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Abstract. The k nearest neighbors (kNN) graph, perhaps the most
popular graph in machine learning, plays an essential role for graph-
based learning methods. Despite its many elegant properties, the brute
force kNN graph construction method has computational complexity
of O(n2), which is prohibitive for large scale data sets. In this paper,
based on the divide-and-conquer strategy, we propose an efficient algo-
rithm for approximating kNN graphs, which has the time complexity of
O(l(d + log n)n) only (d is the dimensionality and l is usually a small
number). This is much faster than most existing fast methods. Specifi-
cally, we engage the locality sensitive hashing technique to divide items
into small subsets with equal size, and then build one kNN graph on
each subset using the brute force method. To enhance the approxima-
tion quality, we repeat this procedure for several times to generate multi-
ple basic approximate graphs, and combine them to yield a high quality
graph. Compared with existing methods, the proposed approach has fea-
tures that are: (1) much more efficient in speed (2) applicable to generic
similarity measures; (3) easy to parallelize. Finally, on three benchmark
large-scale data sets, our method beats existing fast methods with obvi-
ous advantages.

Keywords: graph construction, locality sensitive hashing, graph-based
machine learning

1 Introduction

Graph-based learning methods present an important category of machine learn-
ing methods, and have been widely used in areas like image processing, computer
vision, and data mining. These methods first represent the data set by a similar-
ity graph, and then perform on this graph the traditional learning tasks, such as
clustering [25], dimensionality reduction [1], and classification [34]. As observed
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by many researchers [28, 33], the graph construction step plays an extremely im-
portant role to this kind of methods, and has attracted much attention recently.

Although various graph construction methods have been proposed to better
describing the data set [19, 9, 7], the kNN graph still presents the most popular
one in practice due to its robust performance. Given a data set, the kNN graph
is constructed by connecting each item to k items which are the most similar to
it under a given similarity measure. Despite its simplicity in concept, a direct
implementation suffers from high computational cost. Since finding the kNN for
each item needs n − 1 comparisons, it takes O(n2) time to construct the kNN
graph. Obviously, it is too slow for large scale problems. In fact, after the recent
development of fast graph-based learning methods [17, 32], the speed of the graph
construction method is becoming the bottleneck of graph-based methods.

To alleviate this problem, substantial efforts have been made to reduce the
complexity of kNN graph construction. Early works [3, 27] focused on construct-
ing exact kNN graph. However, their complexity scales exponentially with data
dimensionality. Recently, researchers switched their attention to construct ap-
proximate kNN graph and obtained encouraging results. These methods adopted
techniques such as space partition tree [6, 30], and local search [12]. A brief in-
troduction to these methods can be seen in the next section.

Following the research direction, in this work, we propose a novel approximate
kNN graph construction method which leads to significantly fast speed with high
accuracy. Its basic idea is to divide the whole data set into small groups, and
finds each item’s kNN within the group it belongs to. Since the size of a group
is much smaller than the size of the whole data set, the cost for finding the
approximate kNN is much lower. To make this method work well, the key is
to divide the data set in such a way that: (1) The pairwise similarity between
items should be preserved such that similar items remain in the same group;
(2) The group size should be kept as small as possible. We propose to group
similar items by adopting locality sensitive hashing (LSH) [13], which enjoys a
rigorous theoretical performance guarantee even in the worst case [18]. Further,
we design a simple method to take control of the group size. As groups have no
overlapping, the constructed graph is a union of multiple isolated small graphs.
To improve the approximation quality, we repeat the division for several times to
generate multiple basic approximate graphs. Finally, we combine them to yield
a graph with high accuracy.

Compared with existing methods, we emphasize that the proposed method
enjoys the following appealing advantages:

1. Fast and accurate. Our method has the time complexity of O(l(d+log n)n) (d
is the dimensionality and l is usually a small number). This is much faster
than most existing fast methods [12, 6] (see the next section for details).
Moreover, as shown by experiments, our method can generate good approx-
imate kNN graphs by scanning a small proportion of pairwise distances. On
several benchmarks, our method beats existing fast methods with obvious
advantages.



