2,820 research outputs found

    Efficient and Reliable Task Scheduling, Network Reprogramming, and Data Storage for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) typically consist of a large number of resource-constrained nodes. The limited computational resources afforded by these nodes present unique development challenges. In this dissertation, we consider three such challenges. The first challenge focuses on minimizing energy usage in WSNs through intelligent duty cycling. Limited energy resources dictate the design of many embedded applications, causing such systems to be composed of small, modular tasks, scheduled periodically. In this model, each embedded device wakes, executes a task-set, and returns to sleep. These systems spend most of their time in a state of deep sleep to minimize power consumption. We refer to these systems as almost-always-sleeping (AAS) systems. We describe a series of task schedulers for AAS systems designed to maximize sleep time. We consider four scheduler designs, model their performance, and present detailed performance analysis results under varying load conditions. The second challenge focuses on a fast and reliable network reprogramming solution for WSNs based on incremental code updates. We first present VSPIN, a framework for developing incremental code update mechanisms to support efficient reprogramming of WSNs. VSPIN provides a modular testing platform on the host system to plug-in and evaluate various incremental code update algorithms. The framework supports Avrdude, among the most popular Linux-based programming tools for AVR microcontrollers. Using VSPIN, we next present an incremental code update strategy to efficiently reprogram wireless sensor nodes. We adapt a linear space and quadratic time algorithm (Hirschberg\u27s Algorithm) for computing maximal common subsequences to build an edit map specifying an edit sequence required to transform the code running in a sensor network to a new code image. We then present a heuristic-based optimization strategy for efficient edit script encoding to reduce the edit map size. Finally, we present experimental results exploring the reduction in data size that it enables. The approach achieves reductions of 99.987% for simple changes, and between 86.95% and 94.58% for more complex changes, compared to full image transmissions - leading to significantly lower energy costs for wireless sensor network reprogramming. The third challenge focuses on enabling fast and reliable data storage in wireless sensor systems. A file storage system that is fast, lightweight, and reliable across device failures is important to safeguard the data that these devices record. A fast and efficient file system enables sensed data to be sampled and stored quickly and batched for later transmission. A reliable file system allows seamless operation without disruptions due to hardware, software, or other unforeseen failures. While flash technology provides persistent storage by itself, it has limitations that prevent it from being used in mission-critical deployment scenarios. Hybrid memory models which utilize newer non-volatile memory technologies, such as ferroelectric RAM (FRAM), can mitigate the physical disadvantages of flash. In this vein, we present the design and implementation of LoggerFS, a fast, lightweight, and reliable file system for wireless sensor networks, which uses a hybrid memory design consisting of RAM, FRAM, and flash. LoggerFS is engineered to provide fast data storage, have a small memory footprint, and provide data reliability across system failures. LoggerFS adapts a log-structured file system approach, augmented with data persistence and reliability guarantees. A caching mechanism allows for flash wear-leveling and fast data buffering. We present a performance evaluation of LoggerFS using a prototypical in-situ sensing platform and demonstrate between 50% and 800% improvements for various workloads using the FRAM write-back cache over the implementation without the cache

    Ein flexibles, heterogenes Bildverarbeitungs-Framework für weltraumbasierte, rekonfigurierbare Datenverarbeitungsmodule

