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Abstract—In this paper, polar codes for the m-user multiple
access channel (MAC) with binary inputs are constructed. It is
shown that Arıkan’s polarization technique applied individually
to each user transforms independent uses of a m-user binary
input MAC into successive uses of extremal MACs. This trans-
formation has a number of desirable properties: (i) the ‘uniform
sum rate’1 of the original MAC is preserved, (ii) the extremal
MACs have uniform rate regions that are not only polymatroids
but matroids and thus (iii) their uniform sum rate can be reached
by each user transmitting either uncoded or fixed bits; in this
sense they are easy to communicate over. A polar code can then
be constructed with an encoding and decoding complexity of
O(n log n) (where n is the block length), a block error probability
of o(exp(−n1/2−ε)), and capable of achieving the uniform sum
rate of any binary input MAC with arbitrary many users. An
application of this polar code construction to communicating on
the AWGN channel is also discussed.

I. INTRODUCTION

The polarization technique, introduced by Arıkan in [2],
transforms n independent uses of a noisy binary input channel
into single-uses of n synthetic binary input channels. The
key property of this transformation is that almost all of these
synthetic channels are polarized, in the sense that they are
either very noisy or almost noiseless (i.e., having a mutual
information either close to 0 or to 1). Moreover, this technique
preserves the ‘uniform mutual information’ — the mutual
information of the channel with the uniform input distribution
— that is, the proportion of synthesized channels that are
almost noiseless tends to the uniform mutual information.
As the very noisy or almost noiseless channels are channels
for which it is easy to code, this transformation leads to the
following coding scheme: uncoded information bits are sent on
the polarized channels that have uniform mutual informations
close to 1, and on the remaining channels, bits frozen to pre-
determined values are transmitted.

In addition to bringing a new perspective on coding, polar
codes can be implemented with low computational effort.
More precisely, the encoding and decoding complexity of a
polar code is O(n log n). By definition of the uniform mutual
information, these codes achieve the capacity of any channel
whose capacity achieving input distribution is uniform. The
original polar code construction was generalized in [13] for
channels with binary input alphabets to channels with alpha-

1In this paper all mutual informations are computed when the inputs of a
MAC are distributed independently and uniformly. The resulting rate regions,
sum rates, etc., are prefixed by ‘uniform’ to distinguish them from the capacity
region, sum capacity, etc.

bets of arbitrary prime cardinality, allowing polar codes to
approach the capacity of any discrete memoryless channel.

In this paper, we show how the polarization technique can be
extended to a multi-user problem, namely, the multiple access
channel (MAC). One of the interesting aspect of this extension
is that, as opposed to the single-user setting where a single
mutual information characterizes an achievable rate, there is
in a MAC setting a collection of mutual informations that
characterize an achievable rate region. Hence, the terminology
“polarized” may need to be revised in a MAC setting, as there
may be more than two “polarized MACs”. Indeed, for a 2-
user binary input MAC, by applying Arikan’s construction to
each user’s input separately, [14] shows that n independent
uses of a 2-user MAC are converted into n successive uses of
five possible “extremal 2-user MACs”. These 2-user extremal
MACs are: (i) each user sees a pure noise channel, (ii) one
of the user sees a pure noisy channel and the other sees a
noiseless channel, (iii) both users see a noiseless channel,
(iv) a pure contention channel: a channel whose uniform rate
region is the triangle with vertices (0,0), (0,1), (1,0). Note
that for this channel, if any of the two users communicates at
zero rate, the other user sees a noiseless channel. Moreover
[14] shows that the uniform sum rate of the original MAC
is preserved during the polarization process, and that the
polarization to the extremal MACs occurs fast enough, so as to
ensure the construction of a polar code with vanishing block
error probability, achieving uniform sum rate on binary inputs
2-user MACs.

In contrast to [14], here we investigate the polarization of
the MAC for an arbitrary number of users. In the two user
case, the extremal MACs are not just MACs for which each
users sees either a noiseless or pure noise channel, as there is
also the pure contention channel. However, the uniform rate
region of the 2-user extremal MACs are all polyhedrons with
integer valued constraints. So, the first interesting aspect of
the polarization of the MAC with arbitrary many users is to
understand what pattern do extremal MACs follow. We will
see that the 2-user and 3-user cases can be handled in a similar
manner, whereas a new phenomenon appears when the number
of users reaches 4, and the extremal MACs are no longer
in a one to one correspondence with the polyhedrons having
integer valued constraints. To characterize the extremal MACs,
we first show how a relationship between random variables
defined in terms of mutual information falls precisely within
the independence notion of the matroid theory. This connection
is used to show that the extremal MACs are in a one to one
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correspondence with binary matroids, and are “equivalent” (in
a sense which will be defined later) to linear deterministic
MACs. This is then used to conclude the construction of a
polar code ensuring reliable communication on binary input
MACs for arbitrary values of m.

Finally, we discuss two applications resulting from the MAC
polar code construction with arbitrary many users described in
this paper. The first one is motivated by the idea of proposing
a new coding scheme for the additive white Gaussian noise
channel. By transmitting the standardized average of m binary
inputs which are uniformly distributed (taking into account
the power constraint), we transmit a random input which is
approximately Gaussian distributed when m is large (using
the central limit theorem). This is important to achieve the
highest rate on the AWGN channel, since the Gaussian input
distribution maximizes the mutual information for this chan-
nel. We can then use the polar code construction for a MAC
developed in this paper to propose a new coding scheme for
the AWGN channel. In the second application, we construct
polar codes achieving the uniform sum-rate of MACs with
q-ary inputs, where q is a power of 2, using the polar code
construction for MACs with binary inputs and a large enough
number of users. We also show how, with this extension, the
sum-capacity of any m-user MAC can be achieved.

II. POLARIZATION PROCESS FOR MACS

We consider a m-user multiple access channel with binary
input alphabets (BMAC) and arbitrary output alphabet Y . The
channel is specified by the conditional probabilities

P (y|x̄), for all y ∈ Y and x̄ = (x[1], . . . , x[m]) ∈ Fm
2 .