Fast kNN Graph Construction with LSH 3

2. Applicable to generic similarity measure. Thanks to the development of LSH,
hash functions have been designed for different similarity measures, such as
lp [10], Mahalanobis distance [22], kernel similarity [21], and χ2 distance [14].
Thus, we can conveniently use them to group data items according to the
problem at hand; this presents one of the biggest advantages over the other
methods such as [6] and [30], which can only be applied in Euclidean space.

3. Easy to parallelize. Since the construction of multiple basic approximate
graphs are independent of each other, we can further speedup our method
by constructing these basic graphs simultaneously.

The rest of this paper is organized as follows: the next section briefly reviews
the existing approximation graph construction methods. Section 3 gives an in-
troduction to the LSH technique, which provides the basic tools for our method.
After that, section 4 presents a detailed description and complexity analysis of
our method, while Section 5 gives comparison experimental results to validate
the advantages of our method. Finally, we set out the conclusion in Section 7.

2 Related Work

The fast construction for kNN graph have been studied for a long time, and a
comprehensive introduction to the graph construction methods can be found in
[6]. In this section, we will briefly review several existing methods for approxi-
mate kNN graph construction, and a closely-related but different problem: the
kNN search.

Chen, Fang, and Saad [6] proposed a divide-and-conquer style algorithm for
constructing approximate kNN graph. The method recursively divides the data
points into subsets with overlapping, then constructs one kNN graph on each
small subset. The final graph is constructed by merging all the small graphs
together using overlapping parts. Empirically, the authors reported their method
had complexity of O(dn1.22). Recently, Wang et al. [30] proposed another efficient
algorithm using a similar idea. But data sets are recursively divided without
overlapping. To increase the kNN recall, it constructs multiple basic graphs by
repeating the division procedure for several times. To make good division, both
methods use principle direction to partition data set. Thus, they need to compute
O(n) principle directions, one for each internal node. Although sub-sampling and
Lanczos algorithm are adopted, it is still costly. Also, these methods can only
be applied in Euclidean space.

Dong, Moses, and Li [12] proposed a fast kNN graph construction method
based on local search. Its motivation lies in that a neighbor of a neighbor is
also likely to be a neighbor. Initializing each node with a random set of neigh-
bors, the method iteratively improves each node’s neighborhood by exploring its
neighbors’ neighborhoods. Although the paper reported that its empirical cost
was O(n1.14), there is no formal guarantee on the algorithm complexity.

kNN search is a close-related but different problem which is extensively used
in areas like information retrieval, pattern recognition. Given a query q, kNN
search aims to find out the k most similar objects in the database. Thus, the
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construction of a kNN graph can be viewed as a kNN search problem where
each data point itself is a query. Although many excellent works, such as space
partition tree [2, 26] and locality sensitive hashing (LSH) [13, 10], have been done
for performing efficient kNN search, the direct use of kNN search approach for
the graph construction results in unfavorable results [12, 30]. The differences
between the two problems lie in two aspects:

1. Since the prime concern of kNN search is to reduce the query time, these
methods typically build elaborate indexing structure in the training step.
However, there is no separated training phase for the graph construction
problem, and we can not afford the high cost for building complex indexing
structure.

2. kNN search is an inductive problem, which means we can not acquire query
points in the training phase. However, kNN graph construction is a trans-
ductive problem in which all query points are at hand. Thus, kNN graph
construction is easier in general, and we could take advantages of its char-
acteristic to design more efficient algorithm.

Recently, Goyal, Daumé and Guerra [15] proposed an approximate graph
construction method for natural language processing problem by adopting LSH
technique. Basically, it applies the method of [5] which returns k approximate
neighbors for each query in constant time by using two hash tables.

