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Abstract: Objectives: Alzheimer’s disease is one of the most fastest growing and costly diseases in the world today. It affects 

the livelihood of not just patients, but those who take care of them, including care givers, nurses, and close family members. 

Current progression monitoring techniques are based on MRI and PET scans which are inconvenient for patients to use. In 

addition, more intelligent and efficient methods are needed to predict what the current stage of the disease is and strategies on 

how to slow down its progress over time. Technology or Method: In this paper, machine learning was used with S-parameter 

data obtained from 6 antennas that were placed around the head to noninvasively capture changes in the brain in the presence of 

Alzheimer’s disease pathology. Measurements were conducted for 9 different human models that varied in head sizes. The data 

was processed in several machine learning algorithms. Each algorithm’s prediction and accuracy score were generated and the 

results were compared to determine which machine learning algorithm could be used to efficiently classify different stages of 

Alzheimer’s disease. Results: Results from the study showed that overall, the logistic regression model had the best accuracy of 

98.97% and efficiency in differentiating between 4 different stages of Alzheimer’s disease. Clinical or Biological Impact: The 

results obtained here provide a transformative approach to clinics and monitoring systems where machine learning can be 

integrated with noninvasive microwave medical sensors and systems to intelligently predict the stage of Alzheimer’s disease in 

the brain.  

 
Keywords — Machine Learning, RF, Alzheimer’s disease, predictive diagnostics, Microwave medical diagnostics 

 

I. INTRODUCTION1 

LZHEIMER’S disease (AD) is quickly becoming a 

global challenge that is affecting not just elderly 

people, but their caregivers, nurses, and close family 

members close. With the current rapid increase in the 

ageing population, AD is also becoming not only a fast-

growing disease, in terms of the number of people affected, 

but an even faster, larger, and costlier burden to society that 

imposes a social and economic threat for the next 30 to 40 

years [1]. In addition, the disruption in ongoing care and 

research for AD due to ongoing pandemic is likely to 

impact and increase these numbers [2].     

 It is therefore of paramount importance to investigate, 

develop, and deploy solutions to intelligently, quickly, and 

noninvasively detect and monitor the progression of AD in 

patients. This will enable doctors and caregivers to predict 

the course of the disease and determine which treatment 

strategies are effective. Machine learning (ML) techniques 

combined with advanced sensing technology is an 

important field to provide contributions in the automatic 

prediction, monitoring, and early detection of AD 

 
1 I. M. Saied and T. Arslan are with the School of Engineering, 

University of Edinburgh, Edinburgh, EH9 3JF UK (e-mails: 
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S. Chandran is with the Centre for Clinical Brain Sciences, University 

of Edinburgh, Edinburgh EH9 3JF UK (e-mail: 
Siddharthan.Chandran@ed.ac.uk). 

 

progression. 

ML has been used in the past decade to detect certain 

biomarkers in MRI scans for AD. Many ML methods are 

currently utilised to improve the determination and 

prediction of AD. In [3], a proof-of-concept personalized 

classifier for AD dementia and mild cognitive impairment 

(MCI) patients was presented based on biomarkers 

provided from [4]–[6]. In [7], precise categorisation of 

stable MCI versus progressive MCI was achieved by 

analysing 35 cases of normal controls and 67 cases of MCI 

with a support vector machine (SVM) [7]. Segmentation 

has been emphasised in most ML processes for bio-image 

classification, whereas the retrieval of strong texture 

descriptions has generally been neglected [8]. A review of 

several SVM-based research showed that SVM is a widely 

utilised method to distinguish between AD cases and 

cognitively normal cases and between stable forms and 

progressive forms of MCI [9].  

Microwave sensing and imaging for medical diagnostics 

has developed into a lucrative area of research for several 

decades, due to its non-ionising technology and ability to 

develop devices and sensors that are portable and wearable. 

