494 research outputs found

    Fast kNN Graph Construction with Locality Sensitive Hashing

    Get PDF
    Abstract. The k nearest neighbors (kNN) graph, perhaps the most popular graph in machine learning, plays an essential role for graphbased learning methods. Despite its many elegant properties, the brute force kNN graph construction method has computational complexity of O(n 2 ), which is prohibitive for large scale data sets. In this paper, based on the divide-and-conquer strategy, we propose an efficient algorithm for approximating kNN graphs, which has the time complexity of O(l(d + log n)n) only (d is the dimensionality and l is usually a small number). This is much faster than most existing fast methods. Specifically, we engage the locality sensitive hashing technique to divide items into small subsets with equal size, and then build one kNN graph on each subset using the brute force method. To enhance the approximation quality, we repeat this procedure for several times to generate multiple basic approximate graphs, and combine them to yield a high quality graph. Compared with existing methods, the proposed approach has features that are: (1) much more efficient in speed (2) applicable to generic similarity measures; (3) easy to parallelize. Finally, on three benchmark large-scale data sets, our method beats existing fast methods with obvious advantages

    An Efficient Approximate kNN Graph Method for Diffusion on Image Retrieval

    Full text link
    The application of the diffusion in many computer vision and artificial intelligence projects has been shown to give excellent improvements in performance. One of the main bottlenecks of this technique is the quadratic growth of the kNN graph size due to the high-quantity of new connections between nodes in the graph, resulting in long computation times. Several strategies have been proposed to address this, but none are effective and efficient. Our novel technique, based on LSH projections, obtains the same performance as the exact kNN graph after diffusion, but in less time (approximately 18 times faster on a dataset of a hundred thousand images). The proposed method was validated and compared with other state-of-the-art on several public image datasets, including Oxford5k, Paris6k, and Oxford105k

    Kernelized Hashcode Representations for Relation Extraction

    Full text link
    Kernel methods have produced state-of-the-art results for a number of NLP tasks such as relation extraction, but suffer from poor scalability due to the high cost of computing kernel similarities between natural language structures. A recently proposed technique, kernelized locality-sensitive hashing (KLSH), can significantly reduce the computational cost, but is only applicable to classifiers operating on kNN graphs. Here we propose to use random subspaces of KLSH codes for efficiently constructing an explicit representation of NLP structures suitable for general classification methods. Further, we propose an approach for optimizing the KLSH model for classification problems by maximizing an approximation of mutual information between the KLSH codes (feature vectors) and the class labels. We evaluate the proposed approach on biomedical relation extraction datasets, and observe significant and robust improvements in accuracy w.r.t. state-of-the-art classifiers, along with drastic (orders-of-magnitude) speedup compared to conventional kernel methods.Comment: To appear in the proceedings of conference, AAAI-1

    Scalable Feature Selection Using ReliefF Aided by Locality-Sensitive Hashing

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Feature selection algorithms, such as ReliefF, are very important for processing high-dimensionality data sets. However, widespread use of popular and effective such algorithms is limited by their computational cost. We describe an adaptation of the ReliefF algorithm that simplifies the costliest of its step by approximating the nearest neighbor graph using locality-sensitive hashing (LSH). The resulting ReliefF-LSH algorithm can process data sets that are too large for the original ReliefF, a capability further enhanced by distributed implementation in Apache Spark. Furthermore, ReliefF-LSH obtains better results and is more generally applicable than currently available alternatives to the original ReliefF, as it can handle regression and multiclass data sets. The fact that it does not require any additional hyperparameters with respect to ReliefF also avoids costly tuning. A set of experiments demonstrates the validity of this new approach and confirms its good scalability.This study has been supported in part by the Spanish Ministerio de Economía y Competitividad (projects PID2019-109238GB-C2 and TIN 2015-65069-C2-1-R and 2-R), partially funded by FEDER funds of the EU and by the Xunta de Galicia (projects ED431C 2018/34 and Centro Singular de Investigación de Galicia, accreditation 2016-2019). The authors wish to thank the Fundación Pública Galega Centro Tecnolóxico de Supercomputación de Galicia (CESGA) for the use of their computing resources. Funding for open access charge: Universidade da Coruña/CISUGXunta de Galicia; ED431C 2018/3

    A Comparison of Blocking Methods for Record Linkage

    Full text link
    Record linkage seeks to merge databases and to remove duplicates when unique identifiers are not available. Most approaches use blocking techniques to reduce the computational complexity associated with record linkage. We review traditional blocking techniques, which typically partition the records according to a set of field attributes, and consider two variants of a method known as locality sensitive hashing, sometimes referred to as "private blocking." We compare these approaches in terms of their recall, reduction ratio, and computational complexity. We evaluate these methods using different synthetic datafiles and conclude with a discussion of privacy-related issues.Comment: 22 pages, 2 tables, 7 figure

    K-nearest Neighbor Search by Random Projection Forests

    Full text link
    K-nearest neighbor (kNN) search has wide applications in many areas, including data mining, machine learning, statistics and many applied domains. Inspired by the success of ensemble methods and the flexibility of tree-based methodology, we propose random projection forests (rpForests), for kNN search. rpForests finds kNNs by aggregating results from an ensemble of random projection trees with each constructed recursively through a series of carefully chosen random projections. rpForests achieves a remarkable accuracy in terms of fast decay in the missing rate of kNNs and that of discrepancy in the kNN distances. rpForests has a very low computational complexity. The ensemble nature of rpForests makes it easily run in parallel on multicore or clustered computers; the running time is expected to be nearly inversely proportional to the number of cores or machines. We give theoretical insights by showing the exponential decay of the probability that neighboring points would be separated by ensemble random projection trees when the ensemble size increases. Our theory can be used to refine the choice of random projections in the growth of trees, and experiments show that the effect is remarkable.Comment: 15 pages, 4 figures, 2018 IEEE Big Data Conferenc
    corecore