3 Locality Sensitive Hashing

Locality sensitive hashing (LSH) is an efficient technique for approximate kNN
search problem. Because it serves as a foundation to the proposed method, we
briefly introduce it as follows.

The core idea of LSH is to hash items in a similarity preserving way, i.e., it
tries to store similar items in the same buckets, while keeping dissimilar items
in different buckets. In general, LSH method for kNN search has two steps:
training and querying. In the training step, LSH first learns a hash function
h(x) = {h1(x), h2(x), . . . , hm(x) : hi(x) ∈ Z} where m is the code length. For
example, in the binary coding using linear projection, LSH adopts the hash
function of form hi(x) = sgn(wT

i x + bi) ∈ {−1, 1}, where {wi, bi}i=1,...,m are
parameters to be learned. Then, LSH represents each item in the database as a
hash code by the hash mapping h(x), and constructs a hash table by hashing
each item into the bucket indexed by its code. In the querying step, LSH first
converts the query into a hash code, and then finds its approximate kNN in the
bucket indexed by the code. One attractive feature of the LSH method is that it
enjoys a rigorous theoretical performance guarantee even in the worst case [18].
In practice, it can provide constant or sub-linear search time.

Although the classic LSH method builds hashing codes by random projec-
tion, recent works focus on learning data-dependent hash functions so as to
generate more accurate and compact hash codes to accelerate the query. As
many machine learning techniques, such LSH methods can be divided into three
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main categories: supervised methods [24, 4], semi-supervised methods [29] and
unsupervised methods [31, 23, 20].

Most of LSH methods described before only work for l2 similarity measure.
To apply LSH for different similarity measure, researchers have designed different
hash functions, such as lp [10], Mahalanobis distance [22], kernel similarity [21],
and χ2 distance [14]. This provides another motivation of our method: according
to the problem at hand, we can conveniently choose from these methods to group
data items.

4 kNN Graph Construction with LSH

4.1 Problem Definition

Given a set of n items S = {x1, x2, . . . , xn} and a similarity measurement
ρ(xi, xj), the kNN graph for S is a directed graph that there is an edge from
node i to j if and only if xj is among xi’s k most similar items in S under ρ.
Here, ρ could be any similarity measurement defined on domain S. For example,
it can be cosine similarity, kernel similarity, Mahalanobis distance etc.

4.2 Algorithm

The key idea of our method is to divide the whole data set into small groups,
then find each item’s kNN within the group it belongs to. Since it is very hard to
ensure that each item and its real kNN are located in the same group, the method
only provides an approximate result. From the perspective of graph construction,
it is equivalent to say the method constructs one kNN graph on each group, and
then takes the union of all these small kNN graphs as the approximation kNN
graph.

Since the kNN search is performed within a small subset, finding one item’s
kNN needs only block-sz comparisons, where block-sz is the size of the group
it locates in. Assuming all groups are of equal size, the method’s complexity is
O(block-sz× n) instead of O(n2) for the brute-force manner.

To make the strategy work well, two conditions should be satisfied:

1. Similar items should be grouped together, which implies most of the real
kNN of an item can be found in its group. Therefore, one can expect the
resulting graph is a good approximation to the true kNN graph.

2. Since the complexity of the method is O(block-sz× n), to make the method
efficient, each group should be as small as possible (block-sz ≪ n).

Obviously, there is a contradiction between the two conditions: to make Condi-
tion 1 valid, we tend to use groups of big size which will violate Condition 2.
Thus, a balance should be made by choosing a feasible block-sz.