This technology has been used extensively in the detection 

of breast cancer, stroke, and most recently, 

neurodegenerative diseases [10]-[12]. Recently, ML has 

been utilised to efficiently process the captured RF signals 

from such devices and classify different diseases in the 

heart and breast using received RF signals [13],[14].  
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TABLE I 
FOUR-POLE COLE-COLE MODEL PARAMETERS ACROSS 0.2 TO 3 GHZ [19] 

Tissue Type    
(s) 

   
(s) 

   
(s) 

   
(s) 

  

Gray Matter 

-AD 

 

40.12 30.09 1.73e-

8 

0.9903 20.06 7.98e-

9 

0.9942 30.09 1.73e-

8 

0.9903 20.06 7.98e-

9 

0.9942 1.23e

-17 

Gray Matter 

-Healthy 

 

34.56 34.53 1.28e-

2 

0.7747 34.53 1.28e-

2 

0.7747 34.53 1.28e-

2 

0.7747 34.53 1.28e-

2 

0.7747 1.64e

-17 

White Matter 

-AD 

 

12.77 6.383 4.35e-

14 

0.9221 6.383 4.36e-

14 

0.9221 6.383 4.38e-

14 

0.9221 6.383 4.40e-

14 

0.9221 2.91e

-18 

White Matter 

-Healthy 

22.35 12.35 3.95e-

14 

0.6606 12.35 3.87e-

14 

0.6608 0.661 3.71e-

14 

0.6611 12.35 3.79e-

14 

0.6611 4.86e

-18 

               

 

 
Although there are no studies that investigate ML with 

RF data for AD detection, there have been recent studies 

that utilised this approach to classify stroke in the brain 

[15]-[17]. In [15] support vector machine (SVM) classifier 

is used with simulation data to detect the presence of stroke 

in the brain. While the use of SVM made the overall 

performance of the system to be more effective, the 

algorithm still needs to be validated with experimental data. 

Authors in [16] investigated 5 different ML algorithms, 

SVM, K-Nearest Neighbours (KNN), linear discriminant 

analysis (LDA), Naïve-Bayes (NB), and classification trees, 

to classify the presence of ischemic versus hemorrhagic 

stroke using experimental data. It was found that SVM and 

LDA algorithms had the best accuracy in differentiating 

ischemic and hemorrhagic stroke, while KNN had the 

fastest learning and classification time. However, while the 

study is promising, a limitation of the study is the lack of 

data that will help in training the algorithms better. Finally, 

a recent paper [17] presented a novel graph degree mutual 

information (GDMI) approach along with SVM in order to 

identify between ischemic and hemorrhagic stroke. The 

algorithm could obtain an accuracy of 88% and obtain 

results in under a minute. Although the algorithm is 

promising, it requires further validation on experimental 

data to verify its effectiveness.  

While the amount of research interest in ML for 

classifying AD is increasing over the past decade, the 

majority of the focus lies on training and predicting image 

data from MRI and PET scans, rather than on raw signals or 

datasets, such as electroencephalogram (EEG) signals or 

radiofrequency (RF) signals. Conducting MRI and PET 

scans on AD patients can be inconvenient, difficult, 

uncomfortable, and sometimes invasive. The authors have 

investigated a noninvasive technique of detecting and 

imaging AD in the brain using reflected RF signals that are 

captured by wearable antennas acting as sensors [19]. This 

paper aims to build upon the previous work by investigating 

and applying ML algorithms to the captured RF signals in 

order to predict and classify the current stage of AD. The 

study conducted in this paper, to the authors’ knowledge, 

has not been done before, and serves as a novel and 

transformative validation of ML techniques with RF data 

for medical diagnostic and predictive analytics.   

II. RF DATASET BACKGROUND 

In [18], the authors conducted an initial investigation of 

dielectric measurements of brain tissue samples obtained 

from two patients with severe AD. Dielectric properties 

were captured from tissues with and without hallmarks of 

AD (i.e. having amyloid-beta plaques and tau tangles). The 

study conducted in [18] was expanded further in [19] to 

perform dielectric measurements on a larger number of 

brain tissue samples obtained from a recently deceased 

patient with severe AD. This was to ensure that the effect of 

the sample’s decay after death on the dielectric 

measurements was minimized. Dielectric measurements 

were taken between 200 MHz and 3 GHz with an Agilent 

high-temperature dielectric probe 85070E-0020 that was 

connected to the VNA (HP8753C).    

