
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



 

 

 

Machine Learning and Audio Processing 

 

A thesis presented in partial fulfilment of the requirements for 

the degree of 

 

Doctor of Philosophy 

in 

Computer Science 

 

at Massey University, Albany, Auckland, 

New Zealand. 

 

Junbo Ma 

2019 



  



Abstract 

In this thesis, we addressed two important theoretical issues in deep neural 

networks and clustering, respectively. Also, we developed a new approach for 

polyphonic sound event detection, which is one of the most important applications 

in the audio processing area. 

The developed three novel approaches are:  

(i) The Large Margin Recurrent Neural Network (LMRNN), which improves 

the discriminative ability of original Recurrent Neural Networks by 

introducing a large margin term into the widely used cross-entropy loss 

function. The developed large margin term utilises the large margin 

discriminative principle as a heuristic term to navigate the convergence 

process during training, which fully exploits the information from data 

labels by considering both target category and competing categories. 

(ii) The Robust Multi-View Continuous Subspace Clustering (RMVCSC) 

approach, which performs clustering on a common view-invariant 

subspace learned from all views. The clustering result and the common 

representation subspace are simultaneously optimised by a single 

continuous objective function. In the objective function, a robust estimator 

is used to automatically clip specious inter-cluster connections while 

maintaining convincing intra-cluster correspondences. Thus, the developed 

RMVCSC can untangle heavily mixed clusters without pre-setting the 

number of clusters.  



(iii) The novel polyphonic sound event detection approach based on Relational 

Recurrent Neural Network (RRNN), which utilises the relational reasoning 

ability of RRNNs to untangle the overlapping sound events across audio 

recordings. Different from previous works, which mixed and packed all 

historical information into a single common hidden memory vector, the 

developed approach allows historical information to interact with each 

other across an audio recording, which is effective and efficient in 

untangling the overlapping sound events. 

All three approaches are tested on widely used datasets and compared with 

recently published works. The experimental results have demonstrated the 

effectiveness and efficiency of the developed approaches. 
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Chapter 1 Introduction 

This chapter provides an overview of this thesis. An introduction to this thesis is 

presented in Section 1.1. Three research objectives are summarised in Section 1.2. 

The major contributions of this thesis are presented in Section 1.3. At the end of 

this chapter, the organisation of this thesis is presented in Section 1.4. 

1.1 Introduction and Motivations 

In this thesis, three novel approaches are developed in the machine learning and 

audio processing areas. Specifically, the first and second approaches address two 

crucial theoretical issues in deep neural networks and clustering, which are the 

two most popular subfields in the machine learning area in recent years. The third 

approach is developed for polyphonic sound event detection, which is one of the 

most important applications in the audio processing area. In this section, a brief 

introduction about machine learning and audio processing is presented, together 

with the motivations about each developed approach. 

1.1.1 Machine Learning 

Machine learning is one of the major research areas in Artificial Intelligence (AI) 

[3]. The aim of machine learning is to build mathematical models directly from 

data samples (known as training data) without explicit instructions [4], as some 

tasks can be easily solved by humans but are hard to explicitly explain how 
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humans solve them. Machine learning fills this gap by letting computers 

automatically learn mapping models from the data samples, which can project 

data samples to their desired output (known as data labels) [5]. 

The concept of machine learning was firstly proposed by Arthur Samuel in 1959 

[6]. Back then, the research in machine learning was mainly simple statistical 

models in the computer gaming field [7]. After several decades’ development, a 

more formal definition of machine learning was proposed by Tom M. Mitchell in 

1997, which defines machine learning from the perspective of automatically 

improving the performance of mathematical models from experiences [8]. Many 

machine learning techniques have been developed in history. Some worth 

mentioning milestones are backpropagation of neural networks developed in the 

1970s [9], support vector machine developed in 1990s [10], and deep learning 

developed in 2000s [11].  

Machine learning can be categorised into three main paradigms [4]: supervised 

learning, unsupervised learning, and reinforcement learning. In supervised 

learning, each data sample is consistently paired with a given label. A mapping 

model takes the data samples as input and learns to output predictions as close as 

to their corresponding labels, which means the learning process is “supervised” by 

the ground truth labels [12]. On the opposite, data samples do not have any labels 

in unsupervised learning. The mapping model tries to unveil the underlying 

commonalities in the data samples [13]. Reinforcement learning sits in between 

supervised learning and unsupervised learning. In reinforcement learning, the data 
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samples do not have direct labels. Instead, a measurement for each action is given, 

known as a reward. The mapping model aims to find an optimal action sequence 

to maximise the cumulative reward [14].  

