]) and also the studies which deal

with inter-task data communication using shared memory and the P/C pair com-

munication model (e.g., [LW05, YXY+14]).

The main contribution of these studies (see, e.g., [MKH+13, MKH+14, LW05]

and [GMV08]) consist of achieving task-level pipelining on multicore architectures,

improving the performance of streaming applications using two cores to implement

the producer-consumer model, reducing the synchronization and communication

overhead and data transfer costs between cores; and also providing pipelining par-

allelism between cores in multicore architectures.

In the context of streaming data between P/C pairs over channels, several ap-

proaches, such as [Smi82, Smi86, TKD02, ZSHD02, TKD03b, ZHD03, TKD05] and

[ZHX+15], have used FIFOs as a communication and synchronization channel be-

tween the tasks using a producer-consumer model. The FIFO channels can also be

implemented in software and using shared memory to communicate between cores

2.7 Overview 31

(see, e.g., [LW05]). Note that FIFO channels are suitable when the sequence of

producing data is the same than the sequence of consuming data.

When considering the bottleneck of using FIFO channels for out-of-order data

communications between P/C pairs, some studies, such as the ones presented in

[TKD02, TKD03b, TKD05], use a reordering mechanism to solve the problem of

out-of-order tasks when using a FIFO channel in the context of P/C pairs. However,

using the reordering mechanism requires an extra memory to store the data which

cannot be consumed directly by the consumer. Although reordering the pattern

of producing and consuming data in compile-time might be a solution for some

application with out-of-order data communication between tasks, there might be

cases when a full reordering is not possible and out-of-order communication may

not be fully avoided. Note that in our approach, we do not reorder the way data

are produced and/or consumed. This is however orthogonal to our approach.

Other recent studies (see, e.g., [ZHX+15]) introduced an approach to provide

an automate compilation flow mapping general C programs into full system designs

on different FPGA platforms (called CMOST). Although this approach use block

FIFOs to support out-of-order data communication between P/C pairs, the data

communications between different block FIFOs are in-order. The bottleneck of this

approach is when the consumer requests data from a previous produced block and/or

the next produced block of the current block of the consumer data request. In this

case, a reordering mechanism and an extra memory is still required. In our case,

we use both local and main memory without the need to reorder the way data are

produced and/or consumed.

The second category of the related work, such as [CHW00, CW00, DG07, VJ07]

and [RCD07], deal with loop pipelining techniques and pipelining sequences of loops

in multicore architectures. The main contributions of these studies are summarized

as follows: pipelining the execution of applications using an inter-stage buffer be-

tween the stages; assigning, scheduling and mapping the tasks to each core at compile

time; supporting different types of loops and pipelining their execution; parallelizing

the applications on different multicore architectures (e.g., SMT and CMP) and also

improving their performance by reducing the overall miss rates.

32 Related Work

We also described other studies which support parallel execution of computing

stages. These studies focused on detecting the dependencies between tasks and also

finding the hotspots of the program (see, e.g., [LKM11]). In general, the contri-

bution of these studies can be summarized as follows: detecting the dependencies

between tasks at runtime or compile time; finding pipeline parallelism potential in a

sequential program; providing automatic profiling tools which can also present some

properties and impact of pipeline parallelism; and tracking the data communication

between P/C pairs (see, e.g., [RVD10, KC12, LAUH+15]).

33

2.7 Overview

Table 2.1: Summary of the related work.

Authors Category Contributions Tools/Technologies/Techniques Findings/Results

Byrd et al.
[BF99]

Synchronization:
shared memory

• Reduce communication latency in bus-based
SMPs by sending data to the consumer as soon
as they are produced • Using the producer-
consumer pair model

• Use producer initiated mechanism called StreamLine
which is a cache based message passing mechanism • Use
distributed shared memory multiprocessors

Provides good performance on the
benchmarks with regular communica-
tion patterns between the producer and
the consumer

Miyanjima
et al.
[MKH+13,
MKH+14]

Synchronization:
shared memory

• Achieve task-level pipelining on multiple ac-
celerators

• Use a high performance communication channel
(PEACH2) • Assign tasks to the accelerators and in-
put data can be computed using a sequence of GPUs in a
pipeline manner • Process 100 images (1280×720 pixel)
using Sobel image filter

52% speedup compared to a single GPU
by implementing TaLP using a shared
memory synchronization mechanism

Bei Li et al.
[LW05]

Synchronization:
shared memory

• Provide an efficient implementation of TTL
inter-task communication on CAKE tile archi-
tecture• Improve the performance of stream-
ing applications• Provide a software solution to
reduce the synchronization overhead and data
transfer costs to achieve the performance in to-
tal communication time

• Use two cores to implement the producer-consumer
model • Implementing shared memory using ordered
FIFO technique • Use CakeSim simulation framework
based on TSS model as a cycle-accurate C language used
in Philips to evaluate the performance using the CAKE
tile architecture

80% improvements on latency per to-
ken transfer (CPT) and reduce the to-
tal clock cycles of running the JPEG
decoder application by 23%

Zhiyi et al.
[YXY+14]

Synchronization:
shared memory
and message
passing

• Achieve a higher performance of signal pro-
cessing applications such as LDPC decoder, a
3780-point FFT module, an H.264 decoder and
an LTE channel estimator

• Use cluster-based memory hierarchy for embedded ap-
plications • Use a printed circuit board with the proto-
type and also an FPGA board to test the processor

A 16-Core Processor with shared mem-
ory and Message-Passing Communica-
tions in 65 nm COMS.

Giacomoni
et al.
[GMV08]

Synchronization:
shared memory

• Provide efficient Pipeline Parallelism be-
tween cores • Provide a high-rate core-to-core
software buffering communication mechanism
for multi-threaded pipeline parallel applications
• Very low communication overhead between
processors

• Use FastForward which is an optimization technique
of single-producer/single-consumer concurrent lock-free
(CLF) queues • Evaluation on multicore architectures
• Use 2.0 GHz dual-processor dual-core AMD Opteron
270

Provides faster (up to 4× times)
speedup for pipelining fine-grained
stages compared to the other solutions
such as Lamport’s CLF queues (200 ns
per operation)

34

Related Work

Table 2.1: The summary of the related work.

Authors Category Contributions Tools/Technologies/Techniques Findings/Results

Ziegler
et al.
[ZSHD02,
ZHD03]

Synchronization:
FIFO-based

• Overlap some execution steps of sequences
of loops or functions • Describe an implemen-
tation of several parallelizing compiler analy-
sis techniques and transformations required to
automatically design platform and application-
specific pipelines, which have been extended to
map computations onto FPGA-based architec-
tures

• Loop unrolling, data reuse, data layout, communica-
tion and pipelining analysis • Using DEFACTO system
which combines parallelizing compiler technology from
the Stanford SUIF compiler • Use Xilinx Virtex FPGA
for platform implementations • Xilinx Foundation tools
for the place-and-route phase • Communicate data to
subsequent stages using a coarse-grained FIFO mecha-
nism

HLS synthesis results of the compiler-
optimized pipeline stages for a vision
application with three stages. The re-
sults are presented for different unroll
factors of the innermost loop of these
three stages.

Turjan
et al.
[TKD03b,
TKD02,
TKD05]

Synchronization:
FIFO-based

• Solve the data communication problem for
out-of-order tasks• Provide task-level pipelin-
ing using the producer-consumer model

• A compiler-based approach using FIFO buffers be-
tween tasks • Exploiting reordering mechanisms to solve
the problem of out-of-order data communications be-
tween tasks • Use Ehrhart and Polyhedral theory [JB07]
for reordering • Assume multiple unbounded FIFO chan-
nels for synchronization and communication between
tasks

A novel compile time technique for de-
tecting whether a FIFO or additional
reordering mechanism is required in the
linearization step. Provide an imple-
mentation of reordering mechanism to
give a lower bound on the reordering
memory.

Zhang et al.
[ZHX+15]

Synchronization:
FIFO-based /
block FIFOs

• Provide an automated compilation flow map-
ping general C programs into full system designs
on different FPGA platforms (called CMOST)
• Provide a unified abstraction model for
combination of different microarchitecture op-
timization schemes using customization, map-
ping, scheduling and transformation

• Block-based data streaming technique to provide data
communication between P/C pairs • Introduce block FI-
FOs which are an extension of the traditional stream-
ing framework (FIFO channel) to solve out-of-order data
communications • Measure speedups and energy on Xil-
inx Virtex-7 (VC707) and compare to a 6-core CPU (Intel
Xeon E5-2640) • Use 5 real applications such as MPEG,
NAMD, Smith Waterman, Black Scholes and Medical
Imaging

Obtained over 8× speedups for MPEG,
NAND and Smith Waterman bench-
marks, and over 1.1× for Black Scholes
and Medical Imaging benchmarks.

35

2.7 Overview

Table 2.1: The summary of the related work.

Authors Category Contributions Tools/Technologies/Techniques Findings/Results

Smith
[Smi86,
Smi82]

Synchronization:
FIFO-based
and Flag-based

Analyze and determine the communication
needed between two processors using the
producer-consumer model

• HEP computer systems • Using empty/full bit flag to
provide mutual exclusion between processors in producer-
consumer model

In the context of design space explo-
ration and concerning speedups only
one example with a speedup of 1.76×.

Fide et al.
[FJ08]

Synchronization:
Flag-based/
Register-based

• Register-Based Synchronization to avoid spin
waits in multithreaded applications • Reduce
miss rates, coherence traffic • Reduce the exe-
cution time of the applications and save power

• Register-Based Synchronization • Data Communica-
tions via Prepushing • Using Red-Black Solver, Finite-
Deference Time-Domain (FDTD) and ARC4 Stream ci-
pher benchmarks • Simulation Environments including
Simics, GEMS Ruby and a multicore system using 2 GHz
UltraSPARC III processors

RB Solver-RBS achieved 2 − 5% ac-
cess timer per iteration, FDTD-RBS
achieved 6 − 11% per iteration, ARC4-
RBS achieved negligible.

Bardizbanyan
et al.
[BGW+13]

Synchronization:
Flag-based/
table-based

• Reduce L1D energy by capturing many data
memory references in the tagless access buffer
(TAB) • Improve performance by prefetching
cache lines into the TAB • Exploit amenable
access patterns of the TAB-allocated memory
references to eliminate unnecessary data trans-
fers between memory hierarchy levels

• Use 20 benchmarks from the MiBench benchmark suite
such as automative, consumer, network, office, security
and telecommunication benchmarks • Use VPO compiler
• Use SimpleScalar simulator

Total data-access energy usage is re-
duced by 34.7% with four TAB entries.
The four-entry TAB configuration re-
duces energy in the L1D and DTLB by
35.4% and 41.9%.

Givargis
[Giv06]

Synchronization:
Flag-based and
table-based

• Provide a zero-cost hash-functions for cache
indexing • Avoid adding any overhead in terms
of area or delay

• Bit positions are determined for indexing the cache
aiming power consumption reduction by reducing cache
misses • Use integer SPEC CPU 2000 benchmarks

Up to 45% reduction for data traces
and up to 31% reduction for instruc-
tion traces in cache misses. The results
show an average improvement of 14.5%
for the Powerstone benchmarks and an
average improvement of 15.2% for the
SPEC’00 benchmarks.

36

Related Work

Table 2.1: The summary of the related work.

Authors Category Contributions Tools/Technologies/Techniques Findings/Results

Callahan
et al.
[CHW00,
CW00]

Software/Loop
pipelining

• Present a scheme for pipelining the hardware
execution of a variety of loops • techniques to
support pipelined execution of loops on the co-
processors

• Use Garp-C compiler and architecture for the imple-
mentation • Use the reconfigurable arrays • Only one
benchmark, wavelet image encoding have been used in
the results

The results show the speedup improve-
ment of 87% compared with the origi-
nal software sequential execution time.
The results shown are from processing
a 256 × 256 pixel image.

Douillet et
al. [DG07]

Software/Loop
pipelining

• Propose a solution to generate and extract
threads, and to schedule instructions • Assign
the threads to each core automatically in the
context of multicore architectures

• Use software pipelining to leverage the multiple cores in
a single chip • The technique can be applied to any paral-
lel and non-parallel loop nest originally written in sequen-
tial language • Use Single-dimension Software Pipelining
(SSP) to generate the SWP schedule • Using Open64
compiler and re-targeted for the IBM Cyclops multicore
architecture for the evaluations

Experimental results shows that this
approach scales up well when the num-
ber of thread units increases. The
implementation uses a very light-
weight synchronization method with
only standard instructions of the IBM
Cyclops64 architecture

Vadlamani
et al.
[VJ07]

Software/Loop
pipelining

• Parallelize applications for Simultaneous
Multi-threading (SMT) and Chip Multiproces-
sors (CMP) • Reduce the overall miss rates and
improve the performance of the parallelized ap-
plications

• Use Synchronized Pipelined Parallelism Model
(SPPM), which uses the shared cache as a high-speed
communication channel between producer and consumer
pairs • Develop C2CBench tool to evaluate the per-
formance of the storage controllers at different levels of
the memory hierarchy under varying workload conditions
• Measure the overhead of maintaining cache coher-
ence in parallel microprocessors • Use Red-Black Solver,
Finite-Deference Time-Domain (FDTD), ARC4 Stream
Cipher, and The Pipelined Equation Solver (EQN) as
benchmarks

Performance improvements of the
benchmarks using SDM, SPPM and
Polymorphic threads on different ar-
chitectures such as Opteron, Xeon and
Core Due.

37

2.7 Overview

Table 2.1: The summary of the related work.

Authors Category Contributions Tools/Technologies/Techniques Findings/Results

Rodrigues
et al.
[RCD07]

Software/Loop
pipelining

• Present a technique for pipeline sequences
of data-dependent loops using fine-grained syn-
chronization • Describe a hardware scheme and
an analysis to reduce the size of memory buffers
for inter-stage pipelining • Describe the appli-
cation of the technique when compiling imper-
ative programming languages to FPGAs

• A data-driven approach • Each computing stage is
translated to a specific datapath and Finite State Ma-
chine (FSM) which interfaces to the inter-stage buffer
• Use RTL cycle accurate simulations to determine the
size of local buffer • Use the Nau compiler based on
Galadriel/Nenya framework and also RTL simulation en-
vironment

The experimental results reveal notice-
able performance improvements and
buffer size reductions for a number of
benchmarks such as FDCT and Sobel
over traditional approaches

Larsen
et al.
[LKM11]

Code Transfor-
mations: De-
tecting depen-
dencies

• Introduce two compiler directives: taskshare
and depends which provide additional data de-
pendence information at compile time • Detect
the dependencies at runtime if it fails at compile
time

• Use a micro benchmark, and three soft real-time em-
bedded codes to evaluate the impact of the directives of
the compiler • Use task graphs

The compiler directives can enable a
40% − 57% reduction in potential de-
pendencies of the program.

Sean et al.
[RVD10]

Code Transfor-
mations: De-
tecting depen-
dencies

• Present a profiling tool for discovering
thread-level parallelism • Find pipeline paral-
lelism in sequential programs and coarse-grain
parallelism in the program’s outer loops

• Use several MiBench, SPEC2000 integer and BioPerf
benchmarks • Measure the speedup on the real hardware
on a 32-thread Sun UltraSPARC T1 and on 8-thread Intel
i7 quad-core

Speedups of 5.18× for bzip2 compres-
sion and 11.8 for the MPEG2-encoder
on a Sun UltraSPARC T1

Thies et al.
[TCA07]

Code Transfor-
mations: De-
tecting depen-
dencies

• Show the stability of streaming applications
• Define an API for indicating the potential of
parallelism in the program • A dynamic tool
to track P/C communications between coarse-
grained program partitions

• Use streaming applications such as MPEG-2 decoding,
MP3 decoding, GMTI radar processing, and three SPEC
benchmarks with the regular flows of data between tasks
• Extract information from stream graphs of each appli-
cation

Achieved a 2.78× mean speedup on a 4-
core architecture containing two AMD
Opteron 270 dual-core processors

CHAPTER 3
Task-Level Pipelining (TaLP)

Chapter Outline
3.1 Partitioning Programs for Multicore Systems . 40

3.2 Producer-Consumer (P/C) Pairs . 41

3.2.1 Loops and Dependencies . 44

3.2.2 Data Communication Patterns . 45

3.2.3 P/C Data Communication Ratio . 46

3.2.4 P/C Communication Schemes . 47

3.3 Summary . 53

Techniques to speedup processing are becoming increasingly important. In

order to achieve parallel execution of software, the hardware has to support

the simultaneous execution of multiple tasks. Multicore-based architectures provide

hardware platforms suitable to accelerate the execution of applications by supporting

different forms of parallel execution. There are many reasons for moving to multicore

architectures. One fundamental reason is that the serial microprocessor processing

speed is reaching a physical limit for increasing the clock frequency. Therefore, the

processor manufacturers need to focus on a better support for multithreading such

as the one provided by multicore processors. In addition, software developers are

also forced to develop massively multithreaded programs as a way to better use the

multicore processors.

One of the possibilities to efficiently use the advantages of multicore architec-

tures is the use of parallel programming models and parallelization techniques to

39

40 Task-Level Pipelining (TaLP)

accelerate the execution of applications. The parallel execution of applications can

be performed by different levels of parallelism such as data-level, task-level, and

pipeline parallelism [HP11]. The parallel programming models such as shared mem-

ory and distributed memory models, also provide opportunities for parallel execution

of tasks in multicore architectures.

Task-level pipelining (TaLP) is also an important technique for multicore based

systems, especially when dealing with applications consisting of producer/consumer

(P/C) tasks (see, e.g., [KKK+09]). TaLP may provide additional speedups over the

ones achieved when exploring other forms of parallelism [HP11]. In the presence of

multicore-based systems, TaLP can be achieved by mapping each task to a distinct

core and by synchronizing the execution of the tasks according to data availability.

By partially overlapping the execution of data-dependent tasks (herein: Computing

Stages), TaLP can contribute to overall application performance improvements. In

the following sections, we describe the most important concepts which are essential

to implement TaLP in multicore systems.

3.1 Partitioning Programs for Multicore Systems

An essential component of a successful embedded multicore implementation must in-

clude developing applications in a way to make concurrency available for the system

to exploit. Applications can be written from the scratch using parallel programming

languages or using legacy code and restructure it to run efficiently on a multicore

system. One of the strategies to run a sequential program on a multicore system is

partitioning the application into multiple independent stages and then execute each

stage in one core concurrently. However, this strategy might not be sufficient when

the sequential program has stages with dependencies. Therefore, identifying the

dependencies between the stages is also essential to provide parallelism in multicore

systems.

Data dependence analysis [KKP+81, Ban88] determines some of the code con-

straints for parallel execution in multicore architectures. To describe the depen-

dencies, we use here the concepts related to producers and consumers of data. For

3.2 Producer-Consumer (P/C) Pairs 41

example, a dependency means that a consumer of data must wait until the producer

has produced the data. Figure 3.1 presents an example of a program partitioned

into two sections (A and B). In this example, the data (x) is produced in section A

and consumed in section B. As shown, section B is data dependent of section A. In

this case, the value of x needs to be communicated from section A to section B.

Figure 3.1: An example of partitioning a program with dependencies.

Identifying and locating the dependencies between tasks for any type of program

manually is a difficult task. Therefore, we need to limit the scope of the dependencies

in the program and the level of parallelism needs to be identified. There are many

profiling tools which can help to identify the dependencies between tasks such as

Intel Parallel Amplifier [Amp16], DiscoPoP [LAUH+15] and Pareon Profile [vec16]).

These tools provide the automatic identification of stages and the hotspot of the

program. A hotspot is a small part of the code which consumes much of the program’s

execution time.

3.2 Producer-Consumer (P/C) Pairs

To understand the dependencies, we assume a program consisting of producers and

consumers of data. The main concept of the P/C pair is based on the fact that

a section of a program (e.g., a function or a loop) does calculations and outputs

data used by other section of the program: the first section is the producer and

the second section is the consumer. In addition, a data dependency between the

producer and the consumer means that the consumer before processing must wait

until the producer has produced the required data.

Figure 3.2 presents an example of pipelining data-dependent computing stages

using a P/C model. As shown, the consumer can start consuming data only when it

is available by the producer. For instance, when data (e.g., data 0) is output by the

42 Task-Level Pipelining (TaLP)

data in

data 0

compute

... data 0

data out

compute

...

Producer Consumer

tim
e

Figure 3.2: An example of pipelining data-dependent computing stages using a P/C
model and with the identification of the data communication between the producer
and the consumer.

producer, the consumer can immediately consume it and the producer starts produc-

ing the next data (data 1) concurrently. Many applications, such as image/video

and signal processing, are structured as a sequence of data-dependent computing

stages (e.g., consisting of a loop or a set of nested loops), and are thus amenable to

pipelining execution [ZSHD02, RCD07]. Using TaLP, a consumer computing stage

may start execution, before the end of the producer computing stage, based on data

availability. Performance gains can be achieved as the consumer can process data

as soon as it becomes available.

In general, each computing stage can have multi-input and multi-output stages.

This means each computing stage can be a producer for the next stage, a consumer of

the previous stage or a consumer from the previous computing stage and a producer

for the next dependent stage. Therefore, we can categorize the dependent stages

into three different types with the terms of: producer stages, consumer stages and

consumer/producer stages.

The producer computing stages are independent but the output of their com-

putation would be used for the next computing stages. The consumer computing

stages are dependent on the previous computing stages and their computation out-

put would not be used by other stages. The consumer/producer computing stages

can be dependent on the previous computing stages and the output of their com-

puting stages would be used by the next computing stages.

3.2 Producer-Consumer (P/C) Pairs 43

Figure 3.3 shows three possibilities for the computing stages dependencies. As

shown, the producer stages have the possibilities of n output (n ≥ 1) and the con-

sumer stages have the possibilities of m input (m≥ 1). Also, the producer/consumer

stages with multi-inputs/multi-outputs, have the possibilities of m input and n out-

put (m,n≥ 1).

Producer Stage

n output, n>=1

Consumer Stage

m input, m>=1

Consumer/
Producer Stage

m input, m>=1

n output, n>=1

…...

…...
…...