While both [18] and [19] were limited in obtaining 

samples from a large number of people with AD, the results 

obtained were promising and consistent in the two studies. 

In particular, the relative permittivity in both the gray 

matter and white matter regions decreased by up to 20.86 

and 19.48% respectively, while the loss factor increased by 

almost 17% in the gray matter and up to 44% for the white 

matter region. This change in the dielectric properties can 

be associated with the presence of AD-related plaques and 

tangles in the brain, which have been found to affect the 

transfer of essential nutrients and water to the brain [1]. 

This collective change in the brain’s composition of 

nutrients and water, as a result of AD pathology, is what 

essentially causes the dielectric properties to change.  

Based on these measurements, a four-pole Cole-Cole 

model (  was generated in [19] as: 

 

  

                            (1) 

 

 

where  is the relaxation time,  is the exponent 

describing the dispersion regions, and  is the static 

conductivity. The magnitude of the dispersion is 

represented by , where  is the static 

permittivity when , and  is the infinite 

permittivity when . The parameters of the four-
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pole Cole-Cole model for each measurement is shown in 

Table I.  

With these dielectric properties, several computational 

models could be created that emulated the 3 main stages of 

AD in a patient as mentioned by Braak in [20] (i.e., Mild 

AD, Moderate AD, and Severe AD). RF antennas were 

placed around the head to measure the reflected signals at 

different parts of the brain. These reflected signals, known 

as reflection coefficients (or S11) is what is measured and 

recorded in the RF dataset. This study focuses on collecting 

RF signals for each AD stage for 9 head sizes in order to 

have a larger and more varied dataset of reflected RF 

signals.   

A. Development of Models for Different Stages of 

Alzheimer’s Disease 

As mentioned earlier, after obtaining dielectric 

measurements, several computational models were 

developed in CST Microwave Studio Suite. As a starting 

point, a realistic human head voxel model, initially reported 

in [21], was used and modified in CST and shown in Fig. 1. 

The head model contains intricate geometries and materials 

that were defined to represent different regions, layers, 

tissues, and ventricles that are present in the brain. This 

model also had the advantage of being able to modify 

properties of specific areas or tissues. The model proved to 

be useful in particular for defining certain areas of the brain 

that contain plaques and tangles during different stages of 

Alzheimer’s disease.  

Each stage of AD was represented by changing the 

dielectric properties of certain regions and tissues to match 

those obtained from the dielectric measurements as reported 

in [19]. Table II lists the regions of the brain that were 

affected by AD in each stage and the corresponding dataset 

that was used. Some of the cases required both the gray 

matter and white matter regions to be changed as both sets 

of tissues were found to be affected by AD as shown by 

Braak in [20]. 

Fig. 2 (a)-(d) shows the 4 cases that were used in this 

study: Normal, Mild AD, Moderate AD, and Severe AD, 

respectively. Each of these models were developed based 

on the progression and location of amyloid-beta plaques 

and tau tangles in the brain as a result of AD as presented 

by Braak in [20]. Along with the head model that was 

obtained from [21], 8 different CST voxel models were 

used in the simulations that collectively make up the CST 

Voxel Family as described in [22] - [24] and shown in Fig. 

3. Note that the Hugo model is listed as part of the Visible 

Human Model Dataset [23].  

These models represent realistic and varied head sizes 

belonging to both male and female models. In order to 

recreate the stages of AD in each of the 8 additional head 

models, first the inner brain objects were deleted from the 

voxel model. Next, the geometries and objects of the brain 

from [21] (see Fig. 1) were copied and placed inside each of 

the head model in CST. The next step requires the copied 

objects and geometries to be adjusted and modified, such 

that they occupy the inner space of the head models. This is 

done using the bending features in CST. Namely, there is a 

tool called Bend Shape that allows each shape to bend and 

attach itself to another object.  