In this work, we explore LSH to divide the data set with the hope that similar
items will be grouped together. A straightforward way is to use LSH to hash all
items into a hash table, then construct a kNN graph for each bucket. However,
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Fig. 1. Distribution of the number of items in buckets. Experiments are performed
on Caltech256 and NUS-WIDE data sets. We use the function h(x) = {sgn(wT

i x +
bi)}i=1,...,8 to hash all items into a hash table, where {wi} are sampled from a Gaussian
distribution N(0, I) and {bi} are the median values of the projections. Since m = 8,
the hash table has 512 buckets.

typical LSH methods yield highly un-even hash table which means some buckets
contain a large number of items and some contain few items as shown in Fig 1.
The problems brought by this phenomenon are: (a) the kNN graph constructed
on a small bucket will fail the Condition 1, and suffer a poor precision; (b)
Constructing a kNN graph on a large bucket will fail the Condition 2, and suffer
a high cost because of the complexity O(block-sz2). Actually, the direct use of
LSH has been observed to result in unsatisfying performance[12, 30], which is
also verified by our experiments.

We propose an efficient way to overcome the problem and obtain equal size
groups. Given the data set’s hash code matrix Y ∈ {0, 1}n×m where the ith
row yi ∈ {0, 1}m is the hash code of xi, we first project items’ hash codes onto
a random direction w ∈ ℜm, and get p = Y w. Then we sort items by their
projection values to get the sequence {xπ1 , xπ2 , . . . , xπn} with {pπ1 ≤ pπ2 . . . ≤
pπn}. Finally, we obtain n/block-sz groups {Si} with equal size of block-sz by
defining Si = {xπ(i−1)×block−sz+1

, . . . , xπi×block−sz
}. Because items in the same

bucket will have same projection values, they will remain in the same group with
high probability. We summarize the procedure described above in Algorithm 1.

Algorithm 1 generates a basic approximation to the kNN graph. However, it
is just an union of n/block-sz isolated small graphs, and may suffer from a low
accuracy. To improve it, we repeat Algorithm 1 using different hash functions for
multiple times and then combine the resulting graphs. Denoting the approximate
kNN of x found in the i-th iteration by Ni(x), we can obtain at most k × l NN
different candidates as {Ni(x)}i=1,...,l after l iterations. Obviously, by increasing
l, it will cover more and more true kNN of x. The final graph is achieved by
connecting each x to k items in {Ni(x)}i=1,...,l which are the nearest to it.



Fast kNN Graph Construction with LSH 7

Function: basic ann by lsh(X, k, m, block-sz)
begin

Y = LSH(X,m)
Project Y onto a random direction w, p = Y w
Sort items by p values, and get {xπ1 , xπ2 , . . . , xπn}
for i = 1, . . . , n/block-sz do

Si = {xπ(i−1)×block−sz+1
, . . . , xπi×block−sz} gi = brute force kNN(Si, k)

return: G =
∪
{gi}

Algorithm 1: Basic kNN Graph Construction with LSH

Algorithm: Approximate kNN Graph Construction with LSH
Input: X, k, l, m, block-sz
begin

for i = 1, . . . , l do
Gi = basic ann by lsh(X, k, m, block-sz)

Combine {G1, G2, . . . , Gl} to get G
Refine G by one step neighbor propagation
return: G

Algorithm 2: Main Algorithm

To further boost our method, we use a one-step neighbor propagation pro-
cedure which is widely used in efficient kNN graph construction methods [6, 12,
30]. It is based on the following observation: if x is similar to y and y is similar
to z, then it is likely that x is similar to z. It implies that we could improve an
item’s approximate kNN by selecting from its neighbors and the neighbors of its
neighbors. Formally, denoting the approximate kNN of x found by now as N(x),
we update it by reselecting x’s kNN from the set N(x) ∪ {∪v∈N(x)N(v)}. As we

will see in the next section, this simple local search procedure is a good com-
plementary strategy with LSH, and gives significant improvement to the final
results. The whole method is summarized in Algorithm 2.

In the proceeding of multiple basic graph constructions and neighbor prop-
agation, some pairwise distances could be computed for many times. Thus, an-
other technique to speedup the method is to store all the pairwise distances that
have been computed so far in a hash table. When requiring the distance between
two items, we first check the hash table if it has been evaluated before. However,
we do not actually adopt this technique as the hash table may be too large to
store. For example, assuming n = 1, 000, 000 and 10% of all the n2 pairwise dis-
tances have been computed, the hash table needs about 8 GB memory to store
these values.