    Get PDF
    Scientific instruments as payload of current space missions are often equipped with high-resolution sensors. Thereby, especially camera-based instruments produce a vast amount of data. To obtain the desired scientific information, this data usually is processed on ground. Due to the high distance of missions within the solar system, the data rate for downlink to the ground station is strictly limited. The volume of scientific relevant data is usually less compared to the obtained raw data. Therefore, processing already has to be carried out on-board the spacecraft. An example of such an instrument is the Polarimetric and Helioseismic Imager (PHI) on-board Solar Orbiter. For acquisition, storage and processing of images, the instrument is equipped with a Data Processing Module (DPM). It makes use of heterogeneous computing based on a dedicated LEON3 processor in combination with two reconfigurable Xilinx Virtex-4 Field-Programmable Gate Arrays (FPGAs). The thesis will provide an overview of the available space-grade processing components (processors and FPGAs) which fulfill the requirements of deepspace missions. It also presents existing processing platforms which are based upon a heterogeneous system combining processors and FPGAs. This also includes the DPM of the PHI instrument, whose architecture will be introduced in detail. As core contribution of this thesis, a framework will be presented which enables high-performance image processing on such hardware-based systems while retaining software-like flexibility. This framework mainly consists of a variety of modules for hardware acceleration which are integrated seamlessly into the data flow of the on-board software. Supplementary, it makes extensive use of the dynamic in-flight reconfigurability of the used Virtex-4 FPGAs. The flexibility of the presented framework is proven by means of multiple examples from within the image processing of the PHI instrument. The framework is analyzed with respect to processing performance as well as power consumption.Wissenschaftliche Instrumente auf aktuellen Raumfahrtmissionen sind oft mit hochauflösenden Sensoren ausgestattet. Insbesondere kamerabasierte Instrumente produzieren dabei eine große Menge an Daten. Diese werden üblicherweise nach dem Empfang auf der Erde weiterverarbeitet, um daraus wissenschaftlich relevante Informationen zu gewinnen. Aufgrund der großen Entfernung von Missionen innerhalb unseres Sonnensystems ist die Datenrate zur Übertragung an die Bodenstation oft sehr begrenzt. Das Volumen der wissenschaftlich relevanten Daten ist meist deutlich kleiner als die aufgenommenen Rohdaten. Daher ist es vorteilhaft, diese bereits an Board der Sonde zu verarbeiten. Ein Beispiel für solch ein Instrument ist der Polarimetric and Helioseismic Imager (PHI) an Bord von Solar Orbiter. Um die Daten aufzunehmen, zu speichern und zu verarbeiten, ist das Instrument mit einem Data Processing Module (DPM) ausgestattet. Dieses nutzt ein heterogenes Rechnersystem aus einem dedizierten LEON3 Prozessor, zusammen mit zwei rekonfigurierbaren Xilinx Virtex-4 Field-Programmable Gate Arrays (FPGAs). Die folgende Arbeit gibt einen Überblick über verfügbare Komponenten zur Datenverarbeitung (Prozessoren und FPGAs), die den Anforderungen von Raumfahrtmissionen gerecht werden, und stellt einige existierende Plattformen vor, die auf einem heterogenen System aus Prozessor und FPGA basieren. Hierzu gehört auch das Data Processing Module des PHI Instrumentes, dessen Architektur im Verlauf dieser Arbeit beschrieben wird. Als Kernelement der Dissertation wird ein Framework vorgestellt, das sowohl eine performante, als auch eine flexible Bilddatenverarbeitung auf einem solchen System ermöglicht. Dieses Framework besteht aus verschiedenen Modulen zur Hardwarebeschleunigung und bindet diese nahtlos in den Datenfluss der On-Board Software ein. Dabei wird außerdem die Möglichkeit genutzt, die eingesetzten Virtex-4 FPGAs dynamisch zur Laufzeit zu rekonfigurieren. Die Flexibilität des vorgestellten Frameworks wird anhand mehrerer Fallbeispiele aus der Bildverarbeitung von PHI dargestellt. Das Framework wird bezüglich der Verarbeitungsgeschwindigkeit und Energieeffizienz analysiert

    Named Data Networking in IoT based sensor devices

    Get PDF
    In a world running on a “smart” vision, the Internet of Things (IoT) progress is going faster than ever. The term “things” is not just about computer, people and smartphone, but also sensors, refrigerators, vehicles, clothing, food and so on. Internet of Things is the possibility to provide an IP address for every item, so it will have an interface on the Internet network. The household devices will not just being commanded and monitored remotely then, but they will have an active main character role, establishing a communication network between them. The thesis will begin describing a general overview, the state of art, of the IoT world and of sensors networks, checking its potential and any restrictions, if present. Then, every engineering aspect of the realized project, will been described in detail. This thesis will also prove that nowadays we have the right items and components for the realization of reliable low-cost sensors. The ultimate purpose is to verify the introduction of new network protocols like NDN (Named Data Networking) to evaluate their performances and efficiency. Finally I will propose the simulations output obtained by NS3 (Network Simulator): a scenario simulation using NDNSim and ChronoSync application will be present
    corecore