Let Em := {1, . . . ,m} and let X[1], . . . , X[m] be mu-
tually independent and uniformly distributed binary random
variables. Let X̄ := (X[1], . . . , X[m]). We denote by Y the
output of the MAC P when the input is X̄ . For J ⊆ Em, we
define

X[J ] := {X[i] : i ∈ J},
I[J ](P ) := I(X[J ];Y X[Jc]),

where Jc denotes the complement set of J in Em, and

I(P ) : 2Em → R
J 7→ I[J ](P ) (1)

where 2Em denotes the power set of Em and where I[∅](P ) =
0. Note that

I(P ) := {(R1, . . . , Rm) : 0 ≤
∑
i∈J

Ri ≤ I[J ](P ), ∀J ⊆ Em}

is included in the capacity region of the MAC P . We refer
to I(P ) as the uniform rate region and to I[Em](P ) as the
uniform sum rate. We now consider two independent uses of
such a MAC. We define

X̄1 := (X1[1], . . . , X1[m]), X̄2 := (X2[1], . . . , X2[m]),

where X1[i], X2[i], with i ∈ Em, are mutually independent
and uniformly distributed binary random variables. We denote

by Y1 and Y2 the respective outputs of independent uses of
the MAC P when the inputs are X̄1 and X̄2:

X̄1
P→ Y1, X̄2

P→ Y2. (2)

We define two additional binary random vectors

Ū1 := (U1[1], . . . , U1[m]), Ū2 := (U2[1], . . . , U2[m])

with mutually independent and uniformly distributed compo-
nents, and we put X̄1 and X̄2 in the following one to one
correspondence with Ū1 and Ū2:

X̄1 = Ū1 + Ū2, X̄2 = Ū2,

where the addition in the above is the modulo 2 component
wise addition.

Definition 1. Let P : Fm
2 → Y be a m-user BMAC. We define

two new m-user BMACs, P− : Fm
2 → Y2 and P+ : Fm

2 →
Y2 × Fm

2 , by

P−(y1, y2|ū1) :=
∑

ū2∈Fm2

1
2m

P (y1|ū1 + ū2)P (y2|ū2),

P+(y1, y2, ū1|ū2) :=
1

2m
P (y1|ū1 + ū2)P (y2|ū2),

for all ūi ∈ Fm
2 , yi ∈ Y , i = 1, 2.

That is, we have now two new m-user BMACs with
extended output alphabets:

Ū1
P−→ (Y1, Y2), Ū2

P+

→ (Y1, Y2, Ū1) (3)

which also defines I[J ](P−) and I[J ](P+), ∀J ⊆ Em.
This construction is the natural extension of the construction

for m = 1, 2 in [2], [14]. Here again, we are comparing two
independent uses of the same channel P (cf. (2)) with two
successive uses of the channels P− and P+ (cf. (3)). Note
that

I[J ](P−) ≤ I[J ](P ) ≤ I[J ](P+), ∀J ⊆ Em.

Definition 2. Let {Bn}n≥1 be i.i.d. uniform random variables
valued in {−,+}. Let the BMAC valued random process
{Pn, n ≥ 0} be defined by

P0 := P,

Pn := PBn
n−1, ∀n ≥ 1. (4)

A. Discussion

When m = 1, we have 2I(P ) = I(P−) + I(P+), which
implies that I(Pn) (which in this case denotes a sequence of
scalar random variables and not of functions) is a martingale.
This allows to show that I(Pn) tends to either 0 or 1, and
the extremal channels of the single-user polarization scheme
are either pure noise or noiseless channels. Moreover, in the
polarization of the single-user channel, the extremal channels
are synthesized by using a genie aided decoder. The genie
helps the decoder in providing the correct values of the
previous decisions when decoding the current channel’s input.
In the polar code construction the genie is simulated by a



decoder which decodes the bits successively on the synthetic
channels, and uses its previous decisions assuming they are
correct. As the block error probability of the genie aided and
the standalone decoder are exactly the same, it is sufficient to
study the block error probability of the genie aided decoder.
These facts then facilitates the design of a code: bits are frozen
on the very noisy channels and uncoded information bits are
sent on the almost noiseless channels, recovered then by using
a successive decision decoder at the receiver. To show that
the block error probability of this coding scheme is small,
i.e., that the error caused by the successive decision decoder
does not propagate, it is shown that the convergence to the
“good” extremal channels is fast enough. When m ≥ 2, several
new points need to be investigated. In particular, one needs to
check whether I[J ](Pn) still has a martingale property for
different J’s. Then, if the convergence of each I[J ](Pn) can
be proved, one has to examine whether the obtained limiting
MACs are also extremal MACs, along the spirit of creating
trivial channels to communicate over, as in the single-user
polarization. Finally, one needs to ensure that the convergence
of these mutual informations is taking place fast enough, so
as to ensure a block error probability that tends to zero when
successive decision decoding is used.

III. PRELIMINARY RESULTS

Summary: In Section III-A, we show that I(Pn) tends a.s.
to a matroid rank function (cf. Definition 5). We then see
in Section III-B that the extreme points of a uniform rate
region with matroidal constraints can be achieved by each
user sending uncoded or frozen bits; in particular the uniform
sum rate can be achieved by such strategies. We then show
in Section IV, that for arbitrary m, I(Pn) tends not to an
arbitrary matroid rank function but to the rank function of a
binary matroid (cf. Definition 6). This is used to show that
the convergence to the extremal MACs happens fast enough,
which then leads to the main result of this paper, Theorem
8 in Section IV. This theorem states that applying Arıkan’s
polar transform separately to each user, and using a successive
decision decoder can achieve sum rates arbitrarily close to the
uniform sum rate of a MAC, ensure block error probability
that decays roughly like 2−

√
n with block length, and operate

with computational complexity O(n log n).

A. The extremal MACs
Lemma 1. {I[J ](Pn), n ≥ 0} is a bounded super-martingale
when J  Em and a bounded martingale when J = Em.

