5,861 research outputs found

    Tensor Networks and Quantum Error Correction

    Full text link
    We establish several relations between quantum error correction (QEC) and tensor network (TN) methods of quantum many-body physics. We exhibit correspondences between well-known families of QEC codes and TNs, and demonstrate a formal equivalence between decoding a QEC code and contracting a TN. We build on this equivalence to propose a new family of quantum codes and decoding algorithms that generalize and improve upon quantum polar codes and successive cancellation decoding in a natural way.Comment: Accepted in Phys. Rev. Lett. 8 pages, 9 figure

    Construction of Capacity-Achieving Lattice Codes: Polar Lattices

    Full text link
    In this paper, we propose a new class of lattices constructed from polar codes, namely polar lattices, to achieve the capacity \frac{1}{2}\log(1+\SNR) of the additive white Gaussian-noise (AWGN) channel. Our construction follows the multilevel approach of Forney \textit{et al.}, where we construct a capacity-achieving polar code on each level. The component polar codes are shown to be naturally nested, thereby fulfilling the requirement of the multilevel lattice construction. We prove that polar lattices are \emph{AWGN-good}. Furthermore, using the technique of source polarization, we propose discrete Gaussian shaping over the polar lattice to satisfy the power constraint. Both the construction and shaping are explicit, and the overall complexity of encoding and decoding is O(NlogN)O(N\log N) for any fixed target error probability.Comment: full version of the paper to appear in IEEE Trans. Communication

    Flexible and Low-Complexity Encoding and Decoding of Systematic Polar Codes

    Full text link
    In this work, we present hardware and software implementations of flexible polar systematic encoders and decoders. The proposed implementations operate on polar codes of any length less than a maximum and of any rate. We describe the low-complexity, highly parallel, and flexible systematic-encoding algorithm that we use and prove its correctness. Our hardware implementation results show that the overhead of adding code rate and length flexibility is little, and the impact on operation latency minor compared to code-specific versions. Finally, the flexible software encoder and decoder implementations are also shown to be able to maintain high throughput and low latency.Comment: Submitted to IEEE Transactions on Communications, 201

    Sparse Regression Codes for Multi-terminal Source and Channel Coding

    Full text link
    We study a new class of codes for Gaussian multi-terminal source and channel coding. These codes are designed using the statistical framework of high-dimensional linear regression and are called Sparse Superposition or Sparse Regression codes. Codewords are linear combinations of subsets of columns of a design matrix. These codes were recently introduced by Barron and Joseph and shown to achieve the channel capacity of AWGN channels with computationally feasible decoding. They have also recently been shown to achieve the optimal rate-distortion function for Gaussian sources. In this paper, we demonstrate how to implement random binning and superposition coding using sparse regression codes. In particular, with minimum-distance encoding/decoding it is shown that sparse regression codes attain the optimal information-theoretic limits for a variety of multi-terminal source and channel coding problems.Comment: 9 pages, appeared in the Proceedings of the 50th Annual Allerton Conference on Communication, Control, and Computing - 201

    Polar Codes for the m-User MAC

    Get PDF
    In this paper, polar codes for the mm-user multiple access channel (MAC) with binary inputs are constructed. It is shown that Ar{\i}kan's polarization technique applied individually to each user transforms independent uses of a mm-user binary input MAC into successive uses of extremal MACs. This transformation has a number of desirable properties: (i) the `uniform sum rate' of the original MAC is preserved, (ii) the extremal MACs have uniform rate regions that are not only polymatroids but matroids and thus (iii) their uniform sum rate can be reached by each user transmitting either uncoded or fixed bits; in this sense they are easy to communicate over. A polar code can then be constructed with an encoding and decoding complexity of O(nlogn)O(n \log n) (where nn is the block length), a block error probability of o(\exp(- n^{1/2 - \e})), and capable of achieving the uniform sum rate of any binary input MAC with arbitrary many users. An application of this polar code construction to communicating on the AWGN channel is also discussed
    corecore