Figure 3.3: The possibilities for computing stages stages.

Figure 3.4 shows the an example of a sequential program with five dependent

computing stages. In this example, the Stage 2 and Stage 3 are dependent to

the Stage 1, and the Stage 4 is only dependent to the Stage 3. The Stage 5 is

also dependent to the Stage 2 and Stage 4. Therefore, Stage 1 is a producer stage

for the Stage 2 and Stage 3. The Stage 2, Stage 3 and Stage 4 are identified as

consumer/producer stages and the Stage 5 is also a consumer stage for the previous

stages (Stage 2 and Stage 4).

Stage 1

Stage 2 Stage 3

Stage 4

Stage 5

Producer Stage

Consumer/
Producer Stages

Consumer Stage

Figure 3.4: The dependency graph of a sequential program with five computing
stages.

In the following sections, we describe producer/consumer (P/C) pairs and dif-

ferent types of data communication and synchronization between P/C pairs.

44 Task-Level Pipelining (TaLP)

3.2.1 Loops and Dependencies

As previously mentioned, computing stages can consist of a loop, nested loops or

a set of loops. To partition the computing stages and to implement them using a

P/C pair model, we need to determine the data dependencies between the sequence

of loops or nested loops in the code. Computing stages may have one or multiple

dependencies. However, here we present an example of two nested loops with one

data dependency for simplicity (see Figure 3.5a).

(a)
(b)

Figure 3.5: An example of pipelining data dependent nested loops using a P/C pair
model: (a) Partitioning; (b) Pipelining stages and identification of data communi-
cated between P/C pairs.

Figure 3.5 presents an example of pipelining the sequence of data-dependent

loops using a P/C pair model. As shown in Figure 3.5a, the program code is parti-

tioned into two computing stages (A and B). Considering the dependency between

these stages, stage B is the consumer of stage A. Figure 3.5b shows the data depen-

dencies of each iteration of the loop between the producer and the consumer using

pipelining the execution of both stages which is partially overlapped. For example,

as soon as data element array [0,0] is output the consumer processes it and waits for

the next data element, and after producing data element array [0,0] the producer

continues producing other data elements such as array [0,1] and array [0,2].

3.2 Producer-Consumer (P/C) Pairs 45

3.2.2 Data Communication Patterns

Producers and consumers can have different data communication patterns. In gen-

eral, data communication patterns between the producer and the consumer can be

classified into two different categories: in-order and out-of-order.

The data communication pattern between P/C pairs is in-order when the se-

quence of producing data is the same as the sequence of consuming data. Fig-

ure 3.5 is an example of an in-order data communication pattern between P/C

pairs. As shown in this example, the sequences of data (e.g., array[0,0], array[0,1],

array[0,2], array[0,3],...) are produced and the same sequences of data are con-

sumed by the consumer. Figure 3.6a shows an example of a generic in-order data

communication pattern between P/C pairs.

1 2 3 4 5

1

2

3

4

5

j

i

Producer

1 2 3 4 5

1

2

3

4

5

y

x

Consumer

(a)

1 2 3 4 5

1

2

3

4

5

j

i

Producer

1 2 3 4 5

1

2

3

4

5

y

x

Consumer

(b)

Figure 3.6: Examples of different data communication patterns between P/C pairs:
(a) in-order ; (b) out-of-order.

46 Task-Level Pipelining (TaLP)

On the other hand, when the sequence of producing data is different of the

sequence of consuming data, the data communication pattern between P/C pairs is

out-of-order. We believe that most of the image/video processing applications have

out-of-order data communication patterns between P/C pairs.

Figure 3.6b presents an example of a generic out-of-order P/C pairs. As shown

in this example, the sequences of data (e.g., [1,1], [1,2], [1,3],...) is produced in a

different order from the one requested by the consumer (e.g., [1,1], [2,1], [3,1],...).

In this case, the consumer needs to wait until the requested data are available.

For instance, the consumer can consume the second requested data ([2,1]) only

when 5 additional sequences of data ([1,2], [1,3], [1,4], [1,5]) have been produced

by the producer. Note that the distance (herein 5 sequences of data) between the

data requested by the consumer and sequences of data have been produced by the

producer is depending on the data communication pattern between P/C pairs. For

instance, when considering TaLP, this example represents a highly unsuitable case

of out-of-order data communication patterns between P/C pairs.

3.2.3 P/C Data Communication Ratio

The ratios of the producer and consumer define the number of times each data

element is produced/consumed. If each data element is produced only once, the

ratio of the producer is 1. Similarly, if the consumer requests an element just once,

the ratio of the consumer is 1. For instance, a P/C pair ratio of (1 : 2) means that

data elements are produced one time and there is at least one element requested/read

twice by the consumer. A P/C pair ratio of (2 : 1) means that there is at least one

element produced twice (a maximum) and elements are consumed at most one time.

In general, a P/C pair ratio of (M : N) means that there is at least one element

produced M times and there is at least one element consumed N times. M and N

are represent the maximum ratios of the producer and the consumer respectively.

Figure 3.7 presents an example of in-order and out-of-order P/C pairs with dif-

ferent ratios between the producer and the consumer. The data communication

pattern between the producer and the consumer can be grouped in four categories:

3.2 Producer-Consumer (P/C) Pairs 47

(1 : 1), (1 : Cr), (Pr : 1) and (Pr : Cr) where (Pr : Cr;2≤ Pr ≤M ;2≤ Cr ≤N), and

(Pr and (1 : Cr) are the ratios of the producer and the consumer.

1 2 3 4 5

1

2

3

4

5

j

i

Producer

1 2 3 4 5

1

2

3

4

5

y

x

Consumer

N

N

N

N

N

(a)

1 2 3 4 5

1

2

3

4

5

j

i

Producer

1 2 3 4 5

1

2

3

4

5

y

x

Consumer

N

N

N

N

N

(b)

Figure 3.7: Examples of different data communication patterns with the ratio of
(1 : N) between P/C pairs: (a) in-order; (b) out-of-order.

Figure 3.8 presents the general forms of P/C pair ratios (M : N). Although

the producer can produce data elements more than once, in many image/video

processing computing stages the P/C pairs ratios are (1 : 1) or (1 : N). Therefore,

the approach presented in this thesis is focused on P/C pairs with the ratios such

as (1 : 1) and (1 : N).

3.2.4 P/C Communication Schemes

Considering the data dependencies between computing stages, data synchronization

between P/C pairs is an important key to provide the correctness of the concurrent

48 Task-Level Pipelining (TaLP)

1 2 3 4 5

1

2

3

4

5

j

i

Producer

M

M

M

M

M

1 2 3 4 5

1

2

3

4

5

y

x

Consumer

N

N

N

N

N

Figure 3.8: A general example of a data communication pattern between the pro-
ducer and the consumer with the ratio of (M : N).

execution of the computing stages, the validity of the data being communicated

between P/C pairs, and to properly allocate limited resources between cores.

There are different ways to synchronize data communication between P/C pairs.

According to the granularity, we can classify two types of data synchronization be-

tween stages: fine-grained and coarse-grained. In fine-grained data synchronization,

each data element is used to synchronize the computing stages. In coarse-grained

data synchronization, instead of each data element, chunks of data elements or an

entire array of elements (e.g., an image) is considered to synchronize the comput-

ing stages. The following subsection describes the most common schemes for data

synchronization to provide TaLP between P/C pairs in multicore architectures.

FIFO-based

The communication component between P/C pairs can be a simple FIFO. Figure

3.9 presents a fine-grained data synchronization scheme using a FIFO between P/C

pairs. The architecture presented here considers a memory shared between cores.

Other architectures can be based on the distributed memories (e.g., one per cores).

A mix of shared and distributed memories can be also present.

In the architecture presented here, reading and writing from/to the FIFO can be

blocked. When the FIFO is full, the producer waits to write into the FIFO. Similarly,

when the FIFO is empty, the consumer waits until a data element is written to the

FIFO. In this scheme, the producer sends data elements into the FIFO and the

3.2 Producer-Consumer (P/C) Pairs 49

Figure 3.9: Fine-grained data synchronization scheme using a FIFO between P/C
pairs and a shared memory multicore architecture.

consumer reads data from the FIFO as soon as it is available. The bottleneck

of the communication over FIFO channels is that if the order of consumption is

different from the order of the produced data (i.e., when in presence of out-of-order

data communication), the producer and the consumer stall and a deadlock can be

expected.

Figure 3.10 presents the kernel of a Gray-Histogram code which consists of two

computing stages. The first stage transforms an RGB image to a gray image with

256 levels and stores the output into an array. The second stage reads the gray

image and determines its histogram. These two stages can be split into producer

and consumer tasks. The producer transforms the input image from RGB to gray

and the consumer computes the histogram of the gray image.

This kernel has an in-order communication pattern between the producer and

the consumer and a ratio of (1 : 1). In this case, a simple FIFO can be used to

communicate data between the two stages and to achieve the fine-grained synchro-

nization between P/C pairs. In this model, the one-dimensional FIFO channel is

being accessed by means of a blocking write (put) from the producer side and a

blocking read (get) from the consumer side.

There are some considerations take into account such as the FIFO size and the

synchronization delay between the producer and the consumer when using FIFOs.

For instance, in the case of out-of-order P/C pairs, using FIFOs requires a con-

servative determination of the size of the FIFOs to ensure the correctness of data

communication between the producer and the consumer. In this communication and

50 Task-Level Pipelining (TaLP)

 // Compute RGB to gray
for (index=0; index < SIZE; index++)
 {
 int pixel = input[index];
 int R = 0xff & (pixel>>16);
 int G = 0xff & (pixel>>8);
 int B = 0xff & pixel;
 output[index] = (R + G + B)/3;
 }
// Compute Histogram of gray Image
for (index=0; index < SIZE; index++)
 {
 int pixel = 0xff & output[index];
 histogram[pixel] += 1;
 }

 // Compute RGB to gray
 for (index=0; index < SIZE; index++)
 {
 int pixel = input[index];
 int R = 0xff & (pixel>>16);
 int G = 0xff & (pixel>>8);
 int B = 0xff & pixel;
 put((R + G + B)/3); // blocking
 }

// Compute Histogram of gray Image
 for (index= 0; index < SIZE; index++)
 {
 get(&data); // blocking
 int pixel = 0xff & data;
 histogram[pixel] += 1;
 }

Original Code

Producer

Consumer

FIFO

St
ag

e
1

St
ag

e
2

Figure 3.10: Example of a producer/consumer pair using a FIFO channel.

synchronization scheme, all the array elements produced/consumed on each pipelin-

ing stage, and thus corresponding to a given FIFO, must be consumed before the

data corresponding to another stage is considered. This may require FIFOs with

a very large width (or depth), making this approach unsuitable in many cases, as

large buffers must be implemented as out-of-chip storage. Note that in some cases of

out-of-order producer/consumer pairs the entire data set to be communicated may

have to be stored in one FIFO stage, effectively disabling the pipelining of stages.

This approach may also need the consumer stores locally the elements of each FIFO

stages and process them before getting another set of elements from the FIFO. An-

other option to implement this approach is the use of multiple FIFO channels with

the number given by the size needed in each stage.

Figure 3.11 presents two out-of-order producer/consumer examples of accesses

to array elements and the required number of elements for each FIFO stage. In

this example, considering the size of each FIFO stage, a set of array element can be

stored in each FIFO stages and the consumer can request for the next array elements

only when the previous set have been consumed by the consumer.

3.2 Producer-Consumer (P/C) Pairs 51

Producer
A[0]
A[1]
A[2]
A[3]
…..

Consumer
A[1]
A[0]
A[3]
A[2]
…..

A[0]
A[1]

A[2]
A[3]

(a)
Producer
A[0]
A[1]
A[2]
A[3]
A[4]
A[5]
…..

Consumer
A[0]
A[3]
A[1]
A[4]
A[2]
A[5]
…..

A[0]
A[1]
A[2]
A[3]
A[4]

A[5]
A[6]
A[7]
A[8]
A[9]

(b)

Figure 3.11: Examples of inter-stage scheme based on FIFOs and the number of
elements in each stage for out-of-order producer/consumer pairs (a, b).

Shared-Memory Based

Figure 3.12 presents a shared memory based pipelining TaLP scheme. As shown,

this scheme is based on a synchronization mechanism which uses shared memory as

a storage location for the data being communicated between stages.

Figure 3.12: Fine-grained data synchronization scheme between P/C pairs using
shared memory.

The shared memory stores a produced element or a set of elements using an

empty/full bit to establish data synchronization between the producer and the con-

sumer. The producer stores data elements directly in the shared memory and sets

to full. The consumer checks the flag for each read from the shared memory. If the

52 Task-Level Pipelining (TaLP)

requested data from the consumer are not available in the shared memory (flag set to

empty), the consumer waits until data are available (flag is set to full). Figure 3.13

shows the previous example of a simple producer/consumer pair using a flag-based

shared memory instead of a FIFO channel.

 // Compute RGB to gray
for (index=0; index < SIZE; index++)
 {
 int pixel = input[index];
 int R = 0xff & (pixel>>16);
 int G = 0xff & (pixel>>8);
 int B = 0xff & pixel;
 output[index] = (R + G + B)/3;
 }
// Compute Histogram of gray Image
for (index=0; index < SIZE; index++)
 {
 int pixel = 0xff & output[index];
 histogram[pixel] += 1;
 }

 // Compute RGB to gray
 for (index=0; index < SIZE; index++)
 {
 int pixel = input[index];
 int R = 0xff & (pixel>>16);
 int G = 0xff & (pixel>>8);
 int B = 0xff & pixel;
 out [index] = (R + G + B)/3;
 flag [index] = 1;
 }

// Compute Histogram of gray Image
 for (index= 0; index < SIZE; index++)
 {
 while(flag[index]==0);
 data = out [index];
 int pixel = 0xff & data;
 histogram[pixel] += 1;
 }

Original Code

Producer

Consumer

Shared
Memory

St
ag

e
1

St
ag

e
2

flag
data

….
….

Figure 3.13: Example of producer/consumer pair using a flag-based shared memory.

One of the drawbacks of the implementations of TaLP based on this scheme

is the use of a shared memory to provide data for the producer, to communicate

data between the producer and the consumer, and to store data produced by the

consumer. Being the shared memory a single-port memory, the serialization of

concurrent memory accesses occurs and there might be periods of time the P/C

cores are waiting for data.

The FIFO-based communication/synchronization scheme described in the previ-

ous section, can be also implemented in software using a shared memory architecture

as the one presented in Figure 3.12.

The following chapter describes our approach which addresses the main disad-

vantageous of the two schemes for TaLP described in this section.

3.3 Summary 53

3.3 Summary

In this chapter, we presented the main concepts of Task-Level Pipelining (TaLP) and

the importance of using TaLP to accelerate the execution of tasks (computing stages)

in multicore architectures. We described that to use the advantages of multicore

architectures, we need to learn how to partition a sequential program to run in

parallel. Due to the partitioning, we described the definition of computing stages in

a sequential program and also the dependencies between the computing stages. We

used the producer-consumer (P/C) paradigm as a model of synchronization and we

described the data dependencies between the producer and consumer pairs.

We described two different types of data communication patterns between P/C

pairs: in-order and out-of-order and four types of data communication ratios be-

tween P/C pairs: (1 : 1), (1 : N), (M : 1), and (M : N). As the P/C pairs ratios of

(1 : 1) and (1 : N) are the most common data communication ratios between P/C

pairs in the domain of image and signal processing applications, the work of this

thesis is mainly focused on these two P/C ratios. However, for the ratio (M : 1),

there are some possible approaches to change the ratio of the producer from (M : 1)

to (1 : 1). For instance, when the producer outputs a data element M times, the

ISB can only store one data. By considering the ratio (M : 1), the consumer loads

each data one time. Therefore, this approach is not dependent on M whether the

value of M is constant or variable for each produced data.

Finally, we presented the two most common multicore architectures to implement

TaLP between P/C pairs.

In the next chapter, we present our multicore approach to implement and to

provide TaLP.

CHAPTER 4
Our TaLP Approach

Chapter Outline

4.1 Fine-grained Approaches . 63

4.1.1 Fine-grained ISB (Inter-Stage Buffer) . 64

4.1.2 Fine-grained ISB within Consumer . 67

4.2 Coarse-grained Approaches . 68

4.2.1 Coarse-grained One FIFO . 68

4.2.2 Coarse-grained Two FIFOs . 69

4.3 The TaLP Design Flow . 70

4.3.1 Computing Stage Identification . 72

4.3.2 Identifying the Dependencies . 72

4.3.3 Determining the Communication Patterns and Ratios 73

4.3.4 Granularity and TaLP Scheme Decision . 74

4.3.5 Mapping and Scheduling Computing Stages 74

4.3.6 TaLP Performance Impact Evaluation . 76

4.3.7 Applying TaLP and Measuring the Speedup 78

4.4 Summary . 78

I n this chapter, we describe our approach to provide TaLP for in-order and out-

of-order data communication between P/C pairs, including different P/C pair

communication ratios. Our approaches are classified into two main groups: fine-

grained and coarse-grained approaches. Additionally, we propose a top-down design

flow to apply TaLP to sequential applications.

55

56 Our TaLP Approach

The main concept of our approach is based on a synchronization scheme which

uses, for each array element being produced-consumed, a data-buffer storage location

and an empty/full bit in the synchronization table. These auxiliary data storage

structures have the same size in terms of the number of elements to be stored as

the number of elements being communicated between stages. Clearly, such a simple

approach may require off-chip storage to store all the data ever being generated and

produced. Instead, we make the simple observation that the implementation only

needs to have enough storage space for the data items that are in-transit as the

storage space can be reused as soon as a given item is consumed. This observation

leads to the fundamental issue of how to map a large number of elements to a smaller

local memory in order to reduce the number of elements stored in a higher memory

layer (e.g., main memory).

We use a hash-based indexing approach as it is a well-known approach for rapid

and efficient access to large numbers of sparsely allocated “keys”. In addition, as

a fully-associated indexing scheme is prohibitively expensive, we have opted for a

hash-based indexing approach where the array index is used to compute a single

memory address where the corresponding data and empty/full bits will be mapped

to the data-buffer and sync-table, respectively.

Figure 4.1 presents a simple hash-based indexing approach. In this example, the

data produced and stored into the memory. As soon as a requested data from the

consumer (e.g., A[2], the first requested data from the consumer) is available in the

local memory, it can be consumed. Note that in this approach, there is no restriction

related to the types of the data elements communicated between stages as long as

a calculation of the memory position based on the index is provided when needed.

Given the ability to handle out-of-order production and consuming of data items,

the use of a many-to-one mapping function raises, however, another subtle issue.

As both producer and consumer engage in a double-sided synchronization protocol

over data-buffer locations, the producer may require the consumer to read a data

item for a specific location before proceeding with the computations. On the other

hand, the consumer might be waiting for the producer to generate another data

item before attempting to consume the first item the producer is waiting for. This

Our TaLP Approach 57

Figure 4.1: An example of hash-based indexing approach with a memory (size=8)
and using the 3 least significant bits of index to access the memory.

deadlock situation arises as the mapping function (implemented in our case with

hash functions) can create a circular dependency between the items the producer

and consumer access.

We address this issue by enforcing the synchronization to be single-sided. We

define the mapping function and the data-buffer size so that for the specific com-

putation at hand, there is never a write-conflict at the producer, i.e., the producer

will always be able to write data items to the data-buffer. This means that one

needs to simultaneously dimension the size of the memory and the indexing func-

tion such that in any given window of time throughout the computation where data

items need to be stored in the data-buffer, there are no two data items that map to

the same entry in the table. The net result is a trade-off between a more sophisti-

cated and more effective hashing or mapping function and the size of the memory as

the data-buffer might be larger than a double-sided synchronization protocol would

need.

Clearly, the determination of the size of the data buffer must take into account

the order and rate at which the producer and consumer interact to understand when

a given data buffer location becomes available for the producer to save data. To

avoid this problem, we consider a memory hierarchy where at the first level there is

a smaller table and at the second level we use the main memory and thus we always

ensure that consumer neither stall waiting for storage availability nor data items

58 Our TaLP Approach

produced are stored in already occupied memory positions.

When accessing the data-buffer and the sync-table both pipeline stages translate

the address or array index value into a table location using the hash function Hash

as depicted in Figure 4.2. In order to avoid possible performance degradation, any

hashing function of practical value needs to be simple to implement and, if possible,

should not impose significant delays when accessing memory.

Although using an empty/full tagged memory scheme is an efficient solution for

data synchronization between P/C pairs, it may increase the number of accesses to

the main memory when the requested data is not available in local and/or in main

memory. For instance, if the requested data from the consumer is not available in

the local or in the main memory, the consumer waits until the data is available in

the local memory or in the main memory (i.e., when the respective flag is set to

one). Considering the overhead for flag checking in the local (on-chip) and in the

main memory, the consumer may waste clock cycles and energy.

The inter-stage Buffer (ISB) structure with hashing is presented in Figure 4.2.

This ISB has the following behavior: (a) a write operation stores the input data

in the data buffer position determined by the hash function and flags in the same

position the empty/full table (it corresponds to a simple store of 1 when an emp-

ty/full table is used); (b) a read operation loads the output data from the buffer

position determined by the hash function and checks the flag stored at that posi-

tion of the empty/full table; (c) once realized, the read operation also updates the

corresponding item of the empty/full table (stores a 0 when an empty/full table is

used).

As we mentioned previously, in many image/video processing computing stages,

the P/C pair ratios are (1 : N). In these cases, instead of a table with empty/full

flags in the ISB, we use a table with numbers representing the number of times a

data element is requested by the consumer. For each data produced and stored in

the local memory of the ISB, the respective table value is set to the number of times

it is requested (N). For each request of a data element stored in the local memory of

the ISB, the respective table value is decremented by one and when it is 0 means it is

empty. However, in some applications, the use of the maximum number of requests

Our TaLP Approach 59

Figure 4.2: Inter-Stage Buffer using local and/or shared main memory with an
empty/full bit flag.

per data element for all the elements implies local memory positions never freed. To

prevent this situation, one can use a function as Requests Calculation in Figure 4.3

to calculate the precise number of requests (from 1 to N) for each requested element

by the consumer.