Proof: For any J ⊆ Em, I[J ](Pn) ≤ m and

2I[J ](P ) = I(X1[J ]X2[J ];Y1Y2X1[Jc]X2[Jc])
= I(U1[J ]U2[J ];Y1Y2U1[Jc]U2[Jc])
= I(U1[J ];Y1Y2U1[Jc]U2[Jc])

+ I(U2[J ];Y1Y2U1[Jc]U2[Jc]U1[J ])
≥ I(U1[J ];Y1Y2U1[Jc])

+ I(U2[J ];Y1Y2Ū1U2[Jc])
= I[J ](P−) + I[J ](P+). (5)

If J = Em, the inequality above is an equality.
Note that the inequality in the above are only due to

the bounds on the mutual informations of the P− channel.
Because of the equality when J = Em, our construction
preserves the uniform sum rate. As a corollary of previous
Lemma, we have the following result.

Lemma 2. The process {I[J ](Pn), J ⊆ Em} converges a.s.,
i.e., for each J ⊆ Em, limn→∞ I[J ](Pn) exists a.s..

Note that for a fixed n, {I[J ](Pn), J ⊆ Em} denotes the
collection of the 2m random variables I[J ](Pn), for J ⊆ Em.
When the convergence takes place (this is an a.s. event), let
us define

I∞[J ] := lim
n→∞

I[J ](Pn)

and I∞ to be the function J 7→ I∞[J ].
From previous theorem, I∞[J ] is a random variable valued

in [0, |J |]. We will now further characterize these random
variables.

The following Lemma is proved in [2].

Lemma 3. For any ε > 0, there exists δ > 0 such that
I(A2;B1B2A1)− I(A2;B2) < δ implies

I(A2;B2) ∈ [0, ε) ∪ (1− ε, 1],

whenever (A1, A2, B1, B2) are random variables valued in
F2 × F2 × B × B, with B any set, and

PA1A2B1B2(a1, a2, b1, b2) =
1
4
Q(b1|a1 + a2)Q(b2|a2),

for any ai ∈ F2, bi ∈ B, i = 1, 2, where Q is a binary input
B-output channel.

This Lemma is used to prove the following.

Lemma 4. For any ε > 0 and any m-user BMAC P , there
exists δ > 0, such that for any J ⊆ Em, if I[J ](P+) −
I[J ](P ) < δ, we have

I[J ](P )− I[J \ i](P ) ∈ [0, ε) ∪ (1− ε, 1], ∀i ∈ J,

where I[∅](P ) = 0.

Proof: Let i ∈ J . Note that

I[J ](P+)− I[J ](P )
= I(U2[J ];Y1Y2Ū1U2[Jc])− I(U2[J ];Y2U2[Jc])
= I(U2[J ];Y1Ū1|Y2U2[Jc])
≥ I(U2[i];Y1U1[i]U1[Jc]|Y2U2[Jc])
= I(U2[i];Y1U1[Jc]Y2U2[Jc]U1[i])− I(U2[i];Y2U2[Jc])
= I(U2[i];Y1X1[Jc]Y2X2[Jc]U1[i])− I(U2[i];Y2X2[Jc]).

Using Lemma 3 with Ak = Uk[i], Bk = YkXk[Jc], k = 1, 2,
and

Q(y, x[Jc]|x[i]) =
1

2m−1

∑
x[j]∈F2,j /∈Jc∪{i}

P (y|x̄),



we conclude that we can take δ small enough, so that
I[J ](P+)−I[J ](P ) < δ implies I(U2[i];Y2X2[Jc]) ∈ [0, ε)∪
(1− ε, 1]. Moreover, we have

I[J ](P ) = I[J \ i](P ) + I(U2[i];Y2X2[Jc]).

Lemma 5. With probability one, I∞[J ]− I∞[J \ i] ∈ {0, 1},
∀J ⊆ Em, i ∈ J , where I∞[∅] := 0.

Proof: From Lemma 2, we have that I[J ](Pn) converges
a.s., hence limn→∞ |I[J ](Pn+1)− I[J ](Pn)| = 0 a.s. More-
over, by definition of Pn, |I[J ](Pn+1) − I[J ](Pn)| is equal
to I[J ](P+

n ) − I[J ](Pn) w.p. half and I[J ](Pn) − I[J ](P−n )
w.p. half. Hence, from (5), E|I[J ](Pn+1) − I[J ](Pn)| ≥
1
2 (I[J ](P+

n ) − I[J ](Pn)). But |I[J ](Pn+1) − I[J ](Pn)| is
bounded by m, hence limn→∞ E|I[J ](Pn+1)−I[J ](Pn)| = 0
and limn→∞ I[J ](P+

n )− I[J ](Pn) = 0. Finally, we conclude
using Lemma 4.

Note that Lemma 5 implies in particular that {I∞[J ], J ⊆
Em} is a.s. a discrete random vector.

Definition 3. We denote by Am the support of {I∞[J ], J ⊆
Em} (when the convergence takes place, i.e., a.s.). This is a
subset of {0, . . . ,m}2m .

We have already seen that not every element in
{0, . . . ,m}2m can belong to Am. We will now further char-
acterize the set Am.

Definition 4. A polymatroid is a set Em, called a ground set,
equipped with a function f : 2m → R (where 2m denotes the
power set of Em), called a rank function, which satisfies

f(∅) = 0,
f [J ] ≤ f [K], ∀J ⊆ K ⊆ Em,

f [J ∪K] + f [J ∩K] ≤ f [J ] + f [K], ∀J,K ⊆ Em.

A proof of the following result can be found in [15].

Theorem 1. For any MAC and any distribution of the inputs
X[E], we have that ρ(S) = I(X[S];Y X[Sc]) is a rank
function on E, where we denote by Y the output of the MAC
when the input is X[E]. Hence, (E, ρ) is a polymatroid.

Therefore, any realization of I(Pn) is a rank function and
the elements of Am are the image of a polymatroid rank
function.

Definition 5. A matroid is a polymatroid whose rank function
is integer valued and satisfies f(J) ≤ |J |, ∀J ⊆ Em. We
denote by MATm the set of all matroids with ground state
Em. We use the notation rB to refer to the rank function of
a matroid B. We will sometimes identify a matroid with its
rank function image, in which case, we consider an element
of MATm as a 2m dimensional integer valued vector. We
also define a basis of a matroid by the collection of maximal
subsets of Em for which f(J) = |J |.

Using Lemma 5 and the definition of a matroid, we have
the following result.