Besides these three main machine learning paradigms mentioned above, several 

sub-paradigms blend across them. For example, semi-supervised learning 

paradigm is considered as a sub-paradigm blending supervised and unsupervised 

learning paradigms. It leverages unlabelled data samples in the unsupervised 

context to augment the supervised learning. This is because the unlabelled data 

samples are relatively much easier to obtain than labelled data samples. Active 

learning is a special type of the semi-supervised learning, which will be further 

discussed in Section 5.2, future works. 

This thesis will focus on the first two main paradigms, supervised learning and 

unsupervised learning. 

1.1.1.1 Supervised Learning 

Supervised learning is the most widely used machine learning paradigm [4]. Many 

real-world applications rely on supervised learning paradigm, such as sound event 

detection [2][15][16][17], speech recognition [18][19][20], action recognition 

[21][22][23], and machine translation [24][25][26]. Accordingly, various 

supervised learning approaches have been developed, such as deep learning [27], 

decision tree [28], nearest neighbour [29] and support vector machine [30]. In the 

past few years, due to the increasing data volume and decreasing hardware cost, 
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deep learning has shown great advances and becomes the dominating approach in 

many applications [31].  

Deep learning is a subfield of machine learning, which utilises multiple 

processing layers to compose computational models [31]. Depending on the 

design of processing layers, many deep learning architectures have been proposed, 

such as Deep Belief Networks [73][93], Deep Auto-Encoder [74][98], Deep Stack 

Networks [76], Convolutional Neural Networks (CNNs) [75][94][97], and 

Recurrent Neural Networks [77][78][79][80]. 

Among all these deep learning architectures, Recurrent Neural Network (RNN) 

has been proved that it is effective in processing sequential data and identifying 

long-term dependencies [11][31]. This is because RNN has a specially designed 

recurrent operation inside its hidden layers, which makes them capable of passing 

historical information from previous inputs and hidden layers to their successors 

[31]. However, in multi-class classification tasks, most of the current RNNs 

employ the cross-entropy loss function [27][31], which does not fully benefit from 

the information provided by data labels. This is because the cross-entropy loss 

function only considers the target category without considering the competing 

categories during training processes [81]. To solve this problem, a Large Margin 

Recurrent Neural Network (LMRNN) is developed in Chapter 2, which employs a 

large margin discriminative principle as a heuristic term to navigate the 

convergence process during training. 
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1.1.1.2 Unsupervised Learning 

Different from supervised learning, unsupervised learning is processed without 

guidance from data labels. In real-world applications, data labels are not always 

available or easy to acquire. In some cases, the underly structures of data samples 

are required to be analysed [4]. Many applications rely on unsupervised learning, 

such as clustering [32][33][34], dimensionality reduction [35][36][37], feature 

extraction [38][39][40][41], and representation learning [42][43][44]. 

Accordingly, various unsupervised learning approaches have been developed, 

such as k-means [45], Gaussian mixture model [46][47], Auto-encoder [48][49] 

and Generative Adversarial Networks (GANs) [50][51][52]. 

Clustering is one of the basic approaches for statistical data analysis, which aims 

to group data samples into subsets according to some defined measures 

[13][45][110]. Many clustering approaches have been developed, such as k-means 

[53], k-medoids [54], hierarchical clustering [55], and density-based clustering 

[56]. 

In recent years, multi-view clustering has attracted arising attentions, as data 

samples are often in the form of multiple views in real-world applications 

[33][111][112]. A view is a distinctive perspective of the data samples. Data from 

different domains or features extracted by different feature extractors are 

considered as different views of the data samples [113][114]. Multi-view 

clustering aims to leverage complementary information among multiple views to 
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improve the clustering accuracy and generalisation ability [116]. One primary 

approach for multi-view clustering is the subspace approach, which aims to learn 

a common latent subspace from all views and perform clustering in this subspace 

[116][117]. However, most existing multi-view subspace clustering approaches 

are based on k-means or spectral clustering, in which the number of clusters k and 

the weights of different views are required to be pre-set manually [113][119]. This 

may limit the further advancement of multi-view subspace clustering. To solve 

this problem, a novel Robust Multi-View Continuous Subspace Clustering 

(RMVCSC) approach is developed in Chapter 4, which exploits the advantage of 

recent published Robust Continuous Clustering (RCC) with the multi-view 

clustering setting. 