As an example, consider an image processing application with the image size of

8× 8 and 3× 3 window block depicted in Figure 4.4 (left). The window block is

moved horizontally to the next column until it reaches the last column of the image

and then continues vertically considering the next row until it reaches the last row

of the image. Figure 4.4 presents the situation when the window block moves to the

next column of the image. In the second window block, most of the elements are

requested in a previous window block which is depicted by the light blue color (see,

Fig. 4.4 right). Note that the number of requests for each pixel of the image is not

the same, i.e., based on the x,y of the pixel in the image, the number of requests can

be different. For example, the four corners of the image are requested once, while

the pixels in the center of the image are requested 8 times. Figure 4.5 presents the

pseudo-code of the Requests Calculation function. The function uses the (x,y) of

each produced element as an input argument and returns the number of requests

for each element of the consumer stage.

Although this function sets the precise value for the synchronization table, it

may not free local memory positions as intended when the number of requests is not

60 Our TaLP Approach

Figure 4.3: Inter-Stage Buffer using local and/or shared main memory and the
requests calculation function.

Figure 4.4: Example of a P/C pair with ratio of (1 : Crmax): window block movement
and reducing the number of accesses to the ISB by using a shadow memory.

constant for each pixel of the image. Thus, we propose an optimization technique

to decrease the number of requests from the Consumer by storing the previously

requested elements into a local shadow memory.

The shadow memory is implemented in the Consumer side as a simple one di-

mensional array to store the previously requested elements as shown in Fig. 4.4. By

storing the previous window block in the shadow memory, the Consumer requests

only the new elements which are not available in current shadow memory. As shown,

the number of requests in the second window block can be decreased to only three

requests. As a result of reducing the number of requests from the consumer to the

ISB, we can achieve higher speed-ups for 1 : N ratio P/C pairs.

Here, we present some image processing applications with out-of-order computing

stages and the ratio of (1 : N) between P/C pairs such as FIR-Edge and Edge-

Our TaLP Approach 61

Figure 4.5: An example of Request Calculation function to compute the precise
number of requests when the P/C pairs ratios are (1 : N).

Detection kernels. For instance, the FIR-Edge kernel is based on a calculation of

the window blocks which performs specific computations on each pixel of the image

(e.g., average, sum). Based on the size of the window block and the coordinates of

the pixel, the number of requests from the consumer is computed for each produced

pixel using the Requests Calculation function in the ISB.

Figure 4.6 presents the original code of FIR-Edge, here with the identification of

the producer (stage 1) and consumer (stage 2). As shown in this figure, the output

of the first stage (herein out) is the input of the second stage.

By considering the data dependencies between the two stages, the original code of

FIR-Edge can be partitioned and mapped into the producer and consumer sections

and using an Inter-Stage Buffer (ISB) between the P/C pair as depicted in Figure

4.7. Note that the instructions put in the producer and get in the consumer side are

defined as atomic instructions which provide the blocking read/write from/to the

ISB.

In this example, the producer uses put instructions to send the index and data

to the ISB. In a similar way, the consumer uses put instructions to request data

elements from the ISB and uses get instructions to receive the requested data from

62 Our TaLP Approach

Figure 4.6: The original code of FIR-Edge with out-of-order data communication
and (1 : N) ratio between the stages.

Figure 4.7: The partitioned code of FIR-Edge using an Inter-Stage Buffer (ISB)
between the P/C pair.

the ISB. As the window block size in this example is defined as 3×3, the consumer

requests 8 data elements in each iteration of the loop.

4.1 Fine-grained Approaches 63

….…. ….

….

A[7,0]

A[0,2]A[0,0] A[0,1]

A[1,2]

A[2,2]

A[1,0]

A[2,0] A[2,1]

Image Length

Im
ag

e
W

id
th

A[0,7]…. ….

.... ….

….

Window Block

….

….

A[7,0]

A[0,2]…. A[0,1]

A[2,2]

.... A[1,1]

.... A[2,1]

A[0,7]A[0,3] ….

A[1,3] ….

A[2,3]

Window Block

First requested
window block

Second requested
window block

Figure 4.8: The Window block movements in FIR-Edge with out-of-order data com-
munication and (1 : N) ratio.

Figure 4.8 depicts the first and the second iteration of the loop in the FIR-Edge

example. As shown, by moving the requested window block in the second iteration of

the consumer loop, the requests for four data elements (A[0,1], A[0,2], A[2,1], A[2,2])

are repeated. In addition, the Edge-Detection kernel is another example which the

window block size is defined as 3× 3. It means that in the consumer stage, all

the elements of this window are required to perform a specific computation of the

algorithm and stores the results in the output image.

4.1 Fine-grained Approaches

In the context of data communication and synchronization between cores, there are

several approaches to overlap execution steps of computing stages (see, [ZSHD02,

ZHD03]). In these approaches, functions or loops waiting for data may start com-

puting as soon as the required data items are produced in a previous function or by

a certain iteration of a previous loop. Decreasing the overall program execution time

is achieved by mapping each stage to a distinct core (processor) and by overlapping

the execution of computing stages. In order to apply TaLP, the applications is split

into sequences of tasks (computing stages) that represent P/C pairs.

Fine-grained communication in the simple case of a sequence of two data-dependent

computing stages (one as a producer and the other as a consumer), might be

64 Our TaLP Approach

achieved by using FIFOs to communicate data between the stages. A FIFO chan-

nel with blocking reads/writes is sufficient to synchronize data communications

[TKD03b, ZHD03]. Note, however, that the use of FIFO channels is strictly de-

pendent on the order of the communication pattern between P/C pairs.

In this section, we present different fine-grained data synchronization schemes for

pipelining computing stages. The baseline architecture in this thesis is a single core

with two data-dependent computing stages executing sequentially. The execution

time of this scheme provides a criterion to compare the performance impact of

different proposed fine- and coarse-grained data synchronization and communication

approaches using TaLP.

4.1.1 Fine-grained ISB (Inter-Stage Buffer)

As briefly introduced in the beginning of this section, we explore an alternative inter-

stage scheme to provide TaLP between P/C pairs and to overcome the limitations

related to inter-stage communications based on FIFOs. In this scheme, for each

data element being communicated between the producer and consumer, there is an

empty/full flag. The empty/full tagged memories have been used in [Smi82], in the

context of shared memory multi-threaded/multi-processor architectures. With our

approach, we provide an extension to the empty/full tag memory model [Smi82]

that considers a memory hierarchy approach. Figure 4.9 presents the block diagram

of a fine-grained data synchronization scheme using an ISB between P/C pairs.

The producer is connected to the ISB using one channel responsible for com-

munication between the producer and the ISB. The consumer is connected to the

ISB by using two channels: sending (requesting index) and receiving (reading data)

(identified by arrows between cores in Figure 4.9). Our current approach uses block-

ing write over the sending channel of the ISB and blocking read from the ISB over

the receiving channel. The consumer gets data from the ISB using the receiving

channel. The sending channel transmits the requests to the ISB concurrently. The

producer and the consumer are both connected to the shared main memory. Note

that in other architectures, one may have dedicated memories for producer/con-

sumer and for the ISB. This would improve the overall performance of TaLP and

4.1 Fine-grained Approaches 65

Figure 4.9: Fine-grained data synchronization scheme using an Inter-Stage Buffer
(ISB) between P/C pairs and a shared main memory.

consequently there would not be memory access contentions. For instance, instead

of the shared main memory, our approach can be implemented using distributed

memory. Figure 4.10 presents the block diagram of a fine-grained data synchro-

nization scheme using an ISB between P/C pairs and using distributed memory.

Although using distributed memory may improve the overall performance of TaLP,

it is a more expensive approach and may require additional programmer’s efforts on

data distribution and replication.

Figure 4.10: Fine-grained data synchronization scheme using an Inter-Stage Buffer
(ISB) between P/C pairs and distributed memory.

In our approach, the ISB gets a requested index from the consumer side and

checks the status of the respective flag addressed by the hash function if the index

66 Our TaLP Approach

matches. If the requested element is present (i.e., if the respective flag bit is full

and the index matches) in the ISB local memory, it is sent to the consumer and

the respective flag is set to empty. If the consumer requests an index which is not

available in the local memory, the ISB checks if it is available in the main memory.

For each produced array element, the producer sends its index and value to the

ISB (e.g., i as an index and A[i] as a value). As shown in Figure 4.9, the ISB

receives the index from producer side and maps the index into the local memory

using the hash function (e.g., using a number of the least significant bits of the

binary representation of the index). The index and value produced are then stored

in the ISB local memory location defined by the address given by the hash function.

Related to the value stored in the ISB, there is a flag that indicates if a data element

was produced and thus can be consumed by the consumer.

Although reading/writing from/to local (on-chip) memory of the ISB is fast, the

limitation of the size of local memory may prevent to store all produced data in out-

of-order P/C pair cases. We may have a deadlock situation as the producer may

stop to produce data if the ISB local memory is full or if ISB local memory location

addresses are occupied. To avoid deadlock situations, one can determine before sys-

tem deployment the minimum size of the local memory needed. Such approach was

proposed in [RCD07] in the context of TaLP for application-specific architectures,

where the buffer size was determined using register-transfer level (RTL) cycle ac-

curate simulation. Thus, to circumvent this problem, we provide ISB access to the

main memory and data is stored in the main memory whenever the flag bit in the

local memory is full. In this case, the ISB stores the data value in the main memory

without using the hash function. If both flag bits of the local and main memory

are empty, the consumer waits until the requested index produces and stores the

requested data in local or in main memory.

In summary, the ISB scheme provides TaLP and data communication between

P/C pairs for both in-order and out-of-order computing stages. Also, the ISB scheme

overcomes the limitations of inter-stage communications based on FIFOs.

4.1 Fine-grained Approaches 67

Figure 4.11: Fine-grained data synchronization scheme using a FIFO between P/C
pairs and considering the inter-stage buffer (ISB) in the consumer.

4.1.2 Fine-grained ISB within Consumer

Figure 4.11 shows a fine-grained data synchronization scheme which uses a FIFO be-

tween P/C pairs and includes an ISB in the consumer. In this scheme, the producer

sends the produced indexes and data elements through the FIFO. The controller

reads the FIFO and checks if the current read index is equal to the requested index

of the consumer. If the indexes are equal, the controller reads data from the FIFO

and sends it to the consumer directly. If the indexes are not the same, the con-

troller maps the current read index into the local (on-chip) memory of the consumer

ISB. The local memory structure is based on the empty/full flag bit synchronization

model previously described. If the controller cannot store the index in the local

memory, the controller disables reading from the FIFO. In a similar way, if the re-

quested index from the consumer is not the same as the read index from the FIFO

and the consumer is unable to load the requested index from the local memory, the

controller turns off reading the next requested index from the consumer until the

previous requested index is available in the local or in the main memory.

68 Our TaLP Approach

4.2 Coarse-grained Approaches

We present two different types of coarse-grained data synchronization approaches,

using FIFOs between P/C pairs and a shared main memory to synchronize comput-

ing stages. In the context of coarse-grained data synchronization approaches, chunks

of elements or an entire array of elements (e.g., an image) are considered instead of

each data element. To consider frequent communication of data between P/C pairs

in these systems, we assume that the producer and the consumer computing stages

process N data chunks.

The coarse-grained approaches addressed here consider both data communication

and synchronization of entire arrays and in-order P/C pairs at this granularity level.

In the case of out-of-order at this granularity level, the approaches presented in the

next sections would need that the consumer stores the identifiers of the data chunks

provided from the FIFO between P/C pairs and not currently requested. This

approach also considers that the data chunks being communicated are too large to

be stored in a local buffer (such the one in the ISB) and this is the reason why

only a flag signaling a new data chunk is directly communicated through the FIFO

between the producer and the consumer. For data chunks able to be communicated

via on-chip buffers, the previous ISB approach can be extended to deal with data

chunks instead of data elements. In that case, there would be a synchronization flag

per data chunk. In the presence of in-order communication patterns, one may opt

to the FIFO based communication instead of using an ISB.

4.2.1 Coarse-grained One FIFO

Figure 4.12 presents the block diagram of a coarse-grained data synchronization

architecture using a single FIFO as a communication component between P/C pairs.

In this scheme, the FIFO contains the id of producing data chunks (e.g., an image).

The producer stores the produced data chunks in a shared main memory and puts

their ids (e.g., base address of an image in the main memory) to the FIFO. The

consumer gets the id from the FIFO and reads the array elements directly from the

main memory. Reading/Writing from/to the FIFO is blocking. It means that if the

4.2 Coarse-grained Approaches 69

FIFO is full, the producer stops producing. Similarly, if the FIFO is empty, the

consumer waits until the producer puts an id into the FIFO. In this scheme, the

Figure 4.12: Coarse-grained data synchronization block diagram using a single
FIFO.

number of communicated temporary data chunks (herein referred as M) stored in

main memory is an important key. If M = 1, it means that the producer waits for the

consumer to consume the entire previously generated data chunk before generating

another data chunk. As soon as the id of the data chunk is available, the consumer

can read the array from main memory and the producer can store the next data

chunk in the main memory. Thus, when M = 1, the producer and the consumer run

sequentially and the execution time is the same as with a single core. Therefore,

TaLP is achieved when the minimum number of temporary data chunks is M > 1.

4.2.2 Coarse-grained Two FIFOs

Figure 4.13 presents the block diagram of a coarse-grained data synchronization

architecture using two FIFO channels between P/C pairs. In this scheme, FIFO 2

stores the id of produced data chunks. Similarly, FIFO 1 stores the id of consumed

data chunks. When the consumer puts the consumed data chunk’s id into FIFO 1,

the producer can reuse the memory by storing the new produced data chunk in the

location associated to the id received from FIFO 1.

In this scheme, the number of temporary stored data chunks (M) in external

memory is less or equal to the number of data chunks being computed (N), while in

the previous coarse-grained scheme, the number of temporary stored data chunks in

external memory is equal to the number of data chunks being produced/consumed.

70 Our TaLP Approach

Figure 4.13: An architecture for coarse-grained data synchronization using two FI-
FOs.

Therefore, in this scheme, the producer can store the new data chunk in external

memory as soon as there is space. In a similar way, the consumer reads the id from

FIFO 2, consumes the data chunk and sends the id to the producer using FIFO 1.

Note that depending on the number of data chunks being communicated between

stages and the size of the main memory for accommodating data chunks, FIFO 1

may not be needed.

4.3 The TaLP Design Flow

This section describes our proposed design-flow for applying TaLP on FPGA-based

multicore architectures (specially targeting the architectures proposed in this thesis).

We describe the flow from a sequential program to the pipelining of the execution of

computing stages using TaLP. The TaLP design flow requires the steps illustrated

in the design-flow block diagram depicted in Figure 4.14. The steps for the TaLP

design-flow are the following:

• Identifying the computing stages which includes:

– Identifying the dependencies between stages;

– Determining the communication pattern and ratio;

• Measuring the execution time of the stages when considering a single core

architecture;

• Deciding the granularity and TaLP scheme;

• Mapping and scheduling computing stages;

4.3 The TaLP Design Flow 71

• TaLP performance impact evaluation and estimating the speedup;

• Applying TaLP and measuring the real speedup.

In the following subsections, we describe in detail each of the design flow steps.

start

Sequential Program

Computing Stages
Identification

Single Core
Execution time

Identifying Dependencies
and Communication Patterns

Statement 1
Statement 2
Statement 3

…
.

…
.

…
.

STAGE 1

STAGE 2…
.

tim
e

…
.

STAGE 1

STAGE 2…
.

Using
TaLP?

No Yes

Applying TaLP

Traditional Multicore Architectures

P C
FIFO

Shared Memory

P C

Shared Memory

Our TaLP Approach

P C

Shared Memory

ISB

ISB

P
FIFO

Shared Memory

C
P C

Shared Memory
FIFO 1

FIFO 2

P C
FIFO

Shared Memory

Fine-grained
Coarse-grained

Speedup
Measurements

Acceptable?

Yes

end

Granularity and
TaLP Scheme

Decisions

Mapping and
Scheduling

Performance
Evaluation

No

Figure 4.14: Full view of the TaLP design flow.

72 Our TaLP Approach

4.3.1 Computing Stage Identification

The input of our approach is a sequential program written in standard C program-

ming language (see, Figure 4.14). Identifying the computing stages of a sequential

program is the beginning and the most important step to provide TaLP. As we men-

tioned in Section 3.1, in order to identify the computing stages, the hotspot section

of the program needs to be chosen. The computing stages can be identified by a

user (possibly with the help of tools) or by specific tools.

In manual analysis, first we need to identify the loops, nested loops and function

calls inside the sequential program that consume a significant amount of time. One

of the metrics that can help to determine the complexity of the loops might be the

number of iterations and/or the complexity of the inner loop computations. The

second step is to determine if the hotspots of the program can be partitioned and

map into the producer-consumer model.

The manual analysis can be suitable when the number of stages is small, and the

computing stage operations are simple and easy to identify. In some applications, the

number of computing stages in the sequential program is high and thus identifying

the computing stages can be difficult. In such cases, we suggest to use the help of

specific tools.

4.3.2 Identifying the Dependencies

The second step after determining the computing stages in the sequential program

is to determine the dependencies between the computing stages and also whether

the dependencies between the computing stages can be handled.

We described the producer and consumer stages and different types of computing

stages dependencies in Chapter 3. As an example, we can consider the example of

the FIR-Edge which it was previously presented in Figure 4.7. This example is

naturally consists of two dependent computing stages (Stage 1 and Stage 2), one

as a producer stage and another one as a consumer stage. Figure 4.15 presents the

original code of the FIR-Edge with the dependencies between computing stages.

The first stage (producer) is responsible to smooth the input image and output the

4.3 The TaLP Design Flow 73

result image (i.e., out array). The second stage (consumer) also reads the smoothed

image from the previous stage as an input, calculates the edge of the smoothed

image and output the result (i.e., Out2 array).
S
ta

ge
 1

S
ta

ge
 2

// smooth filter
for (row=0; row <= LENGTH-5; row++) {

for (col = 0; col<= WIDTH-5; col++) {
int sumval = 0;

for (wrow=0; wrow<3; wrow++) {
for (wcol=0; wcol<3; wcol++) {

 sumval += input[(row+wrow)* WIDTH+col + wcol] *
 K[wrow*3 + wcol];

}
}

out[row * WIDTH + col] = sumval >> 4;
}

}

// edge detector
for(v=0; v<=LENGTH-3; v++) {

for(h=0; h<=WIDTH-3; h++) {

htmp = (out[(v+2)*WIDTH+h] - out[v*WIDTH+h]) +
(out[(v+2)*WIDTH+h+2] - out[v*WIDTH+h+2]) +
2 * (out[(v+2)*WIDTH+h+1] - out[v*WIDTH+h+1]);

vtmp = (out[v*WIDTH+h+2] - out[v*WIDTH+h]) +

(out[(v+2)*WIDTH+h+2] - out[(v+2)*WIDTH+h]) +
2 * (out[(v+1)*WIDTH+h+2] - out[(v+1)*WIDTH+h]);

 sum = htmp + vtmp;
 if (sum>255) sum = 255;
 Out2[(v+1)*WIDTH+h+1] = sum;

}
}

Figure 4.15: Identifying the dependencies in the original code of FIR-Edge.

4.3.3 Determining the Communication Patterns and Ratios

One of the essential steps in the computing stage identification is to determine the

communication pattern of the producer and the consumer (in-order or out-of-order).

Also, we need to determine the ratio of the produced and consumed data elements

between the P/C pairs. In this step, we evaluate the data communication patterns

and ratios between the P/C pairs to determine the proper data communication and

synchronization scheme to provide TaLP.

In practice, the approach is to execute the sequential program on a local machine

and analyze the produced and consumed indexes. By analyzing the indexes, we can

74 Our TaLP Approach

determine the data communication pattern and the ratio of the P/C pairs. For

instance, for the P/C pairs with the ratio of (1 : N), we may need to use the ISB

scheme with the Requests Calculation function to determine the precise number of

requests from the consumer as presented in Figure 4.3.

4.3.4 Granularity and TaLP Scheme Decision

Identifying the granularity of the data communication and synchronization between

P/C pair is an important key which it can help to choose suitable TaLP scheme.

In order to determine the granularity (fine-grained/coarse-grained), we consider

the data dependencies, data communication patterns, and ratios between P/C pairs.

For instance, if instead of each data element communicating between P/C pairs,

chunks of elements or an entire array of elements (e.g., an image) is considered, the

granularity of P/C pair is coarse-grained and thus, we choose coarse-grained TaLP

scheme. In contrast, if each data element communicates between P/C pairs, the

granularity of P/C pair is fine-grained.

We previously described the use of traditional architectures (using FIFOs or

shared flag-based main memory between P/C pairs). If we use our fine-grained ISB

scheme, depending on the ratio of the P/C pairs, we need to choose the proper ISB

as an inter-stage buffer between P/C pairs. For instance, when the ratio of the

P/C pair is (1 : N), the ISB may need to use the function Request Calculation to

determine the precise number of requests of each data element in the consumer and

sets the flag into the local memory of the ISB.

4.3.5 Mapping and Scheduling Computing Stages

This step is responsible for mapping computing stages into the producer and the

consumer cores. To apply TaLP using a multicore architecture, we partition the

original C code into separated codes to map them into separated cores.

The second step is to modify the producer and the consumer code to execute

in the target multicore architectures. In our approach, we use two atomic instruc-

tions (get and put) to provide blocking writes and blocking reads to/from the cores.

However, the use of these instructions might be different depending on the target

4.3 The TaLP Design Flow 75

architecture used. For instance, when using FIFO-based synchronization schemes,

the put primitive can be used to store data into the FIFO, and the get primitive to

load data from the FIFO. When using the ISB-based synchronization schemes, the

put instruction can be used when the producer sends data to the ISB. In a similar

way, the consumer requests data using the put instruction and receives data using

the get instruction.