Theorem 2. For every m ≥ 1, Am ⊆ MATm, i.e., I∞ is a
matroid rank function.

We will see that the inclusion is strict for m ≥ 4.

B. Communicating on MACs with matroidal regions

We have shown that, when n tends to infinity, the MACs
that we create with the polarization construction of Section
II are particular MACs: the mutual informations I∞[J ] are
integer valued (and satisfy the other matroid properties). A
well-known result in matroid theory (cf. Theorem 22 of [4])
says that the vertices of a polymatroid given by a rank function
f are the vectors of the following form:

xj(1) = f(A1),
xj(i) = f(Ai)− f(Ai−1), ∀2 ≤ i ≤ k
xj(i) = 0, ∀k < i ≤ m,

for some k ≤ m, j(1), j(2), . . . , j(m) distinct in Em and
Ai = {j(1), j(2), . . . , j(i)}, where the vertices strictly in the
positive orthant are given for k = m.

Therefore, we have the following corollary.

Corollary 1. The uniform rate region defined by an element
of Am has vertices on the hypercube {0, 1}m. In particular,
to communicate at a rate m-tuple which is a vertex of such a
MAC uniform rate region, each user communicates on either
a noiseless or pure noise channel.

C. Convergence Speed and Representation of Matroids

Convention: for a given m, we write the collection
{I∞[J ], J ⊆ Em} by skipping the empty set (since I∞[∅] =
0) as follows: when m = 2, we order the sequence as
(I∞[1], I∞[2], I∞[1, 2]), and when m = 3, as (I∞[1], I∞[2],
I∞[3], I∞[1, 2], I∞[1, 3], I∞[2, 3], I∞[1, 2, 3]), etc.

In this section, we show that there is a correspondence
between the extremal MACs and the linear deterministic
MACs, i.e., MACs whose outputs are linear forms of the
inputs. This correspondence has been used in [14] to establish
that the convergence to the extremal MACs for the 2-user case
is fast, namely o(2−nβ ) for any β < 1/2, which allows to
conclude that the block error probability of the code described
in [14] is small. We hence follow the same approach as in [14]
to treat the case where the number of users is arbitrary, and
proceed here to establish this correspondence. We will see
that while the case m = 3 is similar to the case m = 2,
a new difficulty is encountered for m ≥ 4. How to use this
correspondence in order to show that the the convergence to
the extremal MACs for the m-user case is fast is done in
Section IV.

Note that a property of the matroids {(0, 0, 0), (0, 1, 1),
(1, 0, 1),(1, 1, 1), (1, 1, 2)} is that we can express any of them
as the uniform rate region of a linear deterministic MAC:
(1, 0, 1) is in particular the uniform rate region of the MAC
whose output is Y = X[1], (0, 1, 1) corresponds to Y = X[2],
(1, 1, 1) to Y = X[1]+X[2] and (1, 1, 2) to Y = (X[1], X[2]).
Indeed, this is related to the fact that any matroid with a two



element ground state can be represented in the binary field.
Let us introduce the definition of binary matroids.

Definition 6. Linear matroids: let A be a k ×m matrix over
a field. Let Em be the index set of the columns in A. The
rank of J ⊆ Em is defined by the rank of the sub-matrix with
columns indexed by J .
Binary matroids: A matroid is binary if it is a linear matroid
over the binary field. We denote by BMATm the set of binary
matroids with m elements.

1) The Case m = 3: MAT3 is given by 8 unlabeled
matroids (16 labeled ones). Moreover, they are all binary
representable (there are 16 labeled binary matroids). For
example, it is clear that the deterministic MAC whose output
is X[1] + X[2] + X[3] has a uniform rate region given
by (1, 1, 1, 1, 1, 1, 1). Similarly, all matroids for m = 3
correspond to the rate region of a linear deterministic MAC.
However, one can also show that any 3-user binary MAC
with uniform rate region given by a matroid is equivalent to a
linear deterministic MAC in the following sense. A MAC with
output Y and uniform rate region given by (1, 1, 1, 1, 1, 1, 1)
must satisfy I(X[1] + X[2] + X[3];Y ) = 1, and similarly
for other matroids (with m = 3), where the linear forms of
inputs which can be recovered from the output are dictated by
the binary representation of the matroid. However, the above
claim is not quite sufficient to show that, if {I[J ](Pn), J ⊂
Em} tends to (1, 1, 1, 1, 1, 1, 1), we have along this path that
I((P [1,2,3])n) tends to 1, where P [1,2,3] is the channel with
input X[1]+X[2]+X[3] and output Y . For this, one can show
a stronger version of the claim which says that if a MAC has
a uniform rate region “close to” (1, 1, 1, 1, 1, 1, 1), it must be
that I(X[1] + X[2] + X[3];Y ) is close to 1. In any case, a
similar technique as for the m = 2 case lets one show that
the convergence to the matroids in A3 must take place fast
enough.

2) The Case m = 4: We have that MAT4 contains 17
unlabeled matroids (68 labeled ones). However, there are only
16 unlabeled binary matroids with ground state 4. Hence, there
must be a matroid which does not have a binary representation.
This matroid is given by (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)
(one can easily check that this is not a binary matroid). It
is denoted U2,4 and is called the uniform matroid of rank 2
with 4 elements (for which any 2 elements set is a basis). Of
course, that this matroid is not binary, does not imply that an
hypothetic convergence to it must be slow. It means that we
will not be able to use the technique employed for the case
m = 2, 3.

Luckily, one can show that there is no MAC leading to U2,4

and the following holds.

Lemma 6. A4 ⊂ BMAT4 ( MAT4.

Hence, the m = 4 case can be treated in a similar manner
as the previous cases. We conclude this section by proving the
following result, which implies Lemma 6.

Lemma 7. U2,4 cannot be the uniform rate region of any MAC

with four users and binary inputs.