 

 

 
               (a)            

 
(b) 

Fig. 1. (a) Realistic human head model used for simulations 

in CST, and (b) cross-sectional view of the human head 

model showing the different layers, tissues and geometries 

of the brain.  

 

 

  
                 (a)                  (b) 

  

  
                (c)                 (d) 

Fig. 2. Simulation models showing the amount of AD-

affected brain tissues (highlighted in blue) for the following 

stages of AD: (a) Normal, (b) Mild AD, (c) Moderate AD, 

and (d) Severe AD. 

 

 

 
 

 

TABLE II 
REGIONS OF HEAD MODEL USED FOR STAGES OF ALZHEIMER’S DISEASE  

Stage 
 

Brain Region Affected 
        

Dielectric Property 

Used 

Normal None 

 

None  

Mild AD 

 

 

 

Moderate AD 

 

 

 

 

Severe AD 

Medial Temporal Lobe 

Temporal Lobe 

Parietal Lobe 
 

Medial Temporal Lobe 

Temporal Lobe 
Parietal Lobe 

Frontal Lobe 

 
Medial Temporal Lobe 

Temporal Lobe 

Parietal Lobe 
Frontal Lobe 

Occipital Lobe 

AD White  

AD White and AD Gray  

AD White and AD Gray  
 

AD White 

AD White and AD Gray 
AD White and AD Gray 

AD White and AD Gray 

 
AD White 

AD White and AD Gray 

AD White and AD Gray 
AD White and AD Gray 

AD White and AD Gray 

 

 

 



 

 

 

 
        (a)                    (b)                      (c)                   (d) 

 

 
        (e)                     (f)                      (g)                   (h) 

Fig. 3. CST models of a) Donna, b) Emma, c) Gustav, d) 

Hugo, e) Laura, f) Katja, g) Tom, and h) Ana that were used 

to capture RF data. These models are from the CST Voxel 

Family in CST 2020 [24]. 

 

 
 

For this simulation, the brain object in [21] that was used 

contained 5 different layers, where each layer was made up 

of several sub-objects or geometries that correlated to 

ventricles, arteries, and other parts of the brain. Each layer 

was selected one at a time, starting with the outermost 

layer. Once the layer was selected in CST, we would select 

the Bend Shape tool and select the area where the object 

would need to be placed, which, in this case, would be the 

inner side of the now empty head models that were used.  

All the layers and objects of the copied brain model were 

able to conform to the inner shape of each of the 8 head 

models accordingly. Then, for each head model, different 

stages of AD were created using the same method used to 

alter the dielectric properties as described earlier and shown 

in Table II. There was a total of 36 simulation cases that 

were developed in CST and used in this study.   

Table III shows the number of meshcells that were used 

for the brain for each head model, and the percentage of 

meshcells that had its dielectric properties altered for each 

case accordingly. While each model would now have the 

same layers, objects, and geometries as the original model 

in Fig. 1, some of the objects either expanded or contracted 

depending on the shape of the head. This had an effect on 

the overall number of meshcells used in the CST model for 

the brain, as well as the number of cells that were changed 

in the model when altering the region’s dielectric properties 

for each stage of AD, as shown in Table III. Nonetheless, 

this provided a more realistic design approach to represent 

people with different head sizes, and therefore, different 

brain geometries. RF signals were then obtained at each 

antenna collectively stored into a single dataset for each 

simulation case. 

B. RF Data Measurement 

In order to obtain data, several RF antennas were 

designed and placed around the outer circumference of the 

head models. The antennas were ultrawideband (UWB) 

antennas, with an operating frequency range of 1.3 to 4.2 

GHz. The antenna models are shown in Fig. 4.  

A 0.1-mm-thick flexible conductive textile, Shieldex Zell 

acted as the conducting material, while the substrate is 

made of RS-PRO Viscose Wool Felt material with a 

measured relative permittivity,  and loss tangent,  of 

1.55 and 0.068, respectively. The antenna is fed with a 

microstrip line that transitions into a stepped monopole 

structure in order to enhance its performance. To 

simultaneously improve the directionality and the 

bandwidth of the antenna, three rectangular shaped patches 

of different sizes were incorporated into the design. More 

details of the antennas are provided in our previous work in 

[19] along with dimensions of the antenna.   