4.3 Complexity Analysis

We briefly analyze the complexity of the proposed method as follows.
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1. Complexity for computing LSH(S,k), projecting and sorting are O(nmd),
O(nm) and O(n log n) respectively. Complexity for the construction of all gi
(1 ≤ i ≤ n/block-sz) is O(ndblock-sz). Thus, the complexity of Algorithm 1
is O(n(md+m+ dblock-sz) + n log n).

2. Combining l graphs needs O(lnk) operations.
3. Each item has at most k2 + k candidate neighbors (k neighbors and k2

neighbors of neighbor), and needs O(dk2) operations to find out the k near-
est neighbors. Thus, the complexity of neighborhood propagation step is
O(ndk2)

Summarizing the above analysis, the complexity of our algorithm is O(ln(md+
dblock-sz+ log n+ k)+ndk2). Since k, m and block-sz are small in practice, the
actual complexity is O(ln(d+ log n)).

5 Experiments

To empirically validate the effectiveness of the proposed approximate kNN graph
construction method, we provide results on several data sets. The primary goal
is to verify: (1) The proposed method is much faster than existing ones; (2) Our
method can generate good approximate graph by scanning only a small part of
the total pairwise distances; (3) For many classification tasks, an approximate
graph is enough to achieve good classification accuracy.

5.1 Experimental Setting

Data Set. We use 3 popular image data sets to evaluate the proposed method:
Caltech256, Imagenet and NUS-WIDE. Caltech256 [16] is a benchmark for ob-
ject classification, while Imagenet [11] and NUS-WIDE [8] are two real-world
web image databases. Features are extracted by the bag-of-word (BOW) model
based on SIFT descriptions. For Caltech256, we perform k-means clustering of
SIFT descriptors to form a visual vocabulary of 1024 visual words. Then, SIFT
descriptors are quantized into visual words using the nearest cluster center. BOW
features for Imagenet and NUS-WIDE are directly downloaded from websites45.
For the Imagenet database, we only adopt the first 100 categories of the training
set. We summarize the size and dimensionality of the data sets in Table 1.

Table 1. Data sets description.

Caltech256 Imagenet NUS-WIDE

Size 30607 120955 269643
Dimensionality 1024 1000 500

4 http://www.image-net.org/challenges/LSVRC/2010/download-public
5 http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Comparison Methods.We compare our method, denoted by LSH, with 3 pop-
ular approximate kNN graph construction methods: OverTree [6], MultiTree [30]
and NN-Descent [12]. We employ the direct use of LSH to construct approximate
kNN graph as the baseline method 6, denoted by DirectLSH. To examine the
effect of the one-step neighbor propagation, we will also report the results of our
algorithm without the neighbor propagation procedure, denoted by LSH–. The
setting for different methods is given as follows.

1. For LSH, LSH– and DirectLSH, we adopt a LSH coding method proposed
in [23] to divide data points. It is a nonlinear method based on spectral
decomposition of a low-rank graph matrix. To efficiently generate different
hash tables, we randomly sample 20 items as the anchor points for each
iteration. The length of the hash code is set to m = ⌈log2(n/block-sz)⌉+ 1.
For LSH and LSH–, block-sz (the maximum set size for performing brutal
force kNN) is set to 100.

2. For OverTree, the specific algorithm we use is kNN-glue, and the codes are
provided by authors 7. block-sz is set to 100.

3. For MultiTree, we randomly sample 20 points on each internal node, compute
the principal direction on the sampled set by Lanczos algorithm, then use it
to perform the projection. block-sz is set to 100.