Although mapping two computing stages into the producer and consumer cores

might be an easy task, mapping and scheduling the applications with more than

two computing stages can be a challenge. The pipelining of applications consisting

of more than two computing stages may require an architecture with more cores

than the ones previously used. One of the possible solutions is to have multiple

cores, which can behave as a producer; consumer; or producer-consumer cores. In

one extreme of the design space, we may have one core per stage, and thus, each

computing stage is mapped to a distinct core. However, this solution may not be

a feasible when the application has many computing stages and/or the number of

stages is higher than number of cores possible to implement in the FPGA used.

Another possibility is to use only two cores and two ISBs to implement different

types of the computing stages. In this case, in order to provide TaLP, we need to

partition the stages properly between two cores. The way we split computations in

stages can have an impact on the communication structure as we may need to have

more than one ISB or an ISB with multiple local tables (e.g., for dealing with more

than one array variable being communicated).

Consider the example of a sequential program with dependent computing stages

which previously presented in Figure 3.4. In this example, the Stage 2 and Stage

3 are dependent to the Stage 1 while the Stage 2 and Stage 3 are independent to

each other and thus they can be executed concurrently. The Stage 4 also is only

dependent to the Stage 3.

Figure 4.16 shows the block diagram of the suggested solution for multi-computing

stages. One of the possibilities to map computing stages to cores can be to map the

Stage 1 and the Stage 4 into the first core and map the Stage 2, 3 and the Stage 5

into the second core. Note that the way we split computations in stages can have

76 Our TaLP Approach

an impact on the communication structure as we may need to have more than one

ISB or an ISB with multiple local tables (e.g., for dealing with more than one array

variable being communicated). Therefore, instead of one ISB with only one local

memory, we can use two ISBs with two local memories to provide the communica-

tion and synchronization between the stages. The ISB can also be implemented as

an IP (Intellectual Property) core. In the Appendix of this thesis, we implement

the ISB in hardware.

ISB #1

Core #1

Stage 1

Stage 4

Core #2

Stage 2

Stage 5

Stage 3

Index Data Flag

…
..

…
..

…
..

Local Memory
Index Data Flag

…
..

…
..

…
..

Local Memory

ISB #2

Index Data Flag
…

..

…
..

…
..

Local Memory
Index Data Flag

…
..

…
..

…
..

Local Memory

Data
Index

Index
Data

Data
Index

Data

Index

Figure 4.16: A Block diagram of a possible solution to provide TaLP for sequential
programs with more than two computing stages.

Although our approach supports multi-input/multi-output pipelining and se-

quence of P/C pairs, we consider only one P/C pair for simplicity and the ease

of implementation in hardware. The impact of an architecture such as the one

presented in Figure 4.16 on performance for the applications with more than two

computing stages is considered as future work.

4.3.6 TaLP Performance Impact Evaluation

This step is responsible for estimating or measuring the execution time of the se-

quential program and analyzing the impact of TaLP on the overall performance of

the application giving an identification of computing stages. One possibility is to use

theoretical models and upperbounds in order to analyze if the system will possibly

profit by using TaLP with the partitioning being considered.

4.3 The TaLP Design Flow 77

In our case, we use the highly optimistic theoretical speedup bounds (herein:

Upperbound) for each application as calculated with Equation 4.1 for two stages.

This upperbound reflects the distribution of the execution time over the two tasks

(computing stages). For the application with two computing stages, the maximum

possible value for this upperbound is 2 and would correspond to the execution time

equally split over the two tasks (well balanced) and an optimistic fully overlap-

ping of the execution of the tasks. We note that however, the promotion of the

data communication between stages to on-chip hardware structures may have an

additional effect.

Theoretical Speedup bound =
(TS1

+TS2
)

Max(TS1
,TS2

) (4.1)

Where TSi
(i = 1,2) represents the execution time of stage Si . In general, for

benchmarks with more than two computing stages and TaLP support for only two

stages (one P/C pair), we compute the upperbound speedup by considering Equation

4.2, where TSk
,TSj

represent the execution time of the two pipelining stages and n

is the number of computing stages.

Theoretical Speedup bound =

n∑
i=1

TSi∑
i=1..n/∈{k,j}

TSi
+Max(TSk

,TSj
) (4.2)

For instance, for the Wavelet Transform with four stages (S1→S2→S3→S4) used,

we schedule the execution of tasks as S1→S2 in one core and S3→S4 in another core.

Therefore, only the execution of S2 and S3 is partially overlapped. In this case, the

theoretical speedup upperbound is given by the equation below:

(TS1
+TS2

+TS3
+TS4

) / ((TS1
+TS4

)+Max(TS2
,TS3

))

Note that if the execution time of the producer stage is approximately equal to

the execution time of the consumer, we can consider it as a well-balanced P/C pair.

Figure 4.17 shows an example of a sequential program which consists of two

stages (Stage 1 and Stage 2) and the data dependency between the stages. As

shown, Stage 1 is the producer for the second stage and the execution time of the

78 Our TaLP Approach

first stage is less than the execution time of the second stage. This means that the

execution time of the stages is not balanced and the idle time of the producer is

considerable. Thus, if the idle time of the producer or consumer side is considerable,

the performance impact by applying TaLP might not be noticeable.

Stage 1 Stage 2

Execution time

Sequential

Stage 1

Stage 2

Parallel

P

C

idle

Execution time

Figure 4.17: An example of a sequential program with two stages and the unbal-
ancing of the execution time of the stages.

Note that if this step indicates that the use of TaLP does not suits the objectives,

we can go back in the design flow and repeat the previous steps (i.e., such as mapping

and scheduling of computing stages).

4.3.7 Applying TaLP and Measuring the Speedup

This step is responsible for applying TaLP and measuring the speedup of our ap-

proach. In this step we measure the real overall execution time of the selected TaLP

approach in previous steps and evaluate the performance impact of the approach

by determining the speedup. If the achieved speedup is not considerable, it might

not be sufficient to go back in the design flow and we may need to apply code

transformation techniques.

There are however optimization techniques for the ISB that shall be always

considered. Some of these techniques are proposed in next chapter.

4.4 Summary

In this chapter, we presented our approaches based on fine- and coarse-grained data

synchronization schemes to provide TaLP between the stages. Our fine-grained

approach is a flag-based synchronization scheme using hash-indexing and empty/full

flag memory to provide parallel synchronization and communication between cores.

4.4 Summary 79

It relies on an ISB (inter-stage buffer) data synchronization scheme which provides

TaLP between P/C pairs and, as a result, overcomes the limitations related to inter-

stage communications based on FIFOs.

An important aspect of our approach is the use of customized inter-stage buffer

schemes to communicate data and to synchronize the cores associated with the

producer-consumer tasks (computing stages). Our approach provides the ability to

pipeline the tasks of in-order and out-of-order communication patterns between P/C

pairs without reordering the sequence of producing and/or consuming data. Also,

our approach supports different ratios of P/C pairs. For P/C pairs with the ratio

of 1 : N (the most common ratio in the domain of image/video processing applica-

tions), we presented two optimization techniques (Requests Calculation function and

Shadow memory technique) for the ISB to compute the precise number of requests

from the consumer and thus to reduce the number of repeated requests from the

ISB and reuse the previous requests.

We also presented two coarse-grained data synchronization schemes when the

produced and consumed data are data chunks (e.g., an image). In these schemes,

we use the traditional FIFO-based synchronization including the main memory as a

data communication channel between P/C pairs. Finally, we presented the top-down

design flow of our approach for providing TaLP for a given sequential application.

We described and introduced the techniques to identify the stages of a sequential

program and evaluate the impact of TaLP on performance.

CHAPTER 5
Optimization Techniques

Chapter Outline

5.1 Optimization for Shared Memory Schemes . 82

5.2 Optimizations for ISB-based Schemes . 83

5.2.1 Hash Functions . 83

5.2.2 Main Memory Accesses: Scheme #1 . 84

5.2.3 Main Memory Accesses: Scheme #2 . 86

5.2.4 Main Memory Accesses: Scheme #3 . 87

5.2.5 Main Memory Accesses: Scheme #4 . 91

5.3 Summary . 92

In the previous chapter we presented different fine- and coarse-grained synchro-

nization schemes to provide Task-Level Pipelining (TaLP). Reducing the num-

ber of accesses to the external (main) memory is an important technique to achieve

higher performance in these schemes. In this chapter, we present optimization tech-

niques to reduce the number of memory accesses to the different levels of the memory

hierarchy considered in the communication between producers and consumers. The

optimization techniques are classified into two groups: optimizations for the FIFO-

based schemes and optimizations for the ISB schemes.

81

82 Optimization Techniques

Figure 5.1: Fine-grained data synchronization scheme using a FIFO between P/C
pairs and an extra FIFO connected to the consumer to provide a buffer and sequences
of accesses to main memory.

5.1 Optimization for Shared Memory Schemes

In the scheme using a standard FIFO between producer/consumer (P/C) pairs (see

Figure 3.9), the producer loads the input data from the external memory and puts

the produced data into the FIFO. The consumer gets data from the FIFO, process

the data and then store the output into the external memory. The consumer writes

the output using the specific rate associated with the computations needed before

outputting another data element.

The main idea of the optimization scheme presented here is to reduce memory

contention by buffering locally the outputs of the consumer stage and then storing

them in data chunks (signaling the producer when storing). Figure 5.1 shows our

fine-grained data synchronization scheme to provide temporary buffering and blocks

of store to external memory in the consumer side. We added an extra FIFO channel

(FIFO 2) to the consumer. The consumer reads data from FIFO 1 (producer side),

computes, and writes results into FIFO 2 while FIFO 2 is not full or does not have

the number of data elements considered for each data chunk. Then the consumer

writes all the data in FIFO 2 in external memory. When FIFO 2 gets empty, the

consumer restarts reading data from the producer (FIFO 1). This scheme provides

the capability to block external memory accesses from the different cores and to

avoid possible delays managing simultaneous accesses to the external memory.

5.2 Optimizations for ISB-based Schemes 83

Note that this optimization scheme is also suitable for the ISB scheme as it avoids

simultaneous accesses to the shared memory.

5.2 Optimizations for ISB-based Schemes

In this section, we present our optimization techniques for the ISB scheme. The

goal of these optimization techniques is to maximize the usage of local (on-chip)

memory and to reduce the number of accesses to the external memory. These

techniques can be categorized into two main groups: the optimizations regarding

the hash functions used in the ISB and the techniques to reduce the memory accesses

achieved by different hash functions and by other specific optimizations at the ISB.

5.2.1 Hash Functions

Considering the overhead of loads/stores from/to the external memory by the ISB,

the performance of the ISB schemes may improve if the data requested from the

consumer are as much as possible available in the local (on-chip) memory rather

than in the external memory. The hash function is one important component affect

if each data element is stored locally or if it needs to be stored in the external

memory. Therefore, a hash function able to map the data elements into the local

memory with minimum collisions is one possible optimization to maximize the use

of local (on-chip) memory.

To evaluate the impact of different hash functions on the use of local (on-chip)

memory, we use the 12 different general hash functions presented in Table 5.1. There

are two main implementation methodologies for hash algorithms: Additive/Multi-

ple hashing and Rotating hashing. In Additive/Multiple hashing, the hash value

is provided by continually incrementing an initial value by a calculated value cor-

responding to an element in the data. In this form of hash implementation, the

calculation of the element value is a multiplication by a prime number. However, in

a rotating hashing implementation, to determine the hash value, we process bitwise

shifting operations (left or right or a combination of both) on the value. Note that

the shifting amounts are prime numbers as in Additive/Multiple hashing.

84 Optimization Techniques

Table 5.1: General purpose hash function algorithms.

Hash Functions Hash Description
H1 (Mod) Modular mode
H2 (RS) A simple hash function from Robert Sedgwicks [SW11]
H3 (JS) A bitwise hash function written by Justin Sobel
H4 (PJW) Based on work by P. J. Weinberger of AT&T Bell Labs.
H5 (FLV) Fowler–Noll–Vo hash function [Nol04]
H6 (BKDR) From B. Kernighan and D. Ritchie’s book [Ker88].
H7 (SDBM) Used in the open source SDBM project.
H8 (DJB) An algorithm proposed by Daniel J. Bernstein
H9 (DEK) An algorithm proposed by Donald E. Knuth in [Knu14]
H10 (AP) AP hash function provided by Arash Partow in [CLRS09]
H11 (Open Addr) Open Addressing [PH05]
H12 (Comp) Complement Modular Addressing

Note that the hash functions presented in Table 5.1 are known as simple hash

functions and can be representative for a mix of Additive/Multiple and Rotating

general purpose hash functions. The source code of the hash functions is available

in [Par14]. The hash functions used, need to be simple and not requiring high

computing demands as their calculation will be in the critical path to store and

write data at the ISB. However, custom hardware cores to implement the hash

function can be used if needed.

5.2.2 Main Memory Accesses: Scheme #1

In the previous ISB scheme, i.e., without using optimization techniques, for each

miss to the local memory, the ISB keeps checking the flag of the requested index in

the external memory. This means the ISB needs to access to the external memory

even for the indexes requested not yet available in the external memory. Therefore,

we propose a solution to predict if the requested index is available in the external

memory.

To reduce the number of accesses to the external memory by the ISB, we present

an optimization scheme which consists of a local variable (herein: variable v, initial-

ized to 0) to approximately track the possible data previously produced and stored

in the external memory. For each write into the external memory, the ISB calcu-

5.2 Optimizations for ISB-based Schemes 85

v= 0000

0

1

OR

OR

v= 0000

3

8

OR

OR

v= 0001

v= 0011

v= 1011

tim
e

Possible Stored data

False Positives

0

10

10 2 3

10 2 3 4 5 6 7 8 9 10 11

Stored Data

tim
e

…
…

…
…

Figure 5.2: An example of optimization scheme #1 to approximately represent the
presence in external memory of produced data.

lates the bitwise OR of the stored data in the external memory with the current v

value. The value of v represents the possible indexes whose data might be available

in the external memory. For each write to the external memory, the ISB updates

the value of v (i.e., v = v OR index). For instance, as shown in Figure 5.2, if data

correspondent to index 3 was stored in the external memory, the current value of

v would be 3. This value represents that the data for the indexes 0,1,2 and 3 are

possibly available in the external memory.

Before each read from the external memory, the ISB checks the value of v to

acquire if the data for the requested index is available in the external memory. The

ISB calculates the bitwise AND of the requested index from the consumer with the

current value of v. If the result is equal to the requested index from the consumer

(see Figure 5.3), it means that the data element associated to the requested index

might be available in the external memory. Then, the ISB checks the flag of the

requested index in the external memory. If the flag is set to one, the ISB reads

the index and resets the flag to empty (zero). If the flag is empty, it means that a

false positive has occurred and the consumer needs to wait until the data element

is available in the local or in the external memory (see Figure 5.3).

Although in this optimization technique, using a single variable and an OR-ing

optimization scheme may not provide an accurate solution to reduce the number

of accesses to the external memory (false positives), it reduces many unnecessary

accesses for most applications with out-of-order communication patterns.

86 Optimization Techniques

// at this point the ISB has determined that the data element
related to consumer_index is not stored in the ISB local
memory and thus it needs to check the external memory

// (1 : 1)
if (consumer_index AND v) == consumer_index then

if flag [consumer_index] == 1 then
read from the external memory

else
Not in the external memory ; // A false positive

else
Not in the external memory ; // Correct signaling

Figure 5.3: An optimization scheme #1 for loads from the external memory.

5.2.3 Main Memory Accesses: Scheme #2

By considering only one variable in the previous optimization scheme, we may have

many false positives as the variable may represent many indexes whose values are not

available in the external memory. For example, in Figure 5.2, v = 1011 represents 8

values and only 4 (0,1,3,8) values are really stored.

To reduce the number of false positives, we include a new variable (p). p is a

vector of n integers (being n the number of bits needed to represent the indexes)

where each position represents the number of indexes with one on the associated bit

position whose data are currently stored in the external memory (see Figure 5.4).

Therefore, in this optimization scheme, the ISB updates two variables v and p for

each write/read to/from the external memory. v is used as an auxiliary variable

to make sure operations more efficient than applying them to an array of integers

such p.

Figure 5.5 shows an example of writes/reads to/from the external memory. As

shown in this example, when a value for index 3 is stored into the external memory, v

and p become both 0011. As shown in Figure 5.5 (Store), if the ISB stores another

value (e.g., with index 7) into the external memory, the value of p is calculated

by adding each bit of the index to the associated position of p one by one (e.g.,

v = 0111 and p = 0122). For each read from the external memory, the ISB updates

the values of v and p. As shown in Figure 5.5 (Load) and in Figure 5.4, if the

5.2 Optimizations for ISB-based Schemes 87

// Updating the values of v and p for each read from the
external memory (bits=number of bits for the index).

if (consumer_index AND v) == consumer_index then
if flag [consumer_index] == 1 then

read from the external memory
mask = 1;
for (i=0; i<bits; i++) do

j = consumer_index&1;
consumer_index = consumer_index� 1;
if (j==1 AND p[i] >0) then p[i]= p[i]-1 ; // Update p
;
if (p[i]==0) then

v = v AND !mask ; // Update v
mask = mask� 1;

else
Not in the external memory

else
Not in the external memory

Figure 5.4: An optimization scheme #2 for loads from the external memory.

consumer requests an index (e.g., 3), the ISB subtracts the bits of this index from

the current value of p (0122) and p becomes 0111. In this example, immediately

after loading 7, v becomes 0000 which means that there is no data available in

the external memory. However, if we have used the scheme #1, v stay equal to

0111, identifying eight false positives. This optimization scheme contributes to a

reduction of possible simultaneous loads/stores and to a reduction of accesses to

external memory which may decrease both execution time, power dissipation and

energy consumption. We note that variable v does not have more information than

variable p, but it is important to make the operation verify if a given index has data

in external memory.

5.2.4 Main Memory Accesses: Scheme #3

In previous schemes, the ISB receives index/data from the producer and stores them

into the local or external memories. Also, the ISB receives the requested indexes

from the consumer, reads the local and/or main memories and communicates the

data to the consumer. For each data requested by the consumer and neither available

88 Optimization Techniques

3

7

v = 0011

p = 0011

v = 0111

p = 0122

3

7

v = 0111

p = 0111

v = 0000

p = 0000

Store

Load tim
e

Figure 5.5: An example using a second variable (p) to reduce the number of false
positives when estimating the presence of data in external memory.

in the local nor in the external memory, there is no need to continue verifying its

availability in these two memory levels. A more efficient scheme is to verify directly

the data arriving in the ISB from the producer.

Figure 5.6 depicts the concurrent implementation of the optimization scheme

#3. As shown, the ISB consists of two concurrent processes (i.e., store process, and

load process). For each store process, the ISB gets the produced index and data

from the producer, and gets the new requested index from the consumer. The ISB

stores the produced index and produced data into the local or external memory only

if the requested index from the consumer is different from the produced index.

In concurrent, for each load process, the ISB first check the if the previous

requested index directly loaded from the producer or loaded from memories (i.e.,

solved =1). If the previous requested index consumed, the ISB gets the requested

index from the consumer. When the requested index from the consumer is the

same as the current producer index, the ISB deliver the producer data directly to

the consumer. For the producer indexes different from the requested ones from the

consumer, the ISB checks the availability of the requested index/data in the local

memory and external memory once. If the requested index is neither available in

local memory or external memory nor is loaded directly, the ISB will only verify

5.2 Optimizations for ISB-based Schemes 89

Local Memory

Load

Index Data Flag

…
..

…
..

…
..

Cons_i

Cons_d

Cons_h_i

d_local[Cons_h_i]

Store

Prod_i

Prod_d

Prod_h_i

Prod_d

get(Prod_i);
get(Prod_d);
if.new_Cons_i.{
..if.(Prod_i.!=.Cons_i).{
.....Prod_h_i.=.hash(Prod_i);
.....if.(f_local[Prod_h_i]==.0).{
........i_local[Prod_h_i]=..Prod_i;
........d_local[Prod_h_i].=.Prod_d;
........f_local[Prod_h_i].=.1;.}
.....else.{
........d_external[Prod_i].=.Prod_d;
........f_external[Prod_i].=.1;.}
...}
}

solved.=.1;.....//.initialization.
if.(solved.==1).
...get(Cons_i);
if.(Prod_i.==.Cons_i).{
....Cons_d.=.Prod_d;
....put(Cons_d);
....solved.=.1;.}
else.if.(solved.==1).{
..Cons_h_i.=.hash(Cons_i);
..if.(f_local[Cons_h_i]==.1).{
.....Cons_d.=.d_local[Cons_h_i];
.....put(Cons_d);
.....f_local[Cons_h_i].=.0;.}
..else.if.(f_external[Cons_i].==.1).{
.....Cons_d.=.d_external[Cons_i];
.....put(Cons_d);
.....f_external[Cons_i].=.0;.}
}
else
...solved.=0;

new_Cons_i

Prod_d,.Prod_i

External Memory Data

Flag ...

...

d_external[Prod_i] f_external[Prod_i].=.1

f_external[Cons_i]d_external[Cons_i]

Figure 5.6: The concurrent implementation of the optimization scheme #3.

directly the current requested index with the index arriving from the producer in

the ISB.

Figure 5.7 also presents the sequential implementation of the ISB optimization

scheme #3. As shown, the ISB first reads the index/data from the producer and

the consumer. The ISB stores the producer index/data into the local or external

memory when ever is not possible to deliver the producer index/data directly to

the consumer. In addition, the ISB accesses to the local memory and/or external

memory when the previous requested index from the consumer is not delivered

directly and the memory check is allowed. Note that we use memory_check flag to

control the accesses to the local and the external memories.

Note that comparing the produced index with the requested consumer index

without storing the produced index into the local memory might be an efficient

solution when the communication pattern between P/C pairs is out-of-order with

many stores into the external memory. However, we can also use this optimization

scheme for the in-order P/C pairs.