In RF sensing, the presence of an anomaly inside the 

head can be detected by changes in the dielectric properties 

that is reflected in the reflection coefficient of the RF waves 

received by the antenna. To obtain the RF dataset, 6 RF 

sensors were placed around each of the 9 head models and 

used to capture the reflection coefficient (S11) for each area 

of the brain as shown in Fig. 5. This was done for each case 

(i.e. Normal, Mild AD, Moderate AD, and Severe AD). S11 

data for each antenna was captured and stored as a single 

complete dataset for each case.  

There were a total of 1001 points for each antenna 

measurement. Therefore, each simulation case contained a 

total of 6006 data points, or 1001 datapoints for each of the 

6 antennas, between the frequency range of 0.01 to 5 GHz. 

Overall, the RF dataset for all the head models and their 

corresponding cases contained 216,216 data points. This 

dataset was arranged in a matrix with dimension 36  6007. 

Each row represents the simulation case. Each of the 6006 

columns represents the antenna measurement, while the last 

column contains the list of classes representing the stage of 

AD where the measurements were taken.  

 

 

TABLE III 

PERCENTAGE OF CHANGED DIELECTRIC PROPERTIES FOR HEAD MODELS  

 # of 

Meshcells 

(Brain) 

Normal Mild  

 AD 

Mod.  

AD 

Severe 

AD 

Head 

Model [21] 

 

Donna  

 

Emma  

 

Gustav  

 

Hugo 

25,465,789 
 

 

26,501,962 
 

27,467,395 

 
24,987,435 

 

26,501,962 

0% 
 

 

0% 
 

0% 

 
0% 

 

0% 

55.4% 
 

 

57.3% 
 

56.3% 

 
56.7% 

 

55.9% 

87.3% 
 

 

89.1% 
 

88.9% 

 
87.1% 

 

86.8% 

96.4% 
 

 

96.8% 
 

97.5% 

 
96.2% 

 

95.2% 
      

Laura 23,869,401 0% 58.1% 88.4% 97.3% 

      
Katja 23,004,875 0% 54.3% 89.2% 98.4% 

      

Tom 25,650,372 0% 54.7% 86.8% 95.9% 
      

Ana 24,743,018 0% 56.2% 87.0% 96.8% 
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Fig. 4. Geometry of the RF textile antenna used in the 

simulations. 

 

 
Fig. 5. Simulation model setup showing the 6 RF antennas 

placed around the realistic head model in CST. 

III. EVALUATION METHODOLOGY AND RESULTS 

A. Validation of Machine Learning Algorithms 

In order to efficiently develop and execute programs for 

machine learning, a Python environment was used in this 

study along with SciPy, which is an ecosystem of Python 

libraries such as NumPy (work with data in arrays), 

Matplotlib (create 2D plots), and Pandas (tools to organize 

and analyze data). In addition, the scikit-learn library was 

also used to provide tools to perform machine learning 

algorithms in Python and evaluate models. Specifically, the 

following ML algorithms were used: 1) Logistic Regression 

(LR) [25], 2) Linear Discriminant Analysis (LDA) [26], 3) 

K-Nearest Neighbours (KNN) [27], 4) Classification and 

Regression Trees (CART) [28], 5) Gaussian Naïve Bayes 

(GNB) [27], and 6) Support Vector Machines (SVM) [29]. 

Initially, statistical analysis was done on the RF dataset. 

The mean, standard deviation, min, max, and count for each 

antenna is shown in Table IV. The values of S11 are all 

within the same range and therefore no normalization or 

data scaling step needs to be done to finetune the data 

further. Fig. 6 shows the box plot of the dataset for each 

antenna in the different groups (i.e., Normal, Mild AD, 

Moderate AD, and Severe AD). The box plots provide a 

quick visualization on the distribution and spread of the 

datapoints for each antenna. It can be concluded from the 

plots that there is no clear linear or normal distribution of 

data for each antenna. This provides the assumption that 

ML algorithms based on Gaussian or normal distribution 

(e.g. GNB), may not work well with this RF dataset.  