4. For NN-Descent, there is no hyperparameter to set, and the codes of NN-
Descent are provided by authors 8.

Evaluation Criterion. To evaluate the quality of an approximate kNN graph

G′, we define the following accuracy measurement acc(G′) = |E(G′)∩E(G)|
|E(G)| , where

G is the exact kNN graph, E(·) denotes the set of the directed edges in the graph
and | · | denotes the cardinality of the set. The exact kNN graph is computed by
the brute-force method, and the time for constructing 10NN graph is shown in
Table 2.

Table 2. 10NN graph construction time for the brute-force method.

Caltech256 Imagenet NUS-WIDE

Time (sec.) 1108 17991 43696

Experiment Environment. All experiments are run on a Linux server with
two 8-core 2.66GHz CPUs and 128G RAM. Parallelization is disabled for all
method, and each method is restricted on one thread.

5.2 Experimental Results

Time versus Approximate Accuracy. We test various methods by com-
paring their time for constructing graphs with different accuracies. To generate

6 In each iteration, we use LSH to group data, then construct one kNN graph for each
bucket.

7 http://www.mcs.anl.gov/ jiechen/software.html#knn
8 http://code.google.com/p/nndes/
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different accuracy graphs, (1) For LSH, LSH–, DirectLSH and MultiTree, we use
different times of divisions (parameter l). (2) For OverTree, we vary the over-
lapping factor from [0.1 0.5]. (3) For NN-Descent, we use different sample rates.
The performance comparison is shown in Fig 2. The horizontal axis represents
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Fig. 2. Graph accuracy versus construction time for different methods on 3 data sets.
The 3 columns correspond to the results of building approximate 1NN, 10NN and 20NN
graphs respectively.

the time (in seconds) consumed for graph construction, and the vertical axis
represents the graph accuracy defined above. Each row of the figure corresponds
to one data set, and each column corresponds to a choice of k value. As the
NN-Descend method fails for small k, its performance curve is not shown for
k = 1.

From Fig 2, we can clearly see the superiority of our method. For k = 10 and
k = 20, LSH is consistently better than LSH–, and has similar performance for
k = 1, which shows the effectiveness of the neighbor propagation procedure. On
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Fig. 3. Scan rate of the proposed method with respect to different graph accuracy on
3 data sets(k = 10).

the other hand, the performance of LSH– is always better than DirectLSH, which
shows the effectiveness of the equal size splitting. In fact, the accuracy of one
basic isolated graph produced by DirectLSH is higher than that of LSH–, but it
takes DirectLSH about 2 3 time than LSH–. Thus, in the same time our method
builds more basic graphs than DirectLSH, and obtains higher accuracies.

Our method is at least 4 times faster than OverTree and NN-Descent meth-
ods on all data sets. MultiTree exhibits similar performance on Caltech256 and
Imagenet, but is dramatically slower than the proposed method on NUS-WIDE.
Furthermore, MultiTree and OverTree are only applicable for Euclidean space
with l2 norm. Compared with the brute force method, our approach generates
graphs with accuracies of 90% using at most 5% time of the brute force method
on Caltech256 and Imagenet, and using less than 10% time of the brute force
method on NUS-WIDE.
Approximate Accuracy vs. Scan Rate. Because the dominant cost of kNN
graph construction is the pairwise distance calculation, we evaluate our method
by reporting the ratio of the number of actual distances calculated to the to-
tal number of pairwise distances n(n − 1)/2. The values for graphs of different
accuracies under different data sets are shown in Fig 3. We can observe that:
(1) Our method generates good approximate kNN graphs by scanning only a
small proportion of the distances, but to generate graphs with high accuracy,
the method still has to scan a large number of distances. This is because: neigh-
bors of some items are far away, and locality-sensitive hashing in nature is not
good at searching for such points. (2) Different data sets have very different
properties. For example, constructing approximate kNN graphs for Imagenet is
much easier than for NUS-WIDE.