90 Optimization Techniques

// Communicate directly or store the producer index/data into
the local or the external memory

solved =1 ; // The previous requested data loaded directly
memory_check =1 ; // Memory checking is allowed
get (Producer_Index);
get (Producer_Data);
if Solved == 1 then

get(Consumer_Index);
Producer_h = hash(Producer_Index);
if (Producer_index == Consumer_index) then

Consumer_Data = Producer_Data;
put(Consumer_Data);
solved = 1; memory_check = 1;

else if flag_local[Producer_h]==0 then
index_local[Producer_Index] = Producer_Index;
data_local[Producer_h] = Producer_Data;
flag_local[Producer_h]=1;
solved = 0;

else
data_ext[Producer_Index] = Producer_Data;
flag_ext[Producer_Index]=1;
solved = 0;

// Load from local or external memory
if ((solved != 1) & (memory_check ==1)) then

Consumer_h = hash(Consumer_Index);
if flag_local[Consumer_h]==1 then

Consumer_Data=data_local[Consumer_h];
put(Consumer_Data);
flag_local[Consumer_h]=0;
solved = 1;

else if flag_ext[Consumer_Index]==1 then
Consumer_Data = data_ext[Consumer_Index];
put(Consumer_Data);
flag_ext[Consumer_Index]=0;
solved = 1;

else
Solved = 0; // Neither in local memory nor in external
memory
memory_check =0;

Figure 5.7: An optimization scheme #3 for each store from the producer into the
local or external memory, and for each load from the local or external memory to
the consumer.

5.2 Optimizations for ISB-based Schemes 91

5.2.5 Main Memory Accesses: Scheme #4

We can use the advantage of both previous optimization schemes to reduce the

number of false positives and to use the direct communication technique for the

ISB scheme. In this optimization scheme, we use a combination of the optimization

scheme #2 and scheme #3.

As mentioned previously in Section 5.2.3 (scheme #2), for each store into the

external memory, the ISB calculates the bitwise OR of the stored data in the external

memory with the current v value (see, Figure 5.2) and uses the second variable (p)

to reduce the number of false positives. Each time the consumer requests and the

data is neither in the local nor in the external memory, the ISB avoids checking the

local and the external memory for this index as it waits for the producer to deliver

the data. Note that this is in the case of the (1:1) ratio between P/C pairs.

Figure 5.8 presents the pseudo-code of this optimization scheme when the ISB

reads index/data from the producer and stores the index/data into the local or

external memory when the producer indexes are different from the requested ones.

As shown, the ISB compares the producer and consumer indexes and delivers data

from the producer to the consumer directly without storing it into the local or

external memory. In addition, for each read from the external memory, the ISB

updates the value of v and p and subtracts the bits of the index from the current

value of p in a similar way of the scheme #2.

For the case of P/C pairs with the ratio of (1 : N), the ISB compares the producer

and consumer indexes in a similar way, and communicates the first data from the

producer to the consumer directly and sets the flag into the local or external memory

to be available for the other N −1 requests from the consumer.

92 Optimization Techniques

// Each reads of the ISB from the producer and stores into the
local or external (main) memory.

solved =1 ; // The previous requested data loaded directly
memory_check =1 ; // Memory checking is allowed
v=0; p[]=0; // v and p initialization
mask = 1;
bits=number of bits for the index;
get (Producer_Index); get (Producer_Data);
if Solved == 1 then

get(Consumer_Index);
Producer_h = hash(Producer_Index);
if (Producer_index == Consumer_index) then

Consumer_Data = Producer_Data;
put(Consumer_Data);
solved = 1; memory_check = 1;

else if flag_local[Producer_h]==0 then
index_local[Producer_Index] = Producer_Index;
data_local[Producer_h] = Producer_Data;
flag_local[Producer_h]=1;
solved = 0;

else
v = Producer_Index OR v;
tmp_Index = Producer_Index;
for (i=0; i<bits; i++) do

j = tmp_Index AND 1;
tmp_Index = tmp_Index� 1;
if (j == mask) then

p[i]= p[i] + 1 ; // Update p

data_ext[Producer_Index] = Producer_Data;
flag_ext[Producer_Index]=1;
solved = 0;

Figure 5.8: An optimization scheme #4 when the ISB stores data into local or
external memory when the producer indexes are different from the requested ones.

5.3 Summary

The main goal of the optimization techniques presented in this chapter is to maxi-

mize the usage of local (on-chip) memory and also to reduce the number of accesses

to the main (off-chip) memory. We presented two groups of optimization techniques

for the FIFO-based synchronization and ISB-based synchronization schemes. The

main idea of FIFO-based optimization scheme is to reduce memory contention by

5.3 Summary 93

buffering locally the outputs of the consumer stage and then storing them in data

chunks. In this scheme, we provided a temporary buffer for the consumer to reduce

memory contention by buffering locally the outputs of the consumer stage and then

storing them in data chunks into the external memory at once.

In addition, the main contribution of our ISB-based optimization technique is to

maximize the usage of local (on-chip) memory. In previous ISB schemes without op-

timization, for each miss to the local memory, the ISB reads the flag of the requested

index in the external memory. Therefore, the ISB always needed to read the flag

even when the data for the requested index is not still available in the external mem-

ory. Thus, we need a solution to indicate if the data related to the requested index

can be available or not. We presented different optimization techniques such as an

OR-ing scheme which can be one of the reasonable solutions to solve this problem.

Note that the OR-ing optimization technique may not provide an accurate solution

and may result many false positive cases. In order to reduce the number of false

positives, we extended the OR-ing optimization technique. In addition, in order to

maximize the usage of local (on-chip) memory, we studied the impact of 12 different

general hash functions on performance and usage of local memory.

CHAPTER 6
Experimental Results

Chapter Outline

6.1 Hardware and Software Platforms . 96

6.1.1 FPGA Resources . 97

6.2 Benchmarks . 98

6.3 Performance Evaluation . 100

6.4 Fine-grained Schemes Results . 101

6.4.1 Impact of Data Chunks . 103

6.4.2 Impact of the Local memory Size . 104

6.4.3 The Impact of Hash Functions . 106

6.4.4 Optimization Results . 108

6.5 Results with Coarse-grained Schemes . 109

6.6 Summary . 111

In this chapter, we describe the hardware and software platforms to evaluate our

Task-Level Pipelining (TaLP) approach. The experimental results address both

fine- and coarse-grained approaches and the impact of the optimization techniques.

The evaluation of TaLP focuses on seven benchmarks including common image pro-

cessing tasks and uses FPGA (Field-Programmable Gate Arrays)-based multicore

architectures to implement our approach. Furthermore, the results using our TaLP

approach and a multicore architecture reveal noticeable performance improvements

for a number of benchmarks over a single core implementation without using TaLP.

95

96 Experimental Results

(a) (b)

Figure 6.1: FPGA prototype system block diagram with: (a) two MicroBlazes; (b)
three MicroBlazes.

6.1 Hardware and Software Platforms

For evaluating our TaLP approach and the optimization schemes, we use a Genesys

Virtex-5 XC5LX50T FPGA Development Board [Dig13]. This board contains a

Xilinx Virtex-5 FPGA [Xil15b] used with 1.7 Mbits of fast block RAM (BRAMs)

connected to a 256 Mbyte 64-bit DDR2 memory.

Figure 6.1 shows two target architectures which were implemented using Xilinx

Embedded Development Kit (EDK) v.12.3 tools [Xil10a]. We use Xilinx MicroBlaze

(MB) softcore processors [Xil10c] as cores. The MicroBlaze embedded soft core is

a 32-bit RISC processor optimized for implementation in Xilinx FPGAs. This soft

core processor provides a set of features such as thirty-two 32-bit general purpose

registers, 32-bit address bus, and it is highly configurable, allowing us to select a

specific set of features required in the target architecture.

Table 6.1 shows the configuration of MicroBlaze softcore processors in our target

architectures. As shown, the hardware integer divider, integer multiplier and the

barrel shifter are enabled and the MicroBlaze caches are disabled. The size of

BRAMs of MicroBlaze processors for instruction and for data is 32 KB.

Each MicroBlaze is connected to on-chip local memory (BRAMs), and also to pe-

ripherals such as Debug Module, Timer, UART and the memory controller through

6.1 Hardware and Software Platforms 97

Table 6.1: The configuration of MicroBlaze processors used in our target architec-
ture.

Parameter Name Description EDK Tool
Assigned

Barrel Shifter Include barrel shifter Yes
Floating Point Unit (FPU) Include hardware floating point unit No
Integer Multiplier Include hardware multiplier Yes
Integer Divider Include hardware divider Yes
Instruction Cache Enable instruction cache No
Data Cache Enable data cache No
Bus Interface Bus for the peripheral accesses of MicroBlaze PLB
Stream Interface Bus for the stream accesses of MicroBlaze FSL
BRAM Size The size of BRAMs for instruction and for data 32 KB

the Processor Local Bus (PLB) [Xil10b]. The MicroBlaze processors use the Xil-

inx Fast Simplex Link (FSL) [Xil11b] to communicate directly with each other. In

Figure 6.1, MicroBlaze 1 and MicroBlaze 2 are responsible to execute the codes for

the producer and consumer, respectively. Although the ISB can be implemented by

custom hardware (see, Appendix), we use an additional MicroBlaze (MicroBlaze 3)

to implement the ISB schemes.

This architecture may not provide TaLP solutions with the highest performance,

as when using efficient multi-port and/or distributed memories, and simultaneous

data accesses requested are not performed at the same time. In the architectures

used herein, the three MicroBlazes share the same single-port main memory. The

ISB scheme implemented by MicroBlaze provides the flexibility and ease of pro-

grammability required to explore and evaluate different data communication and

synchronization schemes.

The reference clock frequencies of the FPGA development board and of the

MicroBlaze processors are 100 MHz and 125 MHz, respectively.

For software compilation, we use a version of gcc with -o2, mb-gcc 4.8.3, targeted

to MicroBlaze processors.

6.1.1 FPGA Resources

At this point it is important to present and analyze the FPGA resources needed to

implement each architecture considered in the experiments. What is the overhead

98 Experimental Results

in terms of the hardware resources to implement TaLP? In this section we provide

answers to this question.

Table 6.2 presents the hardware resources used for four architectures (Baseline,

Standard FIFO, Main Memory with empty/full flag, the ISB, and the ISB within the

consumer) when using a Xilinx Virtex-5 LX50T FPGA [Xil15b]. As shown, there

are increases of 17% (from 18% to 35%) and 19% (from 15% to 34%) for the number

of slice registers and the number of slice LUTs respectively. In a similar way, there

are increases of 28% (from 38% to 66%); 54% (from 41% to 95%) and only 6% (from

6% to 12%) for the number of occupied slices, total Memory used and the number of

DSP48Es respectively, compared with the baseline architecture. This means that,

by increasing the hardware resources of the baseline architecture by 54% of the total

memory, 28% of number of occupied slices, 19% of the number of Slice LUTs, 17%

of the number of slice registers and only 12% of the number of DSP48Es, we are

able to implement the architecture with three MicroBlazes (ISB scheme) and thus

achieving the highest performance for all benchmarks (see Table 6.5).

Table 6.2: Hardware FPGA resources usage for each architecture schemes used: the
ISB within the consumer core and ISB as a separate core (MB: MicroBlaze).

Device Utilization

Baseline
Architecture

(1MB)

Standard
FIFO
(2MB)

Main Memory
(2MB)

ISB
(3MB)

ISB in
Consumer
(2MB)

Used Utilized (%) Used Utilized (%) Used Utilized (%) Used Utilized (%) Used Utilized (%)

Number of Slice Registers 5,277 18% 7,623 26% 7,623 26% 10,161 35% 7,623 26%
Number of Slice LUTs 4,489 15% 6,752 23% 6,752 23% 9,868 34% 6,752 23%
Number of occupied Slices 2,805 38% 3,839 53% 3,839 53% 4,760 66% 3,839 53%
Total Memory used (KB) 900 41% 1,764 81% 1,764 81% 2,052 95% 1,764 81%
Number of DSP48Es 3 6% 6 12% 6 12% 9 18% 6 12%

6.2 Benchmarks

In our experimental results, the selected benchmarks include some typical kernels of

embedded applications, such as signal and image processing, etc. The benchmarks

selected are representative of different types of data communication between stages.

Table 6.3 presents the benchmarks and some of their properties including the number

of nested loop sets, computing stages, array sizes, the communication pattern and

the communication ratio between P/C pairs. The benchmark set consists of:

6.2 Benchmarks 99

• Gray-Histogram: Transforms an RGB image to a gray image with 256 gray

levels (first stage) and determines an histogram of the pixels in the gray image

(second stage);

• Matrix Addition: Adds three matrices (A+B +C);

• Wavelet Transform: Applies 1-D Haar horizontally on an input array, trans-

poses the array, applies 1-D Haar vertically, and finally transposes the output

array;

• Fast DCT (FDCT): Applies a Fast 2-D Discrete Cosine Transform algo-

rithm. The first stage performs a vertical 1-D FDCT on columns within each

block and the second stage performs a horizontal 1-D FDCT on each 8× 8

block;

• FIR-Edge: Applies a 2-D finite impulse response (FIR) filter followed by

an edge detection task. The first stage performs the FIR filter considering

window blocks with size of 3× 3 of the image. The second stage applies the

edge detection on the image resultant from the FIR stage;

• Edge-Detection: Detects the edges in a 256 gray-level image which relies on

a 2-D convolution routine to convolve the image with kernels (Sobel operators)

that expose horizontal and vertical edge information. The program calculates

the normalization factor of the kernel matrix and convolves the input image

with the kernel horizontally (first stage) and vertically (second stage). The

original code is from the UTDSP benchmark suit repository [UTD98];

• Gaussian blur: Blurring an image using a Gaussian function. The program

sets up the Gaussian convolution kernel and convolves the image with the

smoothing kernel horizontally (first stage) and vertically (second stage).

In order to provide a P/C data communication model, the original sequential

code of the benchmarks is partitioned into the separate computing stages (producer

and consumer), being each stage a sequence of loops or nested loops. In Table 6.3,

we can see that almost all the 7 benchmarks consist of two natural stages (S1 and

100 Experimental Results

Table 6.3: Benchmarks used in the experiments (Comm.: Communication).

Benchmark Nested
Loop Sets Stages Input

Array Size
Comm.
Pattern

Comm.
Ratio

Gray-Histogram 2 S1 |S2 800×600 in-order (1 : 1)
Matrix-Add (A+B +C) 2 S1 |S2 256×256 in-order (1 : 1)
Wavelet Transform 4 (S1−S2)|(S3−S4) 800×600 out-of-order (1 : 1)
Fast DCT (FDCT) 2 S1|S2 800×600 out-of-order (1 : 1)
FIR-Edge 2 S1|S2 256×256 out-of-order (1 : N)
Edge-Detection 2 S1|S2 128×128 out-of-order (1 : N)
Gaussian blur 2 S1|S2 64×64 out-of-order (1 : N)

S2) based on the number of sets of nested loops. The exception is the Wavelet

Transform which has four natural data-dependent computing stages (S1 , S2 , S3 and

S4). In order to use two stages per benchmark we split the Wavelet Transform in

the following two stages (S1−S2|S3−S4). Therefore, for the Wavelet Transform, we

will have two pairs of tasks without pipelined execution (i.e., T1−T2 , and T3−T4).

6.3 Performance Evaluation

In order to evaluate the performance of our TaLP approach, we first measure the

execution clock cycles of each computing stage used in our experiments when using

a single MicroBlaze without TaLP (see Table 6.4).

In order to have a first idea about the TaLP performance impact, we calculate

the highly optimistic theoretical speedup bounds (herein: Upperbound) for each ap-

plication. In Table 6.4, A shows the theoretical upperbound speedups as calculated

with Equation 4.1 (see Section 4.3.6). In order to have an idea about the possible

upperbound (also optimistic) when data are communicated between the two tasks

(stages) using local (on-chip) buffers, we include upperbound B speedups. These

were calculated with the execution time of each stage considering the unrealistic

scenario of communicating inter-stage data using internal FIFOs (as if data commu-

nication could be in-order) instead of randomly store/load in/from memory (local or

external). The intention of the B upperbound speedups is to first show the impact

when data are all directly (on-chip) communicated (even if the model also unrealistic

considers that communications can be all in-order). Note that for the benchmarks

6.4 Fine-grained Schemes Results 101

with more than two computing stages such as Wavelet Transform, we compute the

upperbound speedups using Equation 4.2 (see Section 4.3.6).

Table 6.4: The execution clock cycles of the benchmarks without using TaLP and
the theoretical Upperbound speedups when using TaLP.

Benchmark
Clock Cycles Theoretical

Upperbound Speedups
S1 S2 Overall A B

Gray-Histogram 46,848,188 23,571,490 70,419,678 1.86× 2.10×
Matrix-Add (A+B +C) 5,814,997 5,814,997 11,629,994 2.00× 2.38×
Wavelet Transform 69,660,426 67,260,579 136,921,005 1.99× 2.42×
Fast DCT (FDCT) 27,450,111 27,816,150 55,266,261 1.61× 1.85×
FIR-Edge 27,546,828 20,245,503 47,792,331 1.72× 1.73×
Edge-Detection 7,891,875 7,152,558 15,044,433 1.91× 1.94×
Gaussian blur 1,544,962 263,459 1,808,421 1.17× 1.28×

Regarding to the execution clock cycles of the benchmarks, we can consider some

of the benchmarks as well-balanced P/C pairs. For instance, the execution time of

the producer stage for the Matrix-Add, FDCT and Edge-Detection is approximately

equal to the execution time of their consumer stage. The theoretical upperbound

A for the well-balanced benchmarks is close to the maximum possible value for

upperbound (2x). This would correspond to the execution time equally split over

the two tasks and an optimistic fully overlapping of execution of the tasks. In

contrast, the execution time of the producer stage for Gaussian blur is not equal

to the execution time of the consumer stage, i.e., the stages for Gaussian blur are

not balanced and the idle time of the consumer is considerable and the performance

impact by applying TaLP for Gaussian blur might not be noticeable.

6.4 Fine-grained Schemes Results

We start by evaluating the performance impact of fine-grained schemes for TaLP.

Table 6.5 shows the speedups obtained when considering fine-grained data syn-

chronization schemes with TaLP vs. a single core baseline architecture for both

in-order and out-of-order benchmarks. The baseline architecture consists of a Mi-

croBlaze with computing stages executing sequentially. The execution time of this

scheme provides a criterion to compare the performance impact of different pro-

102 Experimental Results

posed coarse/fine-grained data synchronization and communication approaches us-

ing TaLP.

Note that since in fine-grained data synchronization schemes, FIFO channels

are not suitable for out-of-order benchmarks, the use of the FIFO scheme is not

evaluated in Table 6.5 (herein: N/A). We consider N = 50 datasets (e.g., images)

being computed in all measurements.

Table 6.5: Speedups obtained when considering fine-grained data synchronization
schemes with TaLP vs. a single core baseline architecture, considering N = 50
datasets (e.g., images) being computed. The size of the local ISB memory is 1,024
data elements. The "Main Memory" correspond to the empty/full approach without
the ISB (the scheme presented in Figure 3.12).

Benchmark Standard
FIFO

Main
Memory

Inter-Stage
Buffer (ISB)

ISB in
Consumer

Gray-Histogram 1.58× 1.03× 1.65× 1.65×
Matrix Addition 1.82× 1.35× 1.91× 1.91×
FDCT N/A 0.89× 1.38× 1.37×
Wavelet Transform N/A 1.18× 1.46× 1.27×
FIR-Edge N/A 1.14× 1.57× 1.21×
Edge-Detection N/A 0.85× 1.39× 1.21×
Gaussian blur N/A 0.38× 1.14× 0.55×
Geometric Mean 1.70× 0.92× 1.48× 1.24×

As shown in Table 6.5, the highest achieved speedups for Gray-Histogram and

Matrix Addition (in-order benchmarks) are 1.65× and 1.91, respectively, reported

when using the ISB between the cores and the ISB in the consumer.

However, when using a simple FIFO (column Standard FIFO˝), when the pro-

ducer loads from the main memory, the consumer may store into the main memory

at the same time and it causes memory access conflicts that are solved by serializing

the accesses. Table 6.5 shows that the achieved speedups for the Gray-Histogram

and the Matrix Addition for the ISB in the consumer schemes are the same as the

achieved speedups considering the ISB between P/C pairs (1.65× for the Gray-

Histogram and 1.91× for the Matrix Addition) and are close to the theoretical

speedup bounds of 1.86× (Gray-Histogram) and 2× (Matrix-Addition).

We obtained the highest speedup for out-of-order benchmarks in the fine-grained

data synchronization model when using the ISB between the producer and the con-

6.4 Fine-grained Schemes Results 103

sumer. In addition, the lowest achieved speedups for all benchmarks are obtained

when using the empty/full bit approach without using the ISB (direct loads/stores to

the main memory), due to the no promotion of data transfers between P/C pairs to

on-chip direct communication and the high value of simultaneous memory requests.

With out-of-order applications, most data are stored in external memory. In

the ISB within the consumer scheme, data are loaded/stored from/to the external

memory if the requested index from the consumer is not equal to the produced index

or the data element correspondent to the requested index is not available in the local

memory. Therefore, load/store data from/to the main memory in the ISB within

the consumer scheme is only considered when it cannot be stored locally. As a result

for all out-of-order benchmarks, the performance achieved in the scheme with the

ISB in the consumer is lower than the speedup in the ISB scheme.

By considering the theoretical upperbound A of the benchmarks (see Table 6.4),

the highest achieved speedup for the FDCT (1.38×), Wavelet Transform (1.46×),

FIR-Edge (1.57×), Edge-Detection (1.39×) and Gaussian blur (1.14×) are 90.7%

(for the FDCT), 69.3% (for the Wavelet Transform), 91.3% (for the FIR-Edge),

72.8% (for the Edge-Detection) and 97.4% (for the Gaussian blur) close to their

theoretical speedup.

6.4.1 Impact of Data Chunks

One of our proposed architectures considers an extra FIFO connected to the ISB to

provide temporary buffering chunks of the data output by the consumer side (see

Section 5.1). Here we analyze the performance of this architecture.

Figure 6.2 shows the impact of buffering locally the outputs of the consumer

stage in the performance when using the FIFO #1 (between P/C pairs) with the

size of 1, 8 and 16, and the FIFO #2 (connected to the consumer) with various sizes

(from 1 to 2,048). Note that for the FIFO #1 with the size greater than 8 (e.g.,

16), we achieved the same results as with size equal to 8. As shown, the highest

performance is achieved when the size of FIFO #1 is equal or greater than 8 and

the size of FIFO #2 is less than 32 (e.g., 1,4,8 and 16). For the Gray-Histogram

104 Experimental Results

and the Matrix Addition (in-order benchmarks) the highest speedups are 1.70× and

1.89× when the size of FIFO #1 is equal to 8 or 16.