Proof: Assume that U2,4 is the uniform rate region of a
MAC. We then have

I(X[i, j];Y ) = 0, (6)
I(X[i, j];Y X[k, l]) = 2, (7)

for all i, j, k, l distinct in {1, 2, 3, 4}.
Let y0 be in the support of Y . For x ∈ F4

2, define
P(x|y0) = W (y0|x)/

∑
z∈F4

2
W (y0|z). Assume w.l.o.g. that

p0 := P(0, 0, 0, 0|y0) > 0. Then from (7), P(0, 0, ∗, ∗|y0) = 0
for any choice of ∗, ∗ which is not 0, 0 and P(0, 1, ∗, ∗|y0) = 0
for any choice of ∗, ∗ which is not 1, 1. On the other hand,
from (6), P(0, 1, 1, 1|y0) must be equal to p0. However, we
have form (7) that P(1, 0, ∗, ∗|y0) = 0 for any choice of ∗, ∗
(even for 1, 1 since we now have P(0, 1, 1, 1|y0) > 0). At the
same time, this implies that the average of P(1, 0, ∗, ∗|y0) over
∗, ∗ is zero. This brings a contradiction, since from (6), this
average must equal to p0.

Moreover, a similar argument can be used to prove a
stronger version of Lemma 7 to show that no sequence of
MACs can have a uniform rate region that converges to U2,4.

3) Arbitrary values of m: We have seen in the previous
section that for m = 2, 3, 4, the extremal MACs have uniform
rate region that are not any matroids but binary matroids. This
fact can be used to show that for m = 2, 3, 4, {I[J ](Pn), J ⊆
Em} must tend fast enough to {I∞[J ], J ⊆ Em}. The
details of this proof are provided in Section IV; in words,
by working with the linear deterministic representation of the
MACs, the problem of showing that the convergence speed
is fast in the MAC setting becomes a consequence of a
result shown in [3] for the single-user setting. We now show
that the correspondence between extremal MACs and linear
deterministic MACs holds for any value of m.

Definition 7. A matroid is BUMAC if its rank function can be
expressed as r(J) = I(X[J ];Y X[Jc]), J ⊆ Em, where X[E]
has independent and binary uniformly distributed components,
and Y is the output of a binary input MAC with input x[E].
Note that the letters BU in BUMAC refer to the binary uniform
(BU) inputs.

Theorem 3. A matroid is BUMAC if and only if it is binary.

The converse of this theorem is easily proved and the direct
part, which can be found in [1], uses the following theorem.

Theorem 4 (Tutte). A matroid is binary if and only if it has
no minor that is U2,4.

In the following theorem, we connect extremal MACs to
linear deterministic MACs.

Theorem 5. Let X[E] have independent and binary uniformly
distributed components. Let Y be the output of a MAC with
input X[E] and for which f(J) = I(X[J ];Y X[Jc]) is integer
valued, for any J ⊆ Em. Then, there exists a binary matrix
A such that

I(AX[E];Y ) = rankA = f(Em).



This theorem was originally proved using matroid theory
notations and we refer to [1] for this proof and other investi-
gations regarding the connection between matroid theory and
extremal MACs. We provide an alternate proof of this theorem
in the Appendix. One can also show a stronger version of this
theorem for MACs having a uniform rate region which is close
to a matroid, this is provided in the Theorem 6 below, whose
proof is also given in the Appendix. Note that Theorem 3
follows from Theorem 6.

Theorem 6. Let X[E] have independent and binary uniformly
distributed components. For any ε > 0, there exists γ(ε) with
the following properties:
(i) γ(ε)→ 0 as ε→ 0,

(ii) Whenever Y is the output of a MAC with input X[E]
and for which f : 2m 3 J 7→ I(X[J ];Y X[Jc]) satisfies
maxJ∈2m d(f(J),Z) < ε, there exists a binary matrix A
such that

|I(AX[E];Y )− f(Em)| < γ(ε).

Theorem 3 says that an extremal MAC must have (with
probability one) the same uniform rate region as the one of
a linear deterministic MAC, i.e., a MAC whose output is a
collection of linear forms of the inputs. However, Theorem 6,
says something stronger, namely, that from the output of an
extremal MAC, one can recover a collection of linear forms of
the inputs and essentially nothing else. In that sense, extremal
MACs are equivalent to linear deterministic MACs. This
also suggests that we could have started from the beginning
by working with the quantities I(P [J]) := I(

∑
i∈J Xi;Y )

instead of I[J ](P ) = I(X[J ];Y X[Jc]) to analyze the polar-
ization of a MAC. The second measure is the natural one to
study a MAC, since it characterizes the rate region. However,
we have just shown that it is sufficient to work with the
first measure to characterize the uniform rate regions of the
polarized MACs. Indeed, one can show that I((P [J])n) tends
either to 0 or 1 and Eren Şaşoğlu [12] has provided a direct
argument showing that these measures fully characterize the
uniform rate region of the extremal MACs. We use a similar
argument for the proof of Theorem 5 given in the Appendix.

D. Comment: Relationship between information and matroid
theories

The process of identifying which matroids can have a rank
function derived from an information theoretic measure, such
as the entropy, has been investigated in different works, cf.
[16] and references therein. In particular, the problem of char-
acterizing the entropic matroids has consequent applications
in network information theory and network coding problems
as described in [8].

Entropic matroids are defined as follows. Let E be a finite
set and X[E] = {Xi}i∈E be a random vector with each
component valued in a finite alphabet. Let h(I) := h(X[I]).

Theorem 7. h(·) is a rank function. Hence, (E, h) is a
polymatroid.

A (poly)matroid is then called entropic, if its rank function
can expressed as the entropy of a certain random vector,
as above. A proof of the previous theorem is available in
[5], [9]. The work of Han, Fujishige, Zhang and Yeung,
[7], [5], [16] has resulted in the complete characterization of
entropic matroids for |E| = 2, 3. However, the problem is
open when |E| ≥ 4. Note that in our case, where we have
been interested in characterizing BUMAC matroids instead of
entropic matroids, we have also faced a different phenomenon
when |E| ≥ 4. Other similar problems have been studied in
[10].

IV. MAIN RESULT: POLAR CODES FOR MACS

In this section, we describe our polar code construction for
the MAC and prove the main theorem of the paper.

Let n = 2l for some l ∈ Z+ and let Gn =
[

1 0
1 1

]⊗l
denote

the l-th Kronecker power of the given matrix. Let U [k]n :=
(U1[k], . . . , Un[k]) and

X[k]n = U [k]nGn, k ∈ Em.

