8 research outputs found

    Classification of Alzheimers Disease using RF Signals and Machine Learning

    Get PDF

    UV-excited SnO2SnO_{2} nanowire based electronic nose

    Get PDF
    Unsere Atemluft ist tĂ€glichen Schwankungen ausgesetzt und die Marktnachfrage nach Sensoren, die die LuftqualitĂ€t messen können, steigt rapide an. Ein großer Teil dieser Nachfrage kann mit Metall-Oxid Gas Sensoren bedient werden. Diese Art von Gassensoren hat jedoch einige Nachteile im Bezug auf Genauigkeit, LangzeitstabilitĂ€t, Leistungsaufnahme und SelektivitĂ€t. Auch fehlen großvolumige Anwendungsbeispiele auf dem Markt, die Metall-Oxid (MOX) Gassensoren einsetzen und dabei alle Systemanforderungen erfĂŒllen. Diese Arbeit stellt die neueste Entwicklung der "KArlsruhe MIkro NAse", einer im Rahmen der EU Horizon 2020 Initiative namens SMOKESENSE entwickelten elektrischen Nase, vor und vergleicht diese mit dem aktuellen Stand der Technik fĂŒr Metalloxid-Gassensoren. Es wird gezeigt, dass durch UV-Anregung der SnO2SnO_{2}-NanodrĂ€hte ein geringerer Stromverbrauch sowie eine minimierte Siloxan-Kontaminierung im Vergleich zu klassischen MOX-Sensoren erzielt wird. Zudem lĂ€sst sich mittels Aerosol-Jet-Druck eine vereinfachte und kostengĂŒnstigere Herstellung der Sensoren realisieren. Um die Massenproduktionstauglichkeit fĂŒr eine Anwendung als intelligenter Feuersensor sicherzustellen, wird der Wachstumsprozess der NanodrĂ€hte optimiert. Außerdem wird ein neuartiges chemisches FET-Ă€hnliches Sensorkonzept namens Chem-FET vorgestellt, das im Vergleich zu UV-KAMINA ein verbessertes Signal-Rausch-VerhĂ€ltnis und eine schnellere Reaktionszeit bietet. Eine ĂŒberwachte Lernmethode des Maschinellen Lernens basierend auf einer linearen Diskriminanzfunktion wird verwendet, um verschiedene ZielgerĂŒche zu klassifizieren. In einer Anwendung als Feuersensor erwiesen sich die entwickelten Sensorprototypen als konkurrenzfĂ€hig. ZusĂ€tzlich werden Möglichkeiten aufgezeigt, das Sensorprinzip als Plattform fĂŒr andere Anwendungsarten verwenden zu können. WĂ€hrend mit den vorgestellten Methoden die Leistung des Gesamtsystems optimiert werden konne, bleibt als Ausblick Verbesserungsbedarf in Bereichen, wie z. B. der Charakterisierung von GerĂŒchen und der Testmethodik fĂŒr die Anwendung in hohen StĂŒckzahlen

    Smart Gas Sensors: Materials, Technologies, Practical ‎Applications, and Use of Machine Learning – A Review

    Get PDF
    The electronic nose, popularly known as the E-nose, that combines gas sensor arrays (GSAs) with machine learning has gained a strong foothold in gas sensing technology. The E-nose designed to mimic the human olfactory system, is used for the detection and identification of various volatile compounds. The GSAs develop a unique signal fingerprint for each volatile compound to enable pattern recognition using machine learning algorithms. The inexpensive, portable and non-invasive characteristics of the E-nose system have rendered it indispensable within the gas-sensing arena. As a result, E-noses have been widely employed in several applications in the areas of the food industry, health management, disease diagnosis, water and air quality control, and toxic gas leakage detection. This paper reviews the various sensor fabrication technologies of GSAs and highlights the main operational framework of the E-nose system. The paper details vital signal pre-processing techniques of feature extraction, feature selection, in addition to machine learning algorithms such as SVM, kNN, ANN, and Random Forests for determining the type of gas and estimating its concentration in a competitive environment. The paper further explores the potential applications of E-noses for diagnosing diseases, monitoring air quality, assessing the quality of food samples and estimating concentrations of volatile organic compounds (VOCs) in air and in food samples. The review concludes with some challenges faced by E-nose, alternative ways to tackle them and proposes some recommendations as potential future work for further development and design enhancement of E-noses

    Machine learning and audio processing : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science at Massey University, Albany, Auckland, New Zealand

    Get PDF
    In this thesis, we addressed two important theoretical issues in deep neural networks and clustering, respectively. Also, we developed a new approach for polyphonic sound event detection, which is one of the most important applications in the audio processing area. The developed three novel approaches are: (i) The Large Margin Recurrent Neural Network (LMRNN), which improves the discriminative ability of original Recurrent Neural Networks by introducing a large margin term into the widely used cross-entropy loss function. The developed large margin term utilises the large margin discriminative principle as a heuristic term to navigate the convergence process during training, which fully exploits the information from data labels by considering both target category and competing categories. (ii) The Robust Multi-View Continuous Subspace Clustering (RMVCSC) approach, which performs clustering on a common view-invariant subspace learned from all views. The clustering result and the common representation subspace are simultaneously optimised by a single continuous objective function. In the objective function, a robust estimator is used to automatically clip specious inter-cluster connections while maintaining convincing intra-cluster correspondences. Thus, the developed RMVCSC can untangle heavily mixed clusters without pre-setting the number of clusters. (iii) The novel polyphonic sound event detection approach based on Relational Recurrent Neural Network (RRNN), which utilises the relational reasoning ability of RRNNs to untangle the overlapping sound events across audio recordings. Different from previous works, which mixed and packed all historical information into a single common hidden memory vector, the developed approach allows historical information to interact with each other across an audio recording, which is effective and efficient in untangling the overlapping sound events. All three approaches are tested on widely used datasets and compared with recently published works. The experimental results have demonstrated the effectiveness and efficiency of the developed approaches
    corecore