In addition, by considering the highest achieved speedup in Figure 6.2 for the

Gray-histogram and the Matrix Addition, we conclude that adding an extra FIFO

to the consumer (FIFO #2 with the size of less than 32 for Gray-Histogram and

less than 16 for Matrix Addition) can delay the stores to the main memory by the

consumer.

1 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

FIFO #2

1.2

1.3

1.4

1.5

1.6

1.7

1.8

S
p
e
e
d
u
p

Max=1.70x

Gray-Histogram

1 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

FIFO #2

1.0

1.2

1.4

1.6

1.8

2.0
S
p
e
e
d
u
p

Max=1.89x

Matrix Addition

FIFO #1 =16 FIFO #1 =8 FIFO #1 =1

Figure 6.2: The impact of temporary buffering chunks of data by the consumer
on performance when using a FIFO scheme and on-chip buffering in the consumer
(Figure 5.1) by considering FIFO 1 (between P/C pairs) with the size of 1, 8 and
16 and FIFO 2 with size between 1 and 2,048.

6.4.2 Impact of the Local memory Size

The ISB scheme presented in Section 4.1.1 includes a local buffer. The intention is

to store as many as possible data items communicated between P/C pairs in that

local buffer. A question that may arise is related to the impact of the size of the

local buffer on performance. Here we address this question and provide results when

varying the size of the buffer.

Here we evaluate the impact of increasing the size of the local memory of the

ISB (up to 4,096 words considering the limitation on the number of BRAMs on our

6.4 Fine-grained Schemes Results 105

1.43

1.45

1.47

1.49

S
p
e
e
d
u
p

0.0%

0.25%

0.5%

0.75%

1.0%

U
sa

g
e

0.5

0.8

1.1

1.4

S
p
e
e
d
u
p

0%

25%

50%

75%

100%

U
sa

g
e

1.0

1.2

1.4

1.6

S
p
e
e
d
u
p

0%
25%
50%
75%

100%

U
sa

g
e

1.15
1.20
1.25
1.30
1.35
1.40

S
p
e
e
d
u
p

0%
25%
50%
75%

100%

U
sa

g
e

1 2 4 8
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

1.05

1.10

1.15

1.20

S
p
e
e
d
u
p

1 2 4 8
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

0%
25%
50%
75%

100%

U
sa

g
e

Wavelet FDCT FIR-Edge Edge-Detection Gaussian blur

Figure 6.3: The impact of increasing the ISB buffer size on speedup (on left) and the
percentage of data communicated between stages using the local memory (Usage)
results (on right).

FPGA) on the local memory usage and on the achieved speedups. Figure 6.3 shows

the results achieved. The highest speedup for all benchmarks is obtained when the

usage of local memory is maximum. For example, in FDCT we obtain the maximum

usage of local memory (100%) and the highest speedup (1.38×) with the size of local

memory equal to 128. The maximum usage of local memory is obtained when the

size of the local memory is greater than 512 for Edge-detection, 2,048 for FIR-Edge

and 4,096 for Gaussian blur.

The communication pattern in the Wavelet Transform benchmark allowed only

0.86% use of local memory with the maximum size for the local memory (4,096).

Simulation-based experiences indicate that for the Wavelet Transform, we obtain

106 Experimental Results

the maximum usage of local memory when considering 512 KB for the size of the

local memory. Note that the total number of data elements to transfer between P/C

pairs in Wavelet Transform is 480,000 (800×600).

6.4.3 The Impact of Hash Functions

The hash function used in the ISB can influence significantly the data communicated

using the local buffer. Here we evaluate the impact of various hash functions in order

to understand if the option used is the one achieving the best results.

Figure 6.4 shows the results of using different hash functions in the ISB scheme

and the impact of the hash functions presented in Section 5.2.1 on the usage of local

(on-chip) memory considering 1,024 integer data elements for the local memory to

maintain the same size used in the previous experiments. We show the number

of misses (number of times requesting data not present in the memory accessed)

when accessing the local memory for each hash function. As shown in Figure 6.4

(left), the minimum number of misses in all benchmarks is achieved when using the

hash functions H1 (Modular),H11 (Open Addr) and H12 (Comp). As shown, the

H1,H11 and H12 hash functions use the maximum (100%) of local memory for the

local memory size considered. If a hash function uses less than 100% of the local

memory, it means that there are local memory locations not being used and the ISB

may have to switch to the main memory to store data while the local memory is

still not full. The results also show a very low usage of local memory for Wavelet

Transform (below 0.22%) followed by a low usage for Gaussian blur (below 40%).

To evaluate the impact on the performance of TaLP when using different hash

functions, we measured the minimum required size of the local memory to achieve

the maximum usage in the ISB scheme for different hash functions (see Table 6.6).

The results illustrate minimum required sizes of the local memory from 128 Bytes to

64 Megabyte. For all benchmarks, the minimum required size of the local memory

is achieved when we use H1,H11 or H12. From the results shown and based on the

complexity of the hash functions, we conclude that for these benchmarks, the hash

function H1 is the best option. Note that H1 uses a number of least significant bits

6.4 Fine-grained Schemes Results 107

478000

478500

479000

479500

480000

M
is

se
s

0.02%
0.07%
0.12%
0.17%
0.22%

U
sa

g
e

0
5000

10000
15000
20000
25000

M
is

se
s

94%

96%

98%

100%

U
sa

g
e

0
10000
20000
30000
40000
50000
60000

M
is

se
s

20%
40%
60%
80%

100%

U
sa

g
e

0
2000
4000
6000
8000

10000
12000

M
is

se
s

20%
40%
60%
80%

100%

U
sa

g
e

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
1
0

H
1
1

H
1
20

500
1000
1500
2000
2500
3000

M
is

se
s

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
1
0

H
1
1

H
1
20%

10%

20%

30%

40%

U
sa

g
e

Wavelet FDCT FIR-Edge Edge-Detection Gaussian blur

Figure 6.4: The impact of using different hash functions for mapping data into local
memory in the ISB Scheme on the percentage of data communicated between stages
using the local memory (Usage) and the number of misses when accessing local
memory.

(LSBs) of the index and thus does not require heavy operation (a simple AND to a

mask or the simple wire connections in the case of custom hardware can be used).

Table 6.6: Minimum sizes required to achieve the maximum usage of local memory
for different hash functions (B:bytes; K:KB; M:MB). Sizes in bold are the minimum
for each benchmark/hash function.

Benchmarks H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

Wavelet Transform 512K 16M 16M 8M 16M 16M 32M 8M 64M 16M 512K512K
FDCT 128B 4K 256K256B128K 32K 2K 2K 512B256K 128B 128B
FIR-Edge 1K 128K256K 8K 128K128K 64K 64K 32K 256K 1K 1K
Edge-Detection 512B 32K 256K 8K 64K 32K 16K 16K 64K 256K 512B 512B
Gaussian blur 4K 64K 256K 16K 128K128K128K128K128K256K 4K 4K

108 Experimental Results

6.4.4 Optimization Results

The use of the optimization schemes to approximately track the possible data stored

in the external memory, can reduce the number of accesses, the number of misses and

the number of false-positives to external memory, and may improve the speedups

achieved when using TaLP. Here we evaluate the impact of our optimization tech-

niques for the ISB-based scheme (see Section 5.2).

Table 6.7 shows the speedups obtained when considering an ISB synchronization

scheme with/without different optimizations vs a single core baseline architecture.

For instance, as shown in Table 6.7, the results of the ISB scheme using the opti-

mization schemes illustrate speedups from 1.16× to 1.71× (improvements between

1.75% and 8.92% over the implementation without optimization). The highest per-

formances for all benchmarks are obtained when using the optimization schemes #3

and #4.

Table 6.7: Speedups obtained when using an ISB w/ and w/o optimization schemes
vs a single core, and compared with theoretical upperbound speedups (w/:with;
w/o: without; Opt: optimizations).

Benchmark Upperbound
A

Upperbound
B

w/o
Opt.

w/ Scheme
#1

w/ Scheme
#2

w/ Scheme
#3

w/ Scheme
#4

Wavelet Transform 1.61× 1.85× 1.44× 1.46× 1.47× 1.48× 1.48×
FDCT 1.99× 2.42× 1.38× 1.43× 1.44× 1.61× 1.55×
Fir-Edge 1.72× 1.73× 1.57× 1.71× 1.71× 1.71× 1.72×
Edge-Detection 1.91× 1.94× 1.39× 1.49× 1.49× 1.50× 1.50×
Gaussian blur 1.17× 1.28× 1.14× 1.16× 1.16× 1.17× 1.16×
Geometric mean 1.65× 1.81× 1.38× 1.44× 1.44× 1.48× 1.47×

Although in the case of Wavelet Transform, FDCT and Edge-Detection bench-

marks the speedup of the ISB scheme without optimization over the execution of

the benchmark without using TaLP is considerable, the use of the optimized ISB

schemes allows further speedup improvements. For these benchmarks, the gap be-

tween the real achieved speedup and the theoretical speedup (e.g., 1.48× to 1.85×

for Wavelet Transform) possibly indicates potential for further improvements. How-

ever, for the case of FIR-Edge and Gaussian blur benchmarks, the results are fairly

close to the theoretical speedup upperbounds, 1.71× vs. 1.72× (1.73×) for FIR-

Edge and 1.16× vs. 1.17× (1.28×) for Gaussian blur when using the ISB with the

optimization schemes.

6.5 Results with Coarse-grained Schemes 109

The number of misses reduces to zero for the FDCT (from 49 misses to 0),

FIR-Edge (from 506 misses to 0) and Edge-Detection (from 246 misses to 0) bench-

marks by using the optimization scheme which reduces the number of false positives

(scheme #2). Also, for Wavelet Transform and Gaussian blur, the number of misses

was reduced by 12.35%. This allowed a reduction of the latencies of the bench-

marks from 1% to 8.32%. However, these improvements have a minor impact on

the speedups already achieved in the previous optimization scheme (scheme #1).

The geometric means of the speedups obtained when using the optimization

schemes and when using the ISB scheme without the optimization, we obtained the

4.3% (from 1.38× to 1.44×) speedup increases when using the optimization schemes

#1 and #2, the 7.25% (from 1.38× to 1.48×) when using the scheme #3 and 6.52%

(from 1.38× to 1.47×) when using the combination of both optimization schemes

#2 and #3 (scheme #4).

Note that the reduction of main memory accesses certainly contributes to power

reductions and energy savings (future plans include measuring the impact on power

and energy).

6.5 Results with Coarse-grained Schemes

In this section, we present the results of the two coarse-grained architectures using

FIFOs between P/C pairs and a shared main memory previously presented in Section

4.2. Figure 6.5 and Figure 6.6 show the achieved speedups when using a single FIFO

(Coarse-grained One FIFO) and two FIFOs (Coarse-grained Two FIFOs) between

P/C pairs, respectively.

In these experiments, we consider a number of data chunks (N) being computed.

For instance, in the Coarse-grained Scheme with a single FIFO (Figure 4.12), the

number of the temporary data chunks (M) is equal to the number of data chunks

being produced/consumed. As expected, if N = 1 and M = 1, the producer waits

for the availability of temporary data chunk in external memory. Thus, the pro-

ducer and the consumer execute almost sequentially and therefore, no speedups are

achieved. When the number of temporary data chunks in external memory is M > 1,

110 Experimental Results

1 2 10 20 30 40 50

Number of Images (N), M=N

1.0

1.2

1.4

1.6

1.8

2.0

2.2

S
p
e
e
d
u
p

Gray-Histogram
Matrix Addition
Wavelet

FDCT
FIR-Edge

Edge-Detection
Gaussian blur

Figure 6.5: Speedups achieved by considering coarse-grained data synchronization
schemes for datasets (e.g., images) using a single FIFO.

the producer can process the next data chunk while the consumer is consuming (pro-

cessing) the previous data chunk. The results in Figure 6.5 show that increasing

the number of data chunks being computed (N) and allowing two temporary data

chunks being stored (M = 2) in external memory significantly increases the perfor-

mance. The performance significantly increases with values of N between 2 and 20

and stays almost the same for N > 20.

Figure 6.6 shows the results when using two FIFOs between P/C pairs. In this

scheme, the number of temporary data chunks is 1 < M ≤N . Based on the limitation

of available memory on our experimental board, we consider the range of 1 to 32

for temporary data chunks (M) and N = 50. The results show that the performance

with the number of temporary data chunks M = 2 is very close to the one obtained

when increasing the value of M. This is somehow expected as the existence of only

one core for the producer and one core for the consumer only allows two temporary

data chunks being processed at the same time (one produced and one consumed).

In this case, the producing of additional data chunks while the consumer is still

consuming the previous one, or the consuming of another data chunk while the

6.6 Summary 111

producer is still being producing the next one, seems as expected to have a small

impact on performance.

1 2 8 16 32

Temporary arrays (M), N=50

1.0

1.2

1.4

1.6

1.8

2.0

2.2
S
p
e
e
d
u
p

Gray-Histogram
Matrix Addition
Wavelet

FDCT
FIR-Edge

Edge-Detection
Gaussian blur

Figure 6.6: Speedups achieved by considering coarse-grained data synchronization
schemes for datasets using two FIFOs.

6.6 Summary

This chapter presented the experimental results of our fine- and coarse-grained ap-

proaches to provide TaLP for in-order and out-of-order applications.

In order to implement and evaluate our approach, we have used an FPGA de-

velopment board. In our target architecture, we have used a shared main memory

between cores and local memory for each core. Although using shared main mem-

ory in our experiments may not provide the highest performance compared with

other types of memory systems such as distributed memory, we achieved notice-

able performance improvements comparable with the theoretical speedups of the

benchmarks.

We evaluated the performance when considering different fine-grained data syn-

chronization schemes with TaLP vs. a single core baseline architecture. The results

show considerable speedups when using an ISB scheme for all types of communi-

112 Experimental Results

cation patterns between P/C pairs. Also, we evaluated the impact of increasing

the ISB buffer size on speedups and the percentage of data communicated between

stages using local memory. The obtained results show the minimum size required of

the local memory to achieve the highest performance and to achieve the maximum

usage of the local memory. We also measured the impact of using different hash

functions for mapping data into the local memory in the ISB scheme on the per-

centage of data communicated between stages using the local memory (usage) and

the number of misses when accessing local memory. The results show that three

hash functions (H1, H11, and H12) achieved the minimum size required to achieve

the maximum usage of local memory in all benchmarks.

In addition, we provided the results of optimization techniques such as the opti-

mization for FIFO-based and ISB-based schemes. In the FIFO-based optimization

schemes, we evaluated the impact on performance when using an on-chip buffering

in the consumer. We obtained the maximum performance for in-order applications

(1.7× for Gray-Histogram and 1.89× for Matrix Addition) when the size of the

FIFO between P/C pairs is equal or greater than 8 and the size of the FIFO used in

the consumer is less than 32. For coarse-grained data synchronization, we presented

the results when using one FIFO or two FIFOs between the P/C pairs. The re-

sults show significant performance improvements for both in-order and out-of-order

benchmarks.

In summary, we can conclude that our ISB synchronization scheme is an efficient

solution for providing TaLP for both in-order and out-of-order P/C pairs.

CHAPTER 7
Conclusions and Future Work

Chapter Outline

7.1 Main Contributions . 115

7.2 Future Work . 117

Nowadays, techniques to accelerate the execution of applications in multi-

core architectures are becoming increasingly popular. Task-level Pipelin-

ing (TaLP) is one of the important techniques to speedup the execution of tasks

for multicore based systems especially when dealing with applications consisting

of producer/consumer (P/C) tasks. For providing TaLP, data communication and

synchronization mechanisms between producers and consumers are essential. Clas-

sic communication and synchronization approaches for multicore architectures are

based on FIFOs and shared-memories to synchronize data communication between

P/C pairs. For instance, the FIFO-based communication and synchronization mech-

anism which provides one of the simplest implementation of TaLP is only sufficient

when the sequence of producing data is the same than the sequence of consuming

data (referred in this thesis as in-order data communication pattern or simply in-

order). However, using FIFO channels between producers and consumers may not

be efficient or feasible for out-of-order P/C pairs and it might be necessary and/or

useful to use other data communication mechanisms. In addition, using only a

shared memory scheme as a communication and synchronization channel between

113

114 Conclusions and Future Work

the P/C pairs may cause an overhead increase in multicore architectures especially

when most data communications between P/C pairs are through the shared memory.

In this thesis, we have presented an approach for task-level pipelining (TaLP) in

the context of FPGA-based multicore architectures to accelerate the execution of

sequential applications. The advantages of using FPGAs to implement our multicore

architecture is the simplicity of the design cycle and the opportunities of customizing

the architecture and field reprogramability provided by FPGAs. Although using

other target architectures (e.g., ASICs) may provide higher performance and/or less

power dissipation and energy consumptions, designing multicore architectures can

be complex and/or expensive. In addition, our approach can also be implemented by

fast processor models and platforms such as Open Virtual Platforms (OVP) [ovp16]

which may reduce the complexity of the design. However, using OVP cannot provide

a clock cycle accurate platform to evaluate TaLP.

We analyzed and compared different implementations of our fine- and coarse-

grained data synchronization schemes for a set of both in-order and out-of-order

producer/consumer benchmarks. Our fine-grained scheme also supports out-of-order

P/C communications when the number of requests to the same produced data el-

ement (multiple reads) by the consumer is more than one. Focused on solving the

limitations related to inter-stage communications based on FIFOs in traditional ap-

proaches, our fine-grained approach uses a flag-based synchronization supported by

hash-indexing and empty/full flag memory to provide efficient parallel synchroniza-

tion and communication between P/C pairs. We propose a fine-grained inter-stage

buffer (ISB) data synchronization scheme which provides TaLP between P/C pairs

and, as a result, overcomes the limitations related to the FIFOs.

As one of the goals is to use on-chip data communication between P/C pairs,

we researched and developed ISB optimizations. Those optimizations are focused

on the reduction of external shared memory accesses as they contribute to data

communication overhead. Regarding the possible optimizations, we evaluated the

impact on performance for TaLP when using different hash mapping functions into

on-chip memory. Finally, we presented optimization schemes for the ISB to reduce

the number of accesses to the shared external memory and estimate the presence of

7.1 Main Contributions 115

data previously produced and stored into the shared external memory.

All solutions proposed in this thesis were implemented using an FPGA board

and the results presented consist of measurements using real hardware.

The main contributions of the thesis are summarized in Section 7.1 and the

future work is presented in Section 7.2.

7.1 Main Contributions

The major contributions of this thesis can be summarized as follows:

• We presented a technique for pipelining the execution of sequences of data-

dependent loops using fine-/coarse-grained synchronization schemes. We in-

troduced a customized fine-grained ISB (inter-stage buffer) data synchroniza-

tion and communication scheme which enables the TaLP between P/C pairs.

We used seven image processing benchmarks in our experimental results. The

benchmarks we selected are representative of different types of data communi-

cation between stages. The results with an Inter-Stage Buffer (ISB) between

producer/consumer cores show speedups from 1.14× to 1.57× for the bench-

marks used when using our multicore-based task-level pipelining approaches

over the sequential execution of computing stages in a single core. In general,

the results showed that the ISB scheme is an efficient solution for both in-order

and out-of-order data communication between producers and consumers. We

also presented two coarse-grained data communication and synchronization

schemes to provide TaLP between P/C pairs. The results showed that two

temporary arrays in the shared main memory is sufficient to achieve signifi-

cant performance improvements.

• We implemented a customized multicore architecture for the inter-stage com-

munication to achieve pipelining execution of P/C pairs. In order to evaluate

our TaLP approach, we presented two FPGA-based target architectures (us-

ing two and three cores, respectively) using as cores the Xilinx MicroBlaze

[Xil10c] embedded 32-bit RISC processor softcore. We used two MicroBlaze

116 Conclusions and Future Work

cores for executing the codes for the producer and consumer, respectively and

an additional MicroBlaze to implement the ISB schemes.

• We evaluated the impact on the performance of task-level pipelining using dif-

ferent hash functions. We analyzed and compared 12 different hash functions

for a set of out-of-order producer/consumer benchmarks. The results showed

the minimum number of misses when accessing the local memory and the

maximum usage of local (on-chip) memory for each hash function. Also, the

results determined the minimum required sizes of the local memory from 128

Bytes to 64 Megabyte. For all benchmarks, the minimum required sizes of the

local memory are achieved when we used the modular (H1), open addressing

(H11) and the complement modular addressing (H12) hash functions. The

results also showed that small sizes of local memory in the ISB are sufficient to

achieve high percentages of inter-stage data communication using local on-chip

memory and to achieve close to maximum speedups.

• We presented an optimization technique to improve out-of-order P/C pairs

when a consumer use more than once a data element produced by a pro-

ducer (single write, multiple reads). Our optimization technique provided a

reduction of requests from the producer by using a scheme based on shadow

memory. We used a function to determine the precise number of requests for

each requested element of the consumer. This approach provided the ability

to support TaLP for out-of-order benchmarks with single write and multiple

reads P/C pairs.

• We presented optimization techniques for the ISB to estimate the presence

of data previously produced in the shared main memory. We evaluated opti-

mization techniques for the ISB scheme to maximize the usage of local memory

and to reduce the number of accesses to the shared main memory (external).

The results with an ISB using our optimization approaches show speedups

from 1.16× to 1.71× for the benchmarks used when using our multicore-based

task-level pipelining approaches over the sequential execution of computing

7.2 Future Work 117

stages in a single core. The results also show reductions from 12.35% to 100%

of misses to external memory.

7.2 Future Work

The work presented in this thesis can be extended for further improvement. We

suggest the following directions for future work.