When X[Em]n is transmitted over n independent uses of
P to receive Y n, define for any i ∈ {1, . . . , n} the channel

P(i) : Fm
2 → Yn × Fm(i−1)

2 (8)

to be the channel whose inputs and outputs are Ui[Em] →
Y nU i−1[Em].

Let n ≥ 1 and εn > 0, classify each P(i) as either
‘polarized’ or ‘not polarized’ according to the function I(P(i))
being valued within εn of Z or not. (We will choose an
appropriate sequence {εn} below. For the moment note only
that by Theorem 2, if εn were any fixed constant, the channels
P(i) are in the ‘polarized’ category except for a vanishing
fraction of indices i.) For i for which P(i) is in the polarized
category, set ri to be the integer within εn of I(P(i))[Em].
Theorem 6 let us conclude the existence of a ri ×m matrix
Ai for which H

(
AiUi[Em]

∣∣ Y nU i−1[Em]
)
< γ(εn), that is

to say the output of channel P(i) determines AiUi[Em] with
high probability2.

We now describe what we refer to as the polar encoder
and decoder for the MAC. The encoder will be specified via
the sets Bi ⊂ Em, the set of users sending data on P(i).
These will be chosen as follows: If P(i) is not polarized Bi is
empty. Otherwise, select ri linearly independent columns of
the matrix Ai, and put k in Bi if and only if the k’th column is
selected. For a user k let G[k] be the set of i for which k ∈ Bi.
For each user k and i 6∈ G[k] choose Ui[k] independently
and uniformly at random, reveal all these ‘frozen’ choices to
user k and also to the decoder. The encoder for user k will
transmit uncoded bits on channels included in G[k], on the
other channels it will transmit the frozen values.

The decoder operates by successively decoding U1[Em],
U2[Em], . . . , Un[Em]. At stage i, having already decoded

2Indeed, by Problem 4.7 in [6], with probability at least 1− γ(εn).



U i−1[Em] (assume correctly, for the moment), it is in posses-
sion of (Y n, U i−1[Em]), the output of P(i). It can thus deter-
mine AiUi[Em] with high probability. Since it knows Ui[Bc

i ],
it can determine

∑
k∈Bi

Ai[k]Ui[k], and as {Ai[k] : k ∈ Bi}
are linearly independent, it can determine Ui[Bi].

Observe that for this decoder to operate as described above,
it needs the aid of a genie which provides it with U i−1[Em]
at stage i of the decoding. Let Ûi[Em] = φi(Y n, U i−1[Em])
denote the decoding function of such a decoder. Observe
now, that if we construct an unaided decoder via Ũi[Em] =
φi(Y n, Ũ i−1[Em]) using the same decoding function of the
genie-aided decoder, the block error event for this unaided
decoder Ũn[Em] 6= Un[Em] is the same as the block error
event Ûn[Em] 6= Un[Em] of the genie aided decoder. Thus,
the block error probability of the unaided decoder Pe(n) is
equal to the block error probability of the genie aided decoder
and so can be upper bounded as

Pe(n) ≤
∑

i

Pe(P(i), AiUi)

where Pe(P(i), AiUi) is the probability of error in determining
AiUi from the output of the channel P(i). Note now, that we
have to be careful in our choice of εn: we need to take εn small
enough to ensure that nPe(P(i), AiUi) is small. We will see in
the proof of Theorem 9 that channel polarization happens so
rapidly that even with such a more stringent choice of εn the
fraction of non polarized channels vanishes with increasing n.
(Indeed, for any β < 1/2, one can choose εn = 2−nβ and still
ensure polarization.)

Since I[Em](P ) is preserved through the polarization pro-
cess (cf. the equality in (5)), we guarantee that with δn
denoting the fraction of unpolarized channels,

Sum-Rate(n) :=
1
n

m∑
k=1

|G[k]| > I[Em](P )− δn − εn,

Thus if εn → 0 is chosen so that δn → 0, the communication
system described above achieves the uniform sum rate of the
underlying channel. The question as to if εn can be chosen
so that both δn → 0 and the block error probability decays to
zero is answered in the affirmative by the theorem below.

Theorem 8. For any m ≥ 1, any binary input MAC P with
m users, and any β < 1/2, there exists an integer n0 and a
sequence of codes with polar encoders and decoders described
above such that the probability of error for a block length n
satisfies

Pe(n) ≤ 2−nβ , ∀n ≥ n0

and
lim inf

n→∞
Sum-Rate(n) ≥ I[Em](P ).

As for the polar code in the single-user setting [2], the
encoding and decoding complexity of this code is O(n log n).

Proof of Theorem 8: Fix α ∈ (β, 1/2), ε ∈ (0, 1/2) and
εn = 2−nα . Let int(x) denote the closest integer to x and

define

Dn := {i ∈{1, . . . , n} : I(P(i))[J ] ∈ Z± ε for any J,

∃Ai ∈ Fri×m
2 with ri = int(I(P(i)[Em])) and

I(AiUi[Em];Y nU [Em]i−1) > ri − εn}.

For i ∈ Dn, we have H
(
AiUi[Em]

∣∣ Y nU i−1[Em]
)
< εn,

and the output of channel P(i) determines AiUi[Em] with high
probability, namely

Pe(P(i), AiUi) ≤ εn. (9)

Therefore,

Pe(n) ≤
∑

i∈Dn

Pe(P(i), AiUi) (10)

≤ nεn = o(2−nβ ). (11)

Hence, such a choice of εn guarantees the first claim of the
Theorem. We now show that such an εn is still large enough to
maintain most of the polarized MACs active, causing no loss
in the sum-rate as stated in the second claim of the Theorem.
To this end, we need the following definition and result.

Definition 8. For a m-user BMAC P with output alphabet Y
and for S ⊆ Em, we define P [S] to be the single-user binary
input channel with output alphabet Y , obtained from P by

P [S](y|s) =
1

2m−1

∑
x[Em]∈Fm2 :

∑
i∈S

xi=s

P (y|x[Em])

for all y ∈ Y , s ∈ F2. Schematically, if P : X[Em]→ Y , we
have P [S] :

∑
i∈S Xi → Y .