To extend this visualization and analysis further, a scatter 

plot matrix was also generated and shown in Fig. 7 to show 

the relationship between each of the antennas’ data with 

each other. Two important trends can be distinguished from 

Fig. 7. 

 
TABLE IV 

STATISTICAL ANALYSIS ON RF DATASET  

 Ant. 1 Ant. 2 Ant. 3 Ant. 4 Ant. 5 Ant. 6 

Count 
 

36036 36036 36036 36036 36036 36036 

Mean  

(dB) 
 

-17.78 -6.818 -3.021 -9.598 -7.877 -3.84 

Std. Dev. 

(dB) 
 

8.50 3.41 1.39 8.29 4.89 1.41 

Min (dB) 

 

-109.4 -38.22 -20.19 -90.56 -43.99 -18.89 

Max (dB) -1.49 -1.74 -1.74 -1.11 -1.76 -0.99 

       

 

First, all antenna measurements were not found to be highly 

correlated with each other, which suggests that there are 

differences between antennas’ data that makes one 

independent from the other. 

This finding indicates the possibility that ML algorithms, 

like LR and LDA, will have a better performance for this 

dataset, whereas algorithms like KNN and SVM would 

have a poor performance from such a dataset. It should be 

noted that the KNN algorithm is based on the distance 

between features of the new observation and training data. 

As a result, this algorithm is more susceptible to data 

corruption if new observations are very similar to those in 

the training dataset. Another important finding from Fig. 7 

is that the histogram plots for each antennas’ data shows an 

exponential distribution that validates the box plots shown 

in Fig. 6, where the antennas’ data is not normally 

distributed. This important finding also provides an 

additional assumption to ML algorithms, like GNB, which 

will not perform well on the given RF dataset.  

In the next phase, 6 different machine learning 

algorithms were evaluated on the RF dataset. Later, 

statistical methods were used to estimate the accuracy of 

the models on unseen data. In addition, a more concrete 

method was needed to estimate the accuracy of the best 

model by evaluating it on data separate validation dataset. 

Specifically, some data from the RF dataset will be held 

back so that the algorithms will not get biased during its 

training phase. This method will provide a second and 

independent idea of how accurate the best model might 

actually be.  

To accomplish this, first the RF dataset was split into two 

sets; 28 complete simulation cases (approximately 78%) 

were used to train the models (e.g. training dataset) and the 

remaining 8 simulation cases (approximately 22%) were 

used as the validation dataset. This split was done randomly 

by using a random number generator in Python to randomly 

select rows of the dataset and extract its complete 

datapoints to store in the validation dataset array.  



The next step is to setup a test harness that will use k-fold 

cross validation to estimate accuracy of the models on the 

training dataset. In this step, the dataset is first shuffled 

randomly, and split into k groups. One unique group is 

taken out and held as a test dataset, while the remaining 

groups are used as a training dataset. A model is fitted on 

 
TABLE V 

Fig. 6. Box plot showing distribution of data for each antenna amongst the different test cases (Normal, Mild AD, 

Moderate AD, and Severe AD). It can be noted that the data does not appear to be normally distributed in the plots. 

Fig. 7. Scatter plot matrix showing the relationship of each antenna’s data with other antennas for all cases. The diagonal 

plots show the histogram of datapoints for each antenna. It is noted that the histograms show that the data is exponentially 

distributed for each antenna. 
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AVERAGE MEASURED ACCURACY FOR EACH MODEL  

Algorithms Accuracy (%) 
 

Std. Dev. 

LR 

 

98.965 0.001 

LDA 

 

95.5647 0.001234 

KNN 
 

58.00 0.3023 

CART 

 

78.667 0.06182 

GNB 

 

43.3333 0.2348 

SVM 21.333 0.1222 
   

 

the training set and evaluated it on the test dataset. An 

evaluation score is then generated and used to summarise 

the skill of the model. The value of k must be chosen 

carefully for the dataset. There is no formal rule, but as k 

gets larger, the difference in size between the training set 

and the resampling subsets gets smaller. As this difference 

decreases, the bias of the technique becomes smaller [30].  