• Continue the research related to the scalability of our approach for more com-

plex computing stages with more than two computing stages. One possibility

might be to use more computing cores and inter-stage buffers (ISBs) between

each two cores to support multiple producer-consumer pairs. We previously

suggested a possible architecture in Section 4.3 to support multiple computing

stages which can use only two cores and two ISBs containing multiple local

tables. For this proposed approach, we suggest the following tasks:

– Investigate the impact of using multi-hash functions on performance when

mapping the data elements into the multi-tables;

– Study the techniques to reuse the idle local memories in the ISBs with

multi-local tables to reduce the number of accesses to the shared main

memory.

• Providing code restructuring techniques for a given application to generate

more suitable code for TaLP and then automatically decide and apply TaLP.

We need to provide reconstructing techniques which can automatically identify

the computing stages of a given application, determine the data dependencies

and the communication pattern between the stages, evaluate the balances

between the execution time of the stages, and finally decide if the restructured

code is suitable and then apply TaLP.

• Runtime techniques to auto-tune the ISB according to the communication pat-

tern requirements. In this case, the ISB can switch to the suitable scheme for

both in-order and out-of-order applications by considering the communication

pattern between P/C pairs. For instance, In out-of-order P/C pairs with the

118 Conclusions and Future Work

ratio of (1:N), the ISB can automatically use the function to determine the

precise number of requests for each requested element of the consumer. How-

ever, using this function by the ISB, for P/C pairs with the ratio of (1:1) is

not required.

• Study the impact of the granularity when using coarse-grained approaches for

streaming applications and evaluating the synchronization and communication

grains between data chunks representing arrays and partitions of arrays.

• Techniques to predict the speedup achieved by TaLP and according to a parti-

tioning of computing stages and to a local buffer size in the ISB. One possibility

might be to start using the knowledge that the shape of local memory usage

in Figure 6.3 might be similar to the shape of speedup when varying the size

of the local memory. These techniques can be important to help designers and

to support Design-Space-Exploration (DSE).

• Implement customized multicore architectures for the inter-stage communica-

tion using hardcore processors (e.g., ARM processors). The implementation

of the ISB in hardware as an IP core can be an interesting solution in this

context.

• Explore the synthesis of hash functions based on the pattern of a given ap-

plication which is one possible solution to maximize the local (on-chip) com-

munication between P/C pairs. For instance, for each given application, the

requested data elements from the consumer and the produced data elements

by the producer can be evaluated and thus generate a suitable hash function

to maximize the usage of local (on-chip) memory.

• Study the impact of the approaches proposed in this thesis on power and

energy consumption. For instance, one possibility might be to evaluate the

use of application-specific ISBs on power reductions and energy saving.

Bibliography

[AJLA95] Vicki H. Allan, Reese B. Jones, Randall M. Lee, and Stephen J. Allan.
Software pipelining. ACM Comput. Surv., 27(3):367–432, September
1995.

[Amp16] Intel vtune amplifier, 2016. URL https://software.intel.com/
en-us/intel-vtune-amplifier-xe.

[BA82] M. Ben-Ari. Principles of Concurrent Programming. Prentice Hall
Professional Technical Reference, 1982. ISBN 0137010788.

[Ban88] Utpal Banerjee. Dependence. In The Kluwer International Series
in Engineering and Computer Science, pages 27–43. Springer Science
Business Media, Norwell, MA, USA, 1988.

[BBM+12] Siegfried Benkner, Enes Bajrovic, Erich Marth, Martin Sandrieser,
Raymond Namyst, and Samuel Thibault. High-level support for
pipeline parallelism on many-core architectures. In Proceedings of
the 18th International Conference on Parallel Processing, Euro-Par’12,
pages 614–625. Springer-Verlag, Berlin, Heidelberg, 2012.

[BF99] G.T. Byrd and M.J. Flynn. Producer-consumer communication in dis-
tributed shared memory multiprocessors. Proceedings of the IEEE, 87
(3):456–466, 1999.

[BGW+13] A. Bardizbanyan, P. Gavin, D. Whalley, M. Sjalander, P. Larsson-
Edefors, S. McKee, and P. Stenstrom. Improving data access effi-
ciency by using a tagless access buffer (tab). In Proceedings of the
IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO’13), pages 1–11. IEEE, 2013.

[BKSL08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The parsec benchmark suite: Characterization and architectural impli-
cations. In Proceedings of the 17th International Conference on Paral-
lel Architectures and Compilation Techniques (PACT’08), pages 72–81.
ACM, New York, NY, USA, 2008.

[Bol08] Thomas Bollaert. Catapult synthesis: A practical introduction to in-
teractive c synthesis. In Philippe Coussy and Adam Morawiec, editors,
High-Level Synthesis, pages 29–52. Springer, 2008.

119

120 BIBLIOGRAPHY

[BR96] Stephen Brown and Jonathan Rose. FPGA and CPLD Architectures:
A tutorial. IEEE Design Test of Computers, 13(2):42–57, June 1996.

[Car05] João M. P. Cardoso. Dynamic Loop Pipelining in Data-driven Archi-
tectures. In Proceedings of the 2Nd Conference on Computing Frontiers
(CF’05), pages 106–115. ACM, New York, USA, 2005.

[CHW00] T.J. Callahan, J.R. Hauser, and J. Wawrzynek. The garp architecture
and c compiler. Computer, 33(4):62–69, Apr 2000.

[CLRS09] Thomas T. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. The MIT Press, 3 edition,
2009.

[CM08] Philippe Coussy and Adam Morawiec. High-Level Synthesis: From
Algorithm to Digital Circuit. Springer Publishing Company, Incorpo-
rated, 1st edition, 2008. ISBN 1402085877, 9781402085871.

[CTLA12] Jeronimo Castrillon, Andreas Tretter, Rainer Leupers, and Gerd As-
cheid. Communication-aware mapping of kpn applications onto hetero-
geneous mpsocs. In Proceedings of the 49th Annual Design Automation
Conference (DAC’12), pages 1266–1271. ACM, New York, USA, 2012.

[CW00] Timothy J. Callahan and John Wawrzynek. Adapting software pipelin-
ing for reconfigurable computing. In Proceedings of the International
Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES’00), pages 57–64. ACM, 2000.

[DG07] A. Douillet and G.R. Gao. Software-pipelining on multi-core architec-
tures. In Proceedings of the 16th International Conference on Paral-
lel Architecture and Compilation Techniques (PACT’07), pages 39–48.
IEEE Computer Society, 2007.

[Dig13] Digilent, Inc. Genesys Board Reference Manual, September 2013.

[ECR+10] Yoav Etsion, Felipe Cabarcas, Alejandro Rico, Alex Ramirez, Rosa M.
Badia, Eduard Ayguade, Jesus Labarta, and Mateo Valero. Task su-
perscalar: An out-of-order task pipeline. In Proceedings of the 43th An-
nual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO’43), pages 89–100. IEEE Computer Society, Dec 2010.

[EHM+05] Jos van Eijndhoven, Jan Hoogerbrugge, Jayram M.N., Paul Stravers,
and Andrei Terechko. Dynamic and Robust Streaming in and between
Connected Consumer-Electronic Devices, chapter Cache-coherent het-
erogeneous multiprocessing as basis for streaming applications, pages
61–80. Springer Netherlands, 2005.

[FJ08] S. Fide and S. Jenks. Architecture optimizations for synchronization
and communication on chip multiprocessors. In IEEE International

BIBLIOGRAPHY 121

Symposium on Parallel and Distributed Processing (IPDPS’08), pages
1 –8. IEEE, April 2008.

[Giv06] T. Givargis. Zero cost indexing for improved processor cache perfor-
mance. ACM Transactions on Design Automation of Electronic Sys-
tems (TODAES), 11(1):3–25, 2006.

[GMV08] John Giacomoni, Tipp Moseley, and Manish Vachharajani. Fastforward
for efficient pipeline parallelism: A cache-optimized concurrent lock-
free queue. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’08, pages
43–52. ACM, New York, NY, USA, 2008.

[GTA06] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploit-
ing coarse-grained task, data, and pipeline parallelism in stream pro-
grams. In Proceedings of the 12th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS XII, pages 151–162. ACM, 2006.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems (TOPLAS), 13(1):124–149, Jan-
uary 1991.

[Hoa78] C. a. R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666–677, 1978. ISBN 0131532715. ISSN 00010782.

[HP11] John L. Hennessy and David A. Patterson. Computer Architecture,
Fifth Edition: A Quantitative Approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 5th edition, 2011. ISBN 012383872X,
9780123838728.

[IKA99] Kentaro Inenaga, Shigeru Kusakabe, and Makoto Amamiya. Producer-
consumer pipelining for structured-data in a fine-grain non-strict
dataflow language on commodity machines. In Proceedings of the Inter-
national Workshop on Innovative Architecture for Future Generation
High-Performance Processors and Systems (IWIA’99), pages 77–86.
IEEE Computer Society, Washington, DC, USA, 1999.

[Int11] Intel xeon processor e5-2640, 2011. URL http://ark.intel.com/
products/64591/Intel-Xeon-Processor-E5-2640-15M-Cache-2_
50-GHz-7_20-GTs-Intel-QPI.

[JA90] Reese B. Jones and Vicki H. Allan. Software pipelining: A comparison
and improvement. In Proceedings of the 23rd Annual Workshop and
Symposium on Microprogramming and Microarchitecture (MICRO’23),
pages 46–56. IEEE Computer Society Press, Los Alamitos, CA, USA,
1990.

122 BIBLIOGRAPHY

[JB07] Benjamin James Braun. Ehrhart theory for lattice polytopes. PhD
thesis, Washington University, USA, 2007.

[Jef93] Kevin Jeffay. The real-time producer/consumer paradigm: A paradigm
for the construction of efficient, predictable real-time systems. In
Proceedings of the ACM/SIGAPP Symposium on Applied Computing:
States of the Art and Practice (SAC’93), pages 796–804. ACM, New
York, NY, USA, 1993.

[Kah74] Gilles Kahn. The semantics of a simple language for parallel program-
ming. In Information processing, pages 471–475. Stockholm, Sweden,
Aug 1974.

[KC12] Alain Ketterlin and Philippe Clauss. Profiling data-dependence to as-
sist parallelization: Framework, scope, and optimization. In Proceed-
ings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-45, pages 437–448. IEEE Computer Soci-
ety, Washington, DC, USA, 2012.

[KDH+05] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy. Introduction to the cell multiprocessor. IBM Journal
of Research and Development, 49(4.5):589–604, July 2005.

[Ker88] Brian W. Kernighan. The C Programming Language. Prentice Hall
Professional Technical Reference, 2nd edition, 1988. ISBN 0131103709.

[KKK+09] D. Kim, K. Kim, J.-Y. Kim, S. Lee, and H.-J. Yoo. Memory-centric
network-on-chip for power efficient execution of task-level pipeline on a
multi-core processor. IET Computers & Digital Techniques, 3(5):513,
2009.

[KKP+81] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. De-
pendence Graphs and Compiler Optimizations. In Proceedings of the
8th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’81), pages 207–218. ACM, New York, USA,
1981.

[Knu14] Donald E Knuth. Art of Computer Programming, Volume 2: Seminu-
merical Algorithms, The. Addison-Wesley Professional, 2014.

[KRD00] B. Kienhuis, E. Rijpkema, and E. Deprettere. Compaan: deriving pro-
cess networks from matlab for embedded signal processing architec-
tures. In Proceedings of the Eighth International Workshop on Hard-
ware/Software Codesign CODES 2000, pages 13–17. ACM, San Diego,
CA, USA, May 2000.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, SE-3(2):125–143, March 1977.

BIBLIOGRAPHY 123

[LAUH+15] Zhen Li, Rohit Atre, Zia Ul-Huda, Ali Jannesari, and Felix Wolf. Dis-
copop: A profiling tool to identify parallelization opportunities. In
Christoph Niethammer, José Gracia, Andreas Knüpfer, Michael M.
Resch, and Wolfgang E. Nagel, editors, Tools for High Performance
Computing 2014, pages 37–54. Springer International Publishing, 2015.

[LF13] M. Lattuada and F. Ferrandi. Modeling pipelined application with syn-
chronous data flow graphs. In International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XIII), pages 49–55, July 2013.

[LKM11] Per Larsen, Sven Karlsson, and Jan Madsen. Expressing coarse-grain
dependencies among tasks in shared memory programs. IEEE Trans-
actions on Industrial Informatics, 7(4):652–660, 2011.

[LM87a] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9):1235–1245, Sept 1987.

[LM87b] Edward Ashford Lee and David G. Messerschmitt. Static Scheduling of
Synchronous Data Flow Programs for Digital Signal Processing. IEEE
Transactions on Computers, C-36(1):24–35, 1987.

[LW05] Bei Li and Pieter Van Der Wolf. TTL inter-task communication im-
plementation on a shared-memory multiprocessor platform. In 16th
Annual Workshop on Circuits, Systems and Signal Processing (ProR-
ISC 2005), pages 1–8, 2005.

[MKH+13] T. Miyajima, T. Kuhara, T. Hanawa, H. Amano, and T. Boku.
Task level pipelining with PEACH2: An FPGA switching fabric for
high performance computing. In International Conference on Field-
Programmable Technology (FPT’13), pages 466–469, Dec 2013.

[MKH+14] Takaaki Miyajima, Takuya Kuhara, Toshihiro Hanawa, Hideharu
Amano, and Taisuke Boku. Task Level Pipelining on Multiple Ac-
celerators via FPGA Switch. In Proceedings of the IASTED Interna-
tional Conference on Parallel and Distributed Computing and Networks
(PDCN’14), pages 267–274. Acta Press, Calgary, Canada, 2014.

[MKTdK07] S. Meijer, B. Kienhuis, A. Turjan, and E. de Kock. A process splitting
transformation for kahn process networks. In Design, Automation Test
in Europe Conference Exhibition(DATE ’07), pages 1–6, April 2007.

[MKWS07] Sjoerd Meijer, Bart Kienhuis, Johan Walters, and David Snuijf. Au-
tomatic partitioning and mapping of stream-based applications onto
the intel ixp network processor. In Proceedings of the 10th Interna-
tional Workshop on Software and Compilers for Embedded Systems
(SCOPES’07), pages 23–30. ACM, April 2007.

124 BIBLIOGRAPHY

[Moo65] G.E. Moore. Cramming more components onto integrated circuits.
Electronics, 38:114 – 117, 1965.

[MSM04] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns
for Parallel Programming. Addison-Wesley Professional, first edition,
2004.

[NAS15] NAS parallel benchmarks (NBP), 2015. URL https://www.nas.nasa.
gov/publications/npb.html.

[NMSD09] Dmitry Nadezhkin, Sjoerd Meijer, Todor Stefanov, and Ed Depret-
tere. Realizing FIFO Communication when Mapping Kahn Process
Networks onto the Cell. In Proceedings of the 9th International Work-
shop on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS), pages 308–317. Springer, 2009.

[Nol04] Landon Curt Noll. Fowler/noll/vo (fnv) hash, 2004. URL http://
www.isthe.com/chongo/tech/comp/fnv/.

[OPE05] MPC7450 RISC Microprocessor Family Reference Manual, 5 edition,
2005.

[OPE16] OpenCV: Open Source Computer Vision, 2016. URL http://opencv.
org/.

[ovp16] Open Virtual Platforms (OVP), 2016. URL http://www.ovpworld.
org/.

[Par14] Arash Partow. General hash function source code (c), 2014. URL
http://www.partow.net/programming/hashfunctions/.

[PH05] Chris Purcell and Tim Harris. Non-blocking hashtables with open ad-
dressing. In Pierre Fraigniaud, editor, Distributed Computing (LNCS),
volume 3724, pages 108–121. Springer, 2005.

[RCD07] Rui Rodrigues, João M. P. Cardoso, and Pedro C. Diniz. A data-
driven approach for pipelining sequences of data-dependent loops. In
Proc. 15th IEEE Symposium on Field-Programmable Custom Comput-
ing Machines (FCCM ’07), pages 219–228, 2007.

[RKAP+12] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy,
Saman Amarasinghe, and Frédo Durand. Decoupling algorithms from
schedules for easy optimization of image processing pipelines. ACM
Trans. Graph., 31(4):32:1–32:12, July 2012.

[RKBA+13] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. Halide: A language
and compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. SIGPLAN Not., 48(6):519–530, June 2013.

BIBLIOGRAPHY 125

[RVD10] Sean Rul, Hans Vandierendonck, and Koen De Bosschere. A profile-
based tool for finding pipeline parallelism in sequential programs. Par-
allel Computing, 36(9):531–551, 2010. ISSN 01678191.

[SH01] P. Stravers and J. Hoogerbrugge. Homogeneous multiprocessing and
the future of silicon design paradigms. In International Symposium on
VLSI Technology, Systems, and Applications. Proceedings of Technical
Papers, pages 184–187. Institute of Electrical & Electronics Engineers
(IEEE), 2001.

[Smi82] Burton J. Smith. Architecture and applications of the hep multipro-
cessor computer system. Real-Time signal processing IV, 298:241–248,
1982.

[Smi86] B.J. Smith. A pipelined, shared resource mimd computer. In Ad-
vanced computer architecture, pages 39–41. IEEE Computer Society
Press, 1986.

[Sni02] Greg Snider. Performance-constrained pipelining of software loops onto
reconfigurable hardware. In Proceedings of ACM 10th International
Symposium on Field-programmable Gate Arrays, FPGA ’02, pages 177–
186. ACM, New York, NY, USA, 2002.

[SPE15] Standard performance evaluation corporation (spec), 2015. URL http:
//www.spec.org/.

[SRI14] Alexandre Skyrme, Noemi Rodriguez, and Roberto Ierusalimschy. A
survey of support for structured communication in concurrency control
models. Journal of Parallel and Distributed Computing, 74(4):2266–
2285, April 2014.

[Sut08] Herb Sutter. Lock-free code: A false sense of security. Dr. Dobb’s
Journal, 2008.

[SW11] R. Sedgewick and K. Wayne. Algorithms in C, volume 4th. Addison-
Wesley Professional, 2011. ISBN 9780321573513.

[TCA07] William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. A
practical approach to exploiting coarse-grained pipeline parallelism in c
programs. In Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 40, pages 356–369. IEEE
Computer Society, Washington, DC, USA, 2007. ISBN 0-7695-3047-8.

[TKA02] William Thies, Michal Karczmarek, and Saman Amarasinghe.
Streamit: A language for streaming applications. In Proceedings of
the 11th International Conference on Compiler Construction (CC’02),
volume LNCS 2304, pages 179–196, 2002.

126 BIBLIOGRAPHY

[TKD02] Alexandru Turjan, Bart Kienhuis, and Ed F. Deprettere. A com-
pile time based approach for solving out-of-order communication in
kahn process networks. In Proceedings of IEEE Int. Conference on
Application-specific Systems (ASAP’02), pages 17–28, 2002.

[TKD03a] Alexandra Turjan, Bart Kienhuis, and Ed F Deprettere. Realizations
of the extended linearization model. In Domain-Specific Processors:
Systems, Architectures, Modeling, and Simulation, pages 171–190. CRC
Press, 2003.

[TKD03b] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. A technique to
determine inter-process communication in the polyhedral model. In
Proceedings of 10th International Workshop on Compilers for Paral-
lel Computers (CPC’03), pages 8–10. Amsterdam, The Netherlands,
January 2003.

[TKD05] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. Solving out-
of-order communication in kahn process networks. Journal of VLSI
Signal Processing Systems for Signal, Image, and Video Technology, 40
(1):7–18, 2005.

[UTD98] UTDSP benchmark suite, May 1998. URL http://www.eecg.
toronto.edu/~corinna/DSP/infrastructure/UTDSP.html.

[vec16] Pareon profile, 2016. URL http://www.vectorfabrics.com/.

[VJ04] Srinivas N. Vadlamani and Stephen F. Jenks. The synchronized
pipelined parallelism model. Proceedings of the IASTED International
Conference on Parallel and Distributed Computing and Systems, 16:
163–168, 2004.

[VJ07] S. Vadlamani and S. Jenks. Architectural considerations for efficient
software execution on parallel microprocessors. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS’07)., pages 1–
10, March 2007.

[WL06] M. Weinhardt and W. Luk. Pipeline vectorization. Trans. Comp.-Aided
Des. Integ. Cir. Sys., 20(2):234–248, November 2006.

[WTS+97] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and
A. Agarwal. Baring it all to software: Raw machines. Computer, 30
(9):86–93, 1997.

[Xil10a] Xilinx, Inc. EDK Concepts, Tools, and Techniques, September 2010.

[Xil10b] Xilinx, Inc. LogiCORE IP Processor Local Bus (PLB) v4.6 (v1.05a),
2010.

[Xil10c] Xilinx, Inc. MicroBlaze Processor Reference Guide v12.3, 2010.

BIBLIOGRAPHY 127

[Xil11a] Xilinx. Ise design suite, 2011. URL http://www.xilinx.com/
products/design-tools/ise-design-suite.html.

[Xil11b] Xilinx, Inc. LogiCORE IP Fast Simplex Link (FSL) V20 Bus v2.11c,
April 2011.

[Xil12] Xilinx, Inc. Vivado Design Suite User Guide, High-Level Synthesis,
July 2012.

[Xil15a] Xilinx, Inc. VC707 Evaluation Board for the Virtex-7 FPGA (User
Guide), ug885 (v1.6.1) edition, September 2015. URL http://www.
xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html.

[Xil15b] Xilinx, Inc. Virtex-5 Family Overview, August 2015.

[YXY+14] Zhiyi Yu, Ruijin Xiao, Kaidi You, Heng Quan, Peng Ou, Zheng Yu,
Maofei He, Jiajie Zhang, Yan Ying, Haofan Yang, Jun Han, Xu Cheng,
Zhang Zhang, Ming’e Jing, and Xiaoyang Zeng. A 16-core proces-
sor with shared-memory and message-passing communications. IEEE
Transactions on Circuits and Systems, 61(4):1081–1094, April 2014.

[ZHD03] Heidi E. Ziegler, Mary W. Hall, and Pedro C. Diniz. Compiler-
generated communication for pipelined fpga applications. In Pro-
ceedings of the 40th Annual Design Automation Conference (DAC’03),
pages 610–615. ACM, 2003.