Lemma 8. Let P(i) be the channel defined in (8) and let
(P(i))[S] be the corresponding single-user channel (cf. Defini-
tion 8). We have for any ε > 0, α < 1/2 and S ⊆ Em

lim
l→∞

1
n
|{i ∈ {1, . . . , n} : I((P(i))[S]) > 1− ε,

I((P(i))[S]) < 1− 2−nα}| = 0.

The proof of this lemma is given below. Let

Dn[S] := {i ∈ {1, . . . , n} : I((P(i))[S]) > 1− εn}, (12)

D̃n[S] := {i ∈ {1, . . . , n} : I((P(i))[S]) > 1− ε}. (13)

From Lemma 8, we have that

max
S∈2Em

1
n
|D̃n[S] \Dn[S]| → 0. (14)

This implies that

1
n
|D̃n \ Dn| → 0 (15)

where

D̃n := {i ∈{1, . . . , n} : I(P(i))[J ] ∈ Z± ε for any J,

∃Ai ∈ Fri×m
2 with ri = int(I(P(i)[Em])) and

I(AiUi[Em];Y nU [Em]i−1) > ri − γ(ε)}



where γ(ε) is as in Theorem 6. (The only difference between
D and D̃ is in the γ(ε) and εn in the last line.)

Since from Theorem 6

lim
l→∞

1
n
|D̃n| = 1,

we also have from (15)

lim
l→∞

1
n
|Dn| = 1.

Finally, since the polarization process preserves the sum-rate,
we conclude the proof of the Theorem.

Proof of Lemma 8: Note that

(P [S])− ≡ (P−)[S]

(P [S])+ � (P+)[S]

where ≡ means that the two transition probability distributions
are the same and where � means that they are degraded in
the sense

P1(y|x) � P2(y|x) if P1(y|x) = P2(φ(y)|x)

for some function φ. Hence, defining the Bhattacharyya pa-
rameter of a single-user channel Q with binary input and
output alphabet Y by

Z(Q) =
∑
y∈Y

√
Q(y|0)Q(y|1),

we have

Z[(P−)[S]] = Z[(P [S])−] ≤ 2Z[P [S]]

Z[(P+)[S]] ≤ Z[(P [S])+] = Z[P [S]]2

and the random process Z` = Z[(P`)[S]] satisfies

Z`+1 ≤ Z2
` if B`+1 = 1, (16)

Z`+1 ≤ 2Z` if B`+1 = 0. (17)

We then conclude by using Theorem 3 of [3], which shows
that a random process which satisfies3 (16) and (17) satisfies
for any β < 1/2

lim inf
`→∞

P(Z` ≤ 2−2β`) ≥ P(Z∞ = 0).

Hence, we have proved that

lim
l→∞

1
2l
|{i ∈ {1, . . . , 2l} : I((P(i))[S]) > 1− ε,

Z((P(i))[S]) ≥ 2−2lβ}| = 0.

To conclude the proof of the lemma, we use the fact that
for any binary input discrete memoryless channel Q, we have
I(Q) +Z(Q) > 1, hence I(Q) < 1− δ implies Z(Q) > δ.

3the conditions required in Theorem 3 of [3] are indeed weaker than what
we have here

V. CODING FOR THE AWGN CHANNEL

We can use the results of Section IV to construct capacity-
achieving codes for the AWGN channel in the following way.
Over an AWGN channel, by transmitting the standardized
average of i.i.d. binary random variables, scaled to satisfy the
power constraint, the receiver observes

Y =
2
√
p

√
m

m∑
i=1

(Xi − 1/2) + Z,

where Z is Gaussian distributed. We can view this channel as
being a m-user BMAC, (X1, . . . , Xm) → Y , and the polar
code constructed in this paper can be used to communicate
over this channel. From the central limit theorem, by taking
m arbitrarily large, the input distribution of previous scheme
is arbitrarily close to a Gaussian distribution, and hence, this
coding scheme can achieve rates arbitrarily close to the AWGN
capacity. To ensure that this scheme provides a ‘low encoding
and decoding complexity code’ for the AWGN channel, one
has to make further complexity considerations when assuming
m arbitrarily large. First, the decoder must recover a m-
dimensional binary vector over each extremal MAC and the
total (maximal) number of hypothesis is 2m. For this, the
decoder can proceed with each of the m users individually
(reducing the problem to m successive hypothesis tests), by
using the marginalized single-user channel between one user
and the output, which is an extremal channel in the single-
user sense. Also, one maximal independent set of users needs
to be identified for each extremal MAC, to know where the
information bits should be sent. There is no need to check
exponentially many sets for this purpose, since this is achieved
in at most m steps, by using a greedy algorithm that checks
the independence of a given set and increases the set by one
element at each step (starting with the empty set).

VI. DISCUSSION

We have constructed a polar code for the MAC with arbi-
trarily many users, which preserves the properties (complexity,
error probability decay) of the polar code constructions in
[2], [14]. The polarization technique brings an interesting
perspective on the MAC problem: by polarizing the MACs for
each user separately, we create a collection of extremal MACs
which are “trivial” to communicate over, both regarding how
to handle noise (noiseless or pure noise) but also regarding
how to handle interference (which is, modulo synchronization
in the code, removed). We have also shown that the extremal
MACs are in a one-to-one correspondence with the linear de-
terministic MACs, i.e., MACs whose outputs are linear forms
of the inputs. The polar code constructed in this paper is shown
to achieve only a portion of the dominant face of the MAC
region, which is however sufficient to achieve the uniform
sum rate on any binary input MAC. There are examples of
non-extremal MACs where the polar code described in this
paper can achieve rates in the entire uniform rate region, for
example, this is the case for a 2-user MAC whose output is
X1 +X2 with probability half and (X1, X2) with probability



half. In general, this may not be the case. Finally, we have
considered in this paper MACs with arbitrary many users but
binary input alphabets for each user. However, for a MAC
with m users and q-ary input alphabets, where q = 2k, we
can split each user into k virtual users with binary inputs and
use the polar code construction of this paper to achieve the
uniform sum rate. Furthermore, if an m-user q-ary input MAC
requires a certain distribution to achieve the (true) sum rate,
then, we can split each user into multiple virtual users with
binary inputs, map the input vector of these to the channel
inputs so that the uniform binary distribution on the virtual
users induces an approximation of the required distribution
(which will get better with increasing number of virtual users),
and thus achieve the sum capacity of an arbitrary MAC.