Typically, given these considerations, one performs k-

fold cross-validation using k = 5 or k = 10, as these values 

have been shown empirically to yield test error rate 

estimates that suffer neither from excessively high bias nor 

from very high variance [31]. Therefore, we have used 

k=10 in our model. This will split the dataset into 10 parts, 

train on 9 and test on 1, and repeat for all combinations of 

train-test splits. The resulting accuracy metric is used to 

evaluate the models. This is a ratio of the number of 

correctly predicted instances divided by the total number of 

instances in the dataset (e.g. a value of 0.95 corresponds to 

95% accuracy). This scoring variable will then be used 

when running, building, and evaluating each model. 

The final step is to build the machine learning models for 

the RF dataset. 6 different ML algorithms were evaluated: 

LR, LDA, KNN, CART, GNB, and SVM. This list is a 

good mixture of simple linear (LR and LDA) and nonlinear 

(KNN, CART, NB and SVM) ML algorithms. A random 

number seed is reset before each run to ensure that the 

evaluation of each algorithm is performed using exactly the 

same data splits. This ensures that the results are directly 

comparable. The ML algorithms were evaluated 10 times in 

Python. After running each model on the dataset, the 

accuracy estimations were calculated and stored. After the 

10th iteration, the accuracy estimations for each model were 

averaged and shown in Table V. In addition, a box plot 

shown in Fig. 8 was generated to compare the distribution 

of the recorded accuracy estimations for each model.  

 Most of the algorithms had accuracy levels below 80%, 

except for LR and LDA. LR in particular has the highest 

estimated average accuracy score of 98.97%, while LDA 

had an estimated average accuracy of 0.9556 or 95.56%. 

This could be due to the uncorrelated relationship amongst 

the antennas’ data, which makes it easier for the LR and 

LDA algorithms to focus on independent features that differ 

between the cases. 

 

 
Fig. 8. Box plot comparing the distribution of estimated 

accuracy values for each algorithm. 

 

The poor performance of KNN, CART, GNB, and SVM 

were all alluded to by the plots in Figs. 6 and 7 that showed 

the data distribution and relationships of the RF dataset. 

Therefore, it was expected that most of these algorithms 

would not perform well with the RF dataset.  

B. Evaluating LR Algorithm with Validation Dataset 

The LR algorithm’s high accuracy provided an incentive 

to carry out further validation. Another test was conducted 

on the accuracy of the model, but this time using the 

validation dataset. By performing another test on the model 

using a validation dataset, we can eliminate factors such as 

overfitting or data leak that would make this model overly 

optimistic in its prediction. After running the model with 

the validation dataset, the final accuracy was calculated as 

100% (i.e., the LR model could accurately distinguish all 

the cases successfully). In addition, Tables VI and VII 

below show the confusion matrix and classification report 

of the 4 main classes in this dataset (Normal, Mild AD, 

Moderate AD, and Severe AD).  

It can be seen in Table VI that the true positives (e.g. 

Normal-Normal, Mild AD-Mild AD, etc., that are located in 

the diagonal of the table) far outweigh the other prediction 

errors outside the diagonal. This shows that the trained LR 

ML model performs very well in predicting and labelling 

the current stage of AD based on new RF data it sees, and 

that it rarely confuses stages of AD with one another. Table 

VI also shows that there were no misclassifications. This 

could be due to the LR’s ability to interpret key differences 

amongst the antenna measurements between the different 

cases.     

Table VII shows the classification report that lists the 

precision, recall, F1-score, and support score for each of the 

class after the validation dataset was passed to the LR 

algorithm. It was found that LR had an overall accuracy of 

100% on the validation dataset, which was expected due to 

its high performance on the training dataset. Precision is 

defined as the percent of predictions that were correct. It 

can be seen that all cases had a precision of 100%, as all the 

predictions were correct based on the data provided. Recall, 

which is the percentage of positive cases that were found by 

the ML classifier, was again 100% for all the cases.  