[ZHX+15] Peng Zhang, Muhuan Huang, Bingjun Xiao, Hui Huang, and Jason
Cong. Cmost: A system-level fpga compilation framework. In Pro-
ceedings of the 52th Annual Design Automation Conference (DAC’15),
pages 158:1–158:6. ACM, New York, USA, 2015.

[ZNS13] Jiali Teddy Zhai, Hristo Nikolov, and Todor Stefanov. Mapping of
streaming applications considering alternative application specifica-
tions. ACM Transactions on Embedded Computing Systems (TECS),
12(1s):34:1–34:21, March 2013.

[ZSHD02] H. Ziegler, B. So, M. Hall, and P.C. Diniz. Coarse-grain pipelin-
ing on multiple FPGA architectures. In Proceedings of the 10th An-
nual IEEE Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM’02), pages 77–86. IEEE Computer Society, Washington,
DC, USA, 2002.

APPENDIX A
Appendix

A.1 Implementing the ISB in Hardware

Although in Section 6.1 we have used a full softcore processor (MicroBlaze) to im-

plement the Inter-Stage Buffer (ISB) schemes, the ISB can be also implemented as

an Intellectual Property (IP) core using custom hardware. Implementing the ISB as

an IP core may reduce the communication overhead and may decrease the FPGA

resources needed. In addition, an ISB IP core would allow its use by hardware de-

signers in the context of other target FPGA-based architectures, including the ones

generated by HLS tools. In this appendix, we describe the implementation of an

ISB IP core and its integration in a target architecture consisting of two MicroBlaze

processors (one acting as producer and the other one acting as consumer). We also

provide the preliminary experiment results and also evaluate the impact of using

the ISB IP core on the performance for a number of benchmarks.

Figure A.1 shows a possible multicore target architecture considering an ISB

scheme without access to external memory. In the architectures used herein, Mi-

croBlaze 1 and MicroBlaze 2 are responsible for executing the codes for the producer

and the consumer, respectively. Note that in the proposed architecture herein, the

barrel shifter, the hardware multiplier, and the hardware divider are enabled and the

MicroBlaze caches and the hardware floating point unit are disabled. The ISB IP

core communicates with the two MicroBlaze processors directly through the Xilinx

Fast Simplex Link (FSL) [Xil11b].

129

130 Appendix

The ISB IP core was described in behavioral-RTL (Register Transfer Level)

VHDL and was synthesized using Xilinx ISE 13.1 [Xil11a]. In the experiments

presented herein, an ISB local buffer with the size of 1,024 elements was described

in VHDL using a standard one-dimensional array of registers (32 bit).

Figure A.1: FPGA prototype system block diagram with two MicroBlazes and in-
cluding ISB as an IP-core.

We evaluate the impact of implementing the ISB in hardware on communication

overhead, performance, and FPGA hardware resources. In order to evaluate the

communication overhead between the MicroBlaze cores, we measured the number

of clock cycles required to communicate a single data element from the producer’s

core to the consumer’s core without storing in the local ISB memory for both archi-

tectures: (a) the original ISB scheme using MicroBlaze to implement the ISB; and

(b) the proposed architecture considering the ISB as an IP core. Each measurement

includes the request of data from the consumer, the sending of data from the con-

sumer to the ISB, and the ISB verification if this the data requested is available in

the local buffer and if so the sending of the data to the consumer. Thus, the number

of clock cycles represent the cycles from the consumer request to the availability of

data on the consumer side.

Table A.1 shows the overall number of clock cycles for both architectures. As

shown, 176 clock cycles are required to communicate a single data element from the

producer’s core to the consumer’s core in the architecture using the ISB IP core. In

the original scheme of the ISB (implemented by a third MicroBlaze), the commu-

nication overhead is 190 clock cycles. This means that using an ISB IP core can

A.1 Implementing the ISB in Hardware 131

decrease 7.37% the number of clock cycles required for a single data communica-

tion between the cores compared with the original ISB scheme. When increasing

the number of data elements communicating between cores (e.g., 64 data elements)

and considering the use of the local ISB memory, the number of clock cycles in the

proposed architecture compared to the ISB implemented in a MicroBlaze decreased

by 95.89% (from 20,799 to 854 clock cycles), a considerable reduction. The reason

is that in the original ISB scheme, reads/writes from/to the memory are over a

single-port memory connected to the MicroBlaze and thus, the ISB cannot perform

more than one memory read/write simultaneously. As in the hardware implemen-

tation of the ISB, we use a Dual-port memory (to implement the local table of the

ISB), two read and write operations to different memory addresses can be performed

simultaneously.

Table A.1: The overall data communication clock cycles between the producer’s core
and the consumer’s core in the ISB scheme

ISB Scheme
Clock Cycles (#CS)

a single data element 64 data elements
Implemented in hardware 176 854
Implemented in MicroBlaze 190 20799

Note that our custom ISB IP core only uses local memory. By considering the size

of input arrays in the benchmarks presented in the Table 6.3 and a local buffer with

the size of 1,024 in the ISB IP core, the P/C pairs can communicate using only local

(on-chip) memory and thus without the need to store data in the external memory.

When considering the dataset sizes and the benchmarks presented in the Table 6.3,

and also an ISB local buffer with the size of 1,024 in the ISB scheme implemented as

a MicroBlaze, 100% of the P/C communicated data elements can be loaded/stored

from/to the local memory for FDCT, FIR-Edge and Edge-Detection benchmarks.

However, for Wavelet Transform and Gaussian blur benchmarks, 0.22% and 36.97%

of data elements can be loaded/stored from/to the local memory, respectively. This

means that for these benchmarks it might be more efficient to disable the access

to external memory, as is the case of using the custom ISB IP core presented here.

However, using an ISB IP core with only local memory may not be sufficient when

132 Appendix

most data elements need to be store into the external memory and thus, the use of

a level of external memory would need to be considered for a more generic ISB IP

core.

In order to evaluate the impact of using the ISB IP core on the global performance

of the benchmarks, we have used the ISB IP core in the context of TaLP. Figure

A.2 shows the achieved speedups for the Wavelet Transform, FDCT, FIR-Edge,

Edge-Detection, and Gaussian blur when using the ISB scheme implemented with

three MicroBlaze processors with and without optimization techniques, and the

proposed scheme using two MicroBlaze processors for the producer/consumer cores

and the ISB IP core. In these experiments, we considered the ISB optimization

schemes (scheme #3 and scheme #4) which achieved the highest achieved speedups

presented in Table 6.7.

Wavelet FDCT FIR-Edge Edge-Detection Gaussian blur
Benchmark

1.0

1.2

1.4

1.6

1.8

2.0

S
p
e
e
d
u
p

1
.4

4

1
.3

8

1
.5

7

1
.3

9

1
.1

4

1
.4

8

1
.6

1

1
.7

1

1
.5

6

1
.1

6

1
.4

8 1
.5

5

1
.7

2

1
.6

1
.1

7

1
.5

2

1
.5

6 1
.6

1
.4

5

1
.1

7

ISB w/o opt. ISB w/ opt. #3 ISB w/ opt. #4 ISB implemented in HW

Figure A.2: Speedups when using the ISB IP-core using only local memory over the
original ISB scheme without optimization and the ISB with optimizations (scheme
#3 and scheme #4).

The results show that using the ISB IP core between producer/consumer cores

without access to external memory are very similar to the achieved speedups when

using ISB optimization schemes. For instance, for FDCT the achieved speedup when

using the ISB IP core (1.56×) is almost equal to the speedup achieved when using the

ISB with optimization scheme #4 (1.55×) and 96.7% close to the speedup achieved

when using the ISB with optimization scheme #3 (1.61×). However, in the case of

Wavelet Transform, the speedup increases 5.56% (from 1.44× to 1.52×) compared

with the ISB without optimization, and increases 2.7% compared with the highest

A.1 Implementing the ISB in Hardware 133

achieved speedup (ISB with optimization schemes #3 and #4). For FIR-Edge, the

speedup increased by 1.91% (from 1.57× to 1.60×) when using the ISB IP core and

compared with the ISB without optimization. The speedups achieved when using

the ISB IP core for FIR-Edge is 93% close to the speedup obtained when using the

ISB with optimization scheme #3 and scheme #4. In addition, for Gaussian blur,

the speedup achieved when using the ISB IP core increased by 2.63% (from 1.14× to

1.17×) compared with the ISB without optimization and equals the speedup when

using the ISB with optimization schemes.

With respect to the theoretical uppderbound A of the benchmarks (see Table 6.4

in Section 6.3), the achieved speedups when using the ISB IP core for the Wavelet

Transform (1.52×), FDCT (1.56×), FIR-Edge (1.60×), Edge-Detection (1.45×),

and Gaussian blur (1.17×) are 76.38% for Wavelet Transform, 96.89% for FDCT,

93.02% for FIR-Edge, 75.92% for Edge-Detection and 100% for the Gaussian blur,

close to their theoretical speedup.

In order to analyze the overhead in terms of hardware resources to implement our

custom ISB IP core, we compare the hardware resources when using a MicroBlaze

to implement the ISB with the custom ISB IP core separately. Table A.2 presents

the hardware resources used for these architectures when using a Xilinx Virtex-5

LX50T FPGA [Xil15b]. Note that in the experiment herein, we have used the same

configuration (A) for the MicroBlaze to implement the ISB using the barrel shifter,

the hardware multiplier, and the hardware divider and without using MicroBlaze

caches and the hardware floating point unit. However, in Table 2, we also considered

another configuration (B). In this configuration we considered a MicroBlaze without

the barrel shifter, the hardware multiplier, and the hardware divider. As shown, the

configuration B has a reduction of 6.45% of the number of slice registers (from

5,227 to 4,890), 10.8% of the number of slice LUTs (from 4,489 to 4,004) and also

15.86% of the number of occupied slices (from 2,805 to 2,360) compared with the

ISB implemented using one MicroBlaze with the configuration A.

As shown we achieve a considerable reduction of all FPGA resources when using

the ISB IP core compared to the ISB implemented using one MicroBlaze in both

configurations A and B. For instance, the total memory used has a reduction of

134 Appendix

Table A.2: FPGA hardware resources usage for the ISB implemented using one
MicroBlaze and the ISB as an IP core.

Device Utilization
ISB implemented using
one MicroBlaze (A)

ISB implemented using
one MicroBlaze (B) ISB (IP Core)

Used Usage
Percentage Used Usage

Percentage Used Usage
Percentage

Number of Slice Registers 5,227 18% 4,890 16% 114 1%
Number of Slice LUTs 4,489 15% 4,004 13% 1,929 6%
Number of occupied Slices 2,805 38% 2,360 32% 589 8%
Total Memory used (KB) 900 41% 900 41% 18 1%
Number of DSP48Es 3 6% 3 6% 0 0%

98% (from 900 KB to 18 KB). In addition, the number of slice registers and LUTs

decreased by 97.82% (from 5227 to 114) and 57.03% (from 4,489 to 1,929). In

addition, the number of DSP48Es has a reduction of 100% (from 3 to 0) when

considering our custom IP core versus the use of a MicroBlaze.

In addition, Table A.3 presents the hardware resources used for the following

two architectures: (a) the system with two MicroBlaze (P/C) processors + the ISB

(MicroBlaze); and (b) the system with two MicroBlaze processors + ISB (IP core).

The MicroBlaze configurations in the system with two MicroBlaze (P/C) processors

and the ISB implemented with one MicroBlaze are the same as configuration A.

As shown, the total memory used in the system using the ISB IP core is decreased

by 34.21% (from 2,052 to 1,350). The number of slice registers and the number

of DSP48Es in the system with two MicroBlaze cores and the ISB IP core are also

reduced by 20.98% (from 10,161 to 8,029 and by 33.3% (from 9 to 6), respectively.

However, the size of slice LUTs and the number of occupied slices are increased by

8.8% (from 9,868 to 10,820) and 3.39% (from 4,760 to 4,927) compared with the

system with two MicroBlaze (P/C) + ISB (MicroBlaze Scheme).

In general, we can conclude that the system with two MicroBlaze cores and the

ISB IP core with only local memory uses less memory, less number of slices registers

and DSP48Es and almost equal number of slice LUTs and occupied slices compared

with the ISB scheme implemented with three MicroBlaze (P/C and the ISB). Note

that the maximum clock frequency of the ISB IP core and the MicroBlaze processor

for the FPGA used in the experiment are 200 MHZ and 125 MHz.

A.2 ISB with Two Tables 135

Table A.3: FPGA hardware resources usage for each systems used to implement the
ISB scheme: the system with two MicroBlaze (P/C) + the ISB (MicroBlaze); and
the system with two MicroBlaze + ISB (IP core) (MB: MicroBlaze).

Device Utilization
System with two MicroBlaze

(P/C) + ISB (MB)
System with two MB +

ISB (IP core)

Used Usage
Percentage Used Usage

Percentage
Number of Slice Registers 10,161 35% 8,029 27%
Number of Slice LUTs 9,868 34% 10,820 37%
Number of occupied Slices 4,760 66% 4,927 68%
Total Memory used (KB) 2,052 95% 1,350 62%
Number of DSP48Es 9 18% 6 12%

A.2 ISB with Two Tables

In the scheme presented in Section 4.1.1, we have used only one local table in the

ISB. However, the ISB can use multiple tables for loading/storing data locally. The

main idea of using the multiple tables in the ISB is to increase the number of local

(on-chip) memory accesses and thus reducing the number of accesses to the external

memory. Multiple ISB tables provide the opportunity to store locally data for which

the hash function returns the same index and the associated position in at least one

table is already full.

Figure A.3 shows the ISB scheme using two local tables with hashing and an

empty/full flag. This ISB has the following behavior: the ISB reads the index from

the producer and maps it into the buffer position of Table 1 which is calculated by

the hash function. If the flag of the mapped position in Table 1 is set to 0 (empty),

the ISB stores the index and data in Table 1 and sets the flag of the mapped position

to 1 (full). If storing the index into the first local table fails (the mapped position

is full, i.e., is already used), the ISB tries the second local table (Table 2) and maps

the produced index into the same mapped position of Table 2 determined by the

same hash function. If neither Table 1 nor Table 2 are available to store the data

locally, the ISB stores the data into the external memory. Also, the ISB reads the

requested index from the consumer and maps the index to the buffer position of

Table 1. If the flag of the mapped position in Table 1 is set to 1 (full), the ISB loads

136 Appendix

Figure A.3: ISB using two local tables with an empty/full bit flag.

the data and resets the flag to 0 (empty). If the requested index is not available in

Table 1, the ISB tries the mapped position in Table 2, and only if data is not there

it inspects the external memory.

Table A.4 shows the speedups obtained when using the ISB with one and two

local tables as buffers and implemented using a MicroBlaze. In these experiments,

the size of each local table is 1,024. As shown, for Gray-Histogram, the achieved

speedup using two tables is the same than the achieved speedup in the original

ISB scheme using only one local table. However, in the case of FDCT, the speedup

increases 15.9% (from 1.38× to 1.60×) when using two local tables and almost equals

the theoretical upperbound A (1.61×) for the FDCT.

Table A.4: Speedups achieved when considering an ISB scheme using one and two
local tables and implemented using a MicroBlaze core vs. a single core baseline
architecture.

Benchmark ISB w/
One Table

ISB w/
Two Tables

Upperbound A

Gray-Hisogram 1.65 1.65 1.86
Fast DCT (FDCT) 1.38 1.60 1.61
Wavelet Transform 1.46 1.47 1.99

The number of data elements stored externally with one and two local tables is

0. This means that for FDCT, there is no need to the external memory and all data

elements can be stored locally. In FDCT, the number of hits to each memory address

of the ISB local buffer with the size of 1,024 is 469 times. Thus by considering dual

A.2 ISB with Two Tables 137

local buffer for the ISB, the number of hits to the same mapped address of local

buffer may reduces and as a result it can improves the performance.

With respect to the Wavelet Transform, the performance improvement is only

0.7% (from 1.46× to 1.47×). In Wavelet Transform, 99.7% of all data elements are

loaded/stored from/into the external memory and the maximum number of hits to

each local memory address of the ISB local buffer is 2. Thus, the use of two tables

does not have the potential to contribute to a significantly higher number of data

elements stored locally.

One of the possible solutions to increase the number of data elements stored

locally in multiple tables can be the use of a specific hash function for each table.

About the Author

Ali Azarian received his B.Eng and Master degree in com-

puter engineering both from Azad University, Iran in 2002

and 2007, respectively. In 2010 he started his Ph.D. in Infor-

matics Engineering at the Faculty of Engineering of the Uni-

versity of Porto (FEUP), Portugal and became a researcher

at INESC TEC Porto. He visited the Karlsruhe Institute of Technology (KIT),

Germany, twice and worked in the group of Prof. Jürgen Becker. Ali’s research

interests include Parallel Computing, Field-Programmable Custom Computing Ma-

chines (FCCMs), Reconfigurable Computing and Embedded System Design. He is

a student member of IEEE, ACM and HiPEAC.

Publications Related to the PhD:

1. Ali Azarian, João M. P. Cardoso,"Pipelining Data-Dependent Tasks in FPGA-

based Multicore Architectures", in the Journal of Microprocessors and Microsys-

tems (MICPRO-Elsevier), Vol. 42, pp. 165-179, 2016.

2. Ali Azarian, João M. P. Cardoso, "Reducing Misses to External Memory Ac-

cesses in Task-Level Pipelining," in IEEE International Symposium on Circuits

and Systems (ISCAS’15), pp. 1422-1425, Lisbon, Portugal, 2015.

3. Ali Azarian, João M. P. Cardoso, "Coarse/Fine-grained Approaches for Pipelin-

ing Computing Stages in FPGA-based Multicore Architectures," in 3th Work-

shop on On-chip memory hierarchies and interconnects: organization, manage-

139

140 Appendix

ment and implementation (OMHI 2014), workshop co-located with the 20th

International Conference of Parallel Processing (Euro-Par 2014), pp. 266-278,

Springer LNCS 8806, 2014.

4. Ali Azarian, João M. P. Cardoso, "An FPGA-based Fine-grained Data Syn-

chronization for Pipelining Computing Stages," In X Jornadas sobre Sistemas

Reconfiguráveis (REC 2014), pp. 57-60, Vilamoura, Portugal, April, 2014.

5. Ali Azarian, João M. P. Cardoso, Stephan Werner, Jürgen Becker, "An

FPGA-based Multi-Core Approach for Pipelining Computing Stages," In 28th

Symposium On Applied Computing (SAC’13), pp. 1533-1540, Coimbra, Por-

tugal, March 18-22, 2013.

6. Ali Azarian, "Pipelining Computing Stages in Configurable Multicore Archi-

tectures," In 23th International Conference on Field Programmable Logic and

Applications (FPL’13), pp. 2-4, Porto, Portugal, 2013.

7. Ali Azarian and João M. P. Cardoso, "Pipelining Producer-Consumer Tasks

using Custom Multi-Core Architectures," In Proceedings of the 7th Interna-

tional Summer School on Advanced Computer Architecture and Compilation

for High-Performance and Embedded Systems (ACACES 2011), 10-16 July,

2011, Fiuggi, Italy [Poster Abstracts]

Other Publications during the PhD Work:

1. Ali Azarian, João Canas Ferreira, Stephan Werner, Zlatko Petrov, João M. P.

Cardoso, Michael Huebner, "Analysis of Error Detection Schemes: Toolchain

Support and Hardware/Software Implications," In NASA/ESA Conference on

Adaptive Hardware and Systems (AHS-2012), pp. 62-69, Nuremberg, Ger-

many, June 25-28, 2012.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation and Problem Overview
	1.2 Contributions
	1.3 Organization

	2 Related Work
	2.1 Producer-Consumer Communications
	2.1.1 Flag-based Data Communication
	2.1.2 Streaming Data Over Channels

	2.2 Loop Pipelining
	2.3 Code Transformations
	2.4 High-level Synthesis (HLS) for TaLP
	2.5 Profiling Tools for TaLP
	2.6 Parallel Models of Computation (MoC)
	2.7 Overview

	3 Task-Level Pipelining (TaLP)
	3.1 Partitioning Programs for Multicore Systems
	3.2 Producer-Consumer (P/C) Pairs
	3.2.1 Loops and Dependencies
	3.2.2 Data Communication Patterns
	3.2.3 P/C Data Communication Ratio
	3.2.4 P/C Communication Schemes

	3.3 Summary

	4 Our TaLP Approach
	4.1 Fine-grained Approaches
	4.1.1 Fine-grained ISB (Inter-Stage Buffer)
	4.1.2 Fine-grained ISB within Consumer

	4.2 Coarse-grained Approaches
	4.2.1 Coarse-grained One FIFO
	4.2.2 Coarse-grained Two FIFOs

	4.3 The TaLP Design Flow
	4.3.1 Computing Stage Identification
	4.3.2 Identifying the Dependencies
	4.3.3 Determining the Communication Patterns and Ratios
	4.3.4 Granularity and TaLP Scheme Decision
	4.3.5 Mapping and Scheduling Computing Stages
	4.3.6 TaLP Performance Impact Evaluation
	4.3.7 Applying TaLP and Measuring the Speedup

	4.4 Summary

	5 Optimization Techniques
	5.1 Optimization for Shared Memory Schemes
	5.2 Optimizations for ISB-based Schemes
	5.2.1 Hash Functions
	5.2.2 Main Memory Accesses: Scheme #1
	5.2.3 Main Memory Accesses: Scheme #2
	5.2.4 Main Memory Accesses: Scheme #3
	5.2.5 Main Memory Accesses: Scheme #4

	5.3 Summary

	6 Experimental Results
	6.1 Hardware and Software Platforms
	6.1.1 FPGA Resources

	6.2 Benchmarks
	6.3 Performance Evaluation
	6.4 Fine-grained Schemes Results
	6.4.1 Impact of Data Chunks
	6.4.2 Impact of the Local memory Size
	6.4.3 The Impact of Hash Functions
	6.4.4 Optimization Results

	6.5 Results with Coarse-grained Schemes
	6.6 Summary

	7 Conclusions and Future Work
	7.1 Main Contributions
	7.2 Future Work

	Bibliography
	A Appendix
	A.1 Implementing the ISB in Hardware
	A.2 ISB with Two Tables