APPENDIX

In this section, we prove Theorem 5 and Theorem 6. We
first need an auxiliary lemma.

Lemma 9. Let W be a binary MAC with 2 users. Let
X[E2] with i.i.d. uniform binary components and let Y be
the output of W when X[E] is sent. If I(X[1];Y X[2]),
I(X[2];Y X[1]) and I(X[1]X[2];Y ) have specified integer
values, then I(X[1];Y ), I(X[2];Y ) and I(X[1] + X[2];Y )
have specified values in {0, 1}.

Proof: Let

I := [I(X[1];Y X[2]), I(X[2];Y X[1]), I(X[1]X[2];Y )]
J := [I(X[1];Y ), I(X[2];Y ), I(X[1] +X[2];Y )].

Note that by the polymatroid property of the mutual informa-
tion, we have

I ∈ {[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1], [1, 1, 2]}. (18)

Let y ∈ Supp(Y ) and for any x ∈ F2
2 define P(x|y) =

W (y|x)/
∑

z∈F2
2
W (y|z) (recall that W is the MAC with

inputs X[1], X[2] and output Y ). Assume w.l.o.g. that p0 :=
P(0, 0|y) > 0.
• If I = [0, 0, 0] we clearly must have J = [0, 0, 0].
• If I = [?, 1, 1], we have I(X[2];Y X[1]) = 1 and we can

determine X[2] by observing X[1] and Y , which implies

P(01|y) = 0.

Moreover, since I(X[1];Y ) = I(X[1]X[2];Y ) −
I(X[2];Y X[1]) = 0, i.e., X[1] is independent of Y , we
must have that

∑
x[2] P(x[1]x[2]|y) is uniform, and hence,

P(00|y) = 1/2, P(10|y) + P(11|y) = 1/2.

Now, if ? = 1, by a symmetric argument as before,
we must have P(11|y) = 1/2 and hence the input
pairs 00 and 11 have each probability half (a similar
situation occurs when assuming that P(x|y) > 0 for
x 6= (0, 0)), and we can only recover X[1] + X[2] from
Y , i.e., J = [0, 0, 1]. If instead ? = 0, we then have
I(X[2];Y ) = I(X[1]X[2];Y ) − I(X[1];Y X[2]) = 1

and from a realization of Y we can determine X[2], i.e.,
P(10) = 1/2 and J = [0, 1, 0].

• If I = [1, 0, 1], by symmetry with the previous case, we
have J = [1, 0, 0].

• If I = [1, 1, 2], we can recover all inputs from Y , hence
J = [1, 1, 1].

Proof of Theorem 5: Let I[S](W ) be assigned an integer
for any S ⊆ Em. By the chain rule of the mutual information

I(X[Em];Y ) = I(X[S];Y ) + I(X[Sc];Y X[S]),

and we can determine I(X[S];Y ) for any S. Since for any
T ⊆ S

I(X[S];Y ) = I(X[T ];Y ) + I(X[S − T ];Y X[T ]),

we can also determine I(X[S];Y X[T ]) for any S, T ⊆ Em

with S ∩ T = ∅. Hence we can determine

I(X[1], X[2];Y X[S])
I(X[1];Y X[S]X[2])
I(X[2];Y X[S]X[1])

and using Lemma 9, we can determine

I(X[1] +X[2];Y X[S])

for any S ⊆ Em with {1, 2} /∈ S, hence

I(X[i] +X[j];Y )

for any i, j ∈ Em.
Assume now that we have determined I(

∑
T X[i];Y X[S])

for any T with |T | ≤ k and S ⊆ Em−T . Let T = {1, . . . , k}
and let S ⊆ {k + 2, . . . ,m}.

I(
∑
T

X[i], X[k + 1];Y X[S])

= I(X[k + 1];Y X[S]) + I(
∑
T

X[i];Y X[S]X[k + 1]),

in particular, we can determine

I(X[k + 1];Y
∑
T

X[i], X[S])

= I(
∑
T

X[i], X[k + 1];Y X[S])

− I(
∑
T

X[i];Y X[S])

and

I(
∑
T

X[i], X[k + 1];Y X[S])

I(
∑
T

X[i];Y X[S]X[k + 1])

I(X[k + 1];Y
∑
T

X[i], X[S])



and using Lemma 9, we can determine

I(
∑
T

X[i] +X[k + 1];Y X[S])

hence

I(
∑
T

X[i];Y )

for any T ⊆ Em with |T | = k + 1. Hence, inducting this
argument, we can determine I(

∑
T X[i];Y ) for any T ⊆ Em.

Note that the values of these mutual informations must
be consistent, for example, if I(X[1] + X[2];Y ) = 1 and
I(X[1]+X[3];Y ) = 1, we must have I(X[2]+X[3];Y ) = 1.
Hence, the T ’s for which I(

∑
T X[i];Y ) is assigned 1 must

be in agreement with these linear relationships, which can be
compactly expressed as I(AX[Em];Y ) = rank(A) for some
binary matrix A. Finally, one can check directly (or by using
Theorem 2) that rank(A) = I(X[Em];Y ).

In order to prove the “approximative” version of Theorem
5, i.e., Theorem 6, we need the following lemma which is
a corollary of Lemma 33 in [14]. The proof of Theorem 6
follows then from Lemma 10 and the proof of Theorem 5.

Lemma 10. Let W be a binary MAC with 2 users. Let X[E2]
with i.i.d. uniform binary components and let Y be the output
of W when X[E] is sent. If I(X[1];Y X[2]), I(X[2];Y X[1])
and I(X[1]X[2];Y ) have specified integer values within ε,
then I(X[1];Y ), I(X[2];Y ) and I(X[1] + X[2];Y ) have
specified values outside (γ(ε), 1− γ(ε)) with γ(ε) ε→0→ 0.
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[13] E. Şaşoğlu, E. Telatar, E. Arıkan, Polarization for arbitrary discrete

memoryless channels, August 2009, arXiv:0908.0302v1 [cs.IT].
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