 
TABLE VI 

CONFUSION MATRIX FOR LR ALGORITHM  

 Normal Mild 
AD 

Moderate 
AD 

Severe 
AD 

Normal 

 

2 0 0 0 

Mild AD 
 

0 2 0 0 

Moderate AD 

 

0 0 2 0 

Severe AD 0 0 0 2 

     

 

TABLE VII 

CLASSIFICATION REPORT FOR LR ALGORITHM ON VALIDATION DATASET  

 Precision 

(%) 

Recall 

(%) 

F1 Scores 

(%) 

Support 

(#) 

Normal 1 1 1 2 
Mild AD 1 1 1 2 

Moderate AD 1 1 1 2 

Severe AD 1 1 1 2 
     

 

The F1 score is a weighted harmonic mean of precision and 

recall that determines the percent of positive predictions 

that are correct, which was 100%. Support, which is the 

actual number of points for each class in the dataset, sheds 

light on the number of datapoints for each class (i.e. stage 

of AD) that was present in the dataset.  

C. Method Limitations and Comparisons 

Table VIII shows the comparison of the LR model’s 

accuracy in this paper along with the other RF-ML models 

that were used for microwave head imaging as described in 

[15]-[17]. It can be seen that the LR model used in this 

paper has a high accuracy score, but a much lower number 

of observations compared to other studies. This is due to the 

limited number of voxel models available in CST 

Microwave Studio Suite. However, these voxel models can 

be easily modified such that they can represent more cases. 

As a result, we plan to take advantage of this in order to 

create more cases and observations. In comparison, the 

SVM and LDA methods reported in [16] had the best 

accuracy and large number of observations. However, the 

methods used in [16] were applied for stroke detection, 

which contains a larger difference in dielectric properties as 

compared to the differences found in AD. As a result, the 

captured S11 measurements would reflect changes in the 

tissues more easily, and therefore allow the ML models to 

be trained easily. All the models had fast learning and 

classification times that could train their models and 

generate results in under a minute. 

 While the high accuracy is promising for the LR model 

in this paper, the small number of observations serves as a 

limitation of our method. Having a larger number of 

observations would enhance the analysis of the proposed 

method and allow us to determine how well the LR method 

is in classifying AD. Nonetheless, the very high accuracy 

score is a promising incentive of investigating this model 

further with a larger dataset of AD patients. 

 

 

 
TABLE VIII 

COMPARISON OF LR MODEL WITH OTHER RF-ML MODELS  

Classifier Accuracy 
(%) 

Observations 

SVM [15] 

 

82.7 980 

SVM [16] 

 

99 180 

LDA [16] 
 

GDMI-SVM [17] 

 

99 
 

89 

 

180 
 

300 

LR (This paper) 98.97 36 

    

IV. CONCLUSION 

This study investigated whether stages of AD could be 

classified with ML algorithms that were trained using RF 

data that noninvasively captured measurements of dielectric 

changes in the brain. Results indicate that LR is an accurate 

and efficient ML model that can be used for RF sensing and 

classification of AD noninvasively. The results obtained 

here provides a transformative approach to AD diagnostics 

and monitoring systems where ML can be integrated with 

RF sensing systems to intelligently predict the stage of AD 

in the brain. As a next step, ML algorithms will be 

investigated and evaluated on a much larger number of 

simulation cases in order to validate its performance on a 

larger group.  

This works serves as a foundation for future work in the 

investigation of ML and DL techniques to RF imaging. 

Future research will focus on investigating DL techniques 

to classify AD traits from image data generated from the 

authors’ previous work in [19]. In addition, the authors also 

plan to utiluse ML to classify AD based on other 

physiological changes in the brain that can be detected by 

RF sensors [32], [33]. Depending on these results, the next 

and final goal is to combine the different studies together to 

develop an AI solution that will take the captured RF data 

and predict the progression rate of AD in a patient. This, in 

turn, will be used to determine the different treatment 

strategies to slow down its progression. This would lead to 

a transformative and effective solution for future systems 

and techniques for AD monitoring and treatment delivery.   
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