In experiments, we found the scan rate of MultiTree is even lower than ours.
However, because of computing principle directions, in constructing a basic ap-
proximate graph, it takes about 3 times of the running time of Algorithm 1.
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Fig. 4. Variance of classification accuracy with respect to graph accuracy.

Thus, its overall speed is slow. Actually, by increasing the number of anchor
points and using kmeans to choose anchor points (see experimental setting for
LSH), our method can also achieve better scan rate. But this will make the cost
of learning the hash coding much higher, and decrease the overall performance.
Therefore, instead of pursuing the accurate but complex indexing structure as
in kNN search, a trade-off must be made between the speed and accuracy in
building the indexing structure for the graph construction problem.
Approximate Accuracy vs. Classification Accuracy. As we shown in the
previous experiments, it is relatively easy to yield a good approximate graph,
but hard to obtain graph with very high accuracy. The progress towards the real
kNN graph becomes slow when l is large. Actually, this is a common problem
shared by all approximate kNN graph construction methods. But fortunately for
machine learning tasks, like classification, what we really care is not graph accu-
racy, but the classification accuracy. As long as edges found by our method are
locally enough, we can expect the approximate graph leads to good description
to the data set, and therefore yields similar results as the true kNN graph.

In this experiment, we examine the variance of classification accuracy with
respect to the graph accuracy. First, approximate 20NN graphs with different
accuracies are generated by our method on Caltech256 and MNIST(a popular
handwritten digit data set with n = 70000, d = 784). We randomly sample
15420 nodes for Caltech256 and 700 nodes for MNIST as labeled data, and
use Gaussian random fields [33] to classify the rest nodes. The classification
accuracies are reported in Fig 4.

As observed from the results, the classification accuracy is very robust with
the graph accuracy. Actually, on Caltech256, the classification accuracy is 22.0%
on graph of accuracy 80%, while is 23.4% on exact 20NN graph; on MNIST, the
classification accuracy is 93.8% on graph of accuracy 80%, while is 93.9% on
exact 20NN graph. This implies that for many applications, it is sufficient to
construct a graph with a reasonable accuracy.
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Fig. 5. Variance of classification accuracy with respect to the parameter l for building
approximate 10NN graphs on Caltech256, Imagenet and NUS-WIDE respectively.
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Fig. 6. Effect of the size of block for building approximate 10NN graphs on Caltech256,
Imagenet and NUS-WIDE respectively.

Approximate Accuracy vs. the Number of Divisions. In the proposed
method, we use the number of divisions l to control the speed and accuracy of
graphs. In this experiment, we examine how the graph accuracy varies with the
number of divisions. For each data set, we construct k = {1, 10, 20} NN graphs
with different l, and report the accuracy of resulting graphs. The results are
shown in Fig 5.
Effect of the size of block. From the analysis in Section 4.2, we should choose
a feasible block size to make a balance between the accuracy and the cost of basic
graph. In this experiment, we examine how the block size affects the performance
of our method. We construct approximate 10NN graphs on Caltech256, Imagenet
and NUS-WIDE data sets with block-sz ∈ {50, 100, 200, 400}. For each data set,
we build graphs with different accuracies by using different number of divisions,
and report the building time and accuracies in Fig 6. As we can see, block-sz ∈
{100, 200} are consistently better than {50, 400} for all data sets. This is because
block-sz= 50 is too small to generate a good basic graph while the cost for
building basic graph with block-sz= 400 is too high. Actually, for all the previous
experiments, we have fixed block-sz to 100.

6 Conclusion

In this paper, we have proposed a fast approximate kNN graph construction
method for generic similarity measures. It engages the LSH technique to effi-
ciently partition items into small groups, and then constructs kNN graph on
each group. As shown by the experiments, our method can efficiently generate
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graphs with good accuracies by just computing a small proportion of distances,
which is sufficient for many learning tasks. In addition to its high efficiency, the
proposed algorithm is ready to be applied under many similarity measures, and
is also natural to be parallelized.
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