1.1.2 Audio Processing 

Many real-world applications rely on machine learning. One of the important 

applications of machine learning is audio processing [4]. Audio processing aims 

to extract meaningful information (descriptions or explanations) from audio [57], 

such as the type of a sound event [58], the content of a speech [59] or the artist of 

music [60]. 

From a historical perspective, audio processing started growing rapidly after the 

introduction of the Compact Disc (CD) in 1982 [61]. Since then, high-quality 

audio recordings can be easily accessed. In the past few decades, with the fast 

development of the Internet, the analysis demands of audio recordings 
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significantly increased [66], which resulted in a lively audio processing research 

area. 

Audio processing covers a vast of diverse research fields, such as sound event 

detection [63], speech processing [64] and music information retrieval [62], as 

audio signals may come from various sound sources. Each of these research fields 

also has its subfields to focus. For example, speech processing can be roughly 

categorised into speech recognition and speaker recognition [65]. Speech 

recognition focuses on recognising the content of a speech, whereas speaker 

recognition focuses on recognising the speaker of a speech and does not care 

much about the content [64].  

One important practical application in audio processing is sound event detection 

[66]. Sound event detection aims to identify sound events from sound signals 

[176], which provides essential information about the context in the environment 

[156][157]. Thus, sound event detection has been widely applied into many 

context-aware tasks, such as acoustic surveillance [220][221], healthcare systems 

[222][223] and remote wildlife monitoring [224][225]. sound event detection can 

be broadly classified to monophonic sound event detection and polyphonic sound 

event detection [176][177]. Monophonic sound event detection is to recognise the 

most dominant sound events in a sound recording, whereas polyphonic sound 

event detection recognises all sound events (not only the most dominant sound 

event) in a sound recording [170][175][176]. In realistic scenarios, multiple sound 



8 Introduction 

 

events are very likely to overlap with each other in time. Thus, polyphonic sound 

event detection is more useful and challenging. 

A large number of deep learning based approaches have been developed in recent 

years, which are considered as the cutting-edge approaches for polyphonic sound 

event detection, such as Convolutional Neural Network (CNN) based approaches 

[177][178][179] and RNN based approaches [180][181][182][183]. However, a 

major drawback in these approaches is that all the historical information is mixed 

together and packed into one single hidden memory vector, which will limit the 

ability of these approaches to untangle overlapping sound events. To solve this 

problem, a novel Relational Recurrent Neural Network (RRNN) based approach 

for polyphonic sound event detection is developed in Chapter 4, called RRNN-

SED, which exploits the strength of Relational Recurrent Neural Network in long-

term temporal context extraction and relational reasoning across a polyphonic 

sound signal. 

1.1.3 Summary 

To sum up, machine learning is a booming research area, which covers a vast of 

subfields and applications. This thesis addresses two crucial theoretical issues in 

the two most popular subfields (deep learning and clustering). Also, a novel 

approach is developed for polyphonic sound event detection, which is one of the 

most widely used applications in the audio processing area. Three developed 

novel approaches are: (i) the Large Margin Recurrent Neural Network in Chapter 
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2; (ii) the Robust Multi-View Continuous Subspace Clustering approach in 

Chapter 3; (iii) the Relational Recurrent Neural Network (RRNN) based 

polyphonic sound event detection approach in Chapter 4. 

1.2 Research Objectives 

In the previous section, the motivations for the developed approaches are 

discussed. In this section, three research objectives are presented correspondingly. 

Objective 1 involves developing a novel approach to improve the discriminative 

ability of original Recurrent Neural Networks (RNNs).  

As discussed in Section 1.1.1.1, most of RNNs utilise the cross-entropy loss 

function in multi-class classification tasks. However, the information provided by 

data labels is not fully used, as the cross-entropy loss function only considers 

target category without considering competing categories during training 

processes. To solve this problem, a novel Large Margin Recurrent Neural 

Network is proposed, which improves the discriminative ability of original 

Recurrent Neural Networks by introducing a large margin term into the widely 

used cross-entropy loss function. 

Objective 2 involves developing a novel approach for multi-view subspace 

clustering, which aims to utilise comprehensive information from multiple views 

without manually pre-setting the number of clusters and the weight of each view.  
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As discussed in Section 1.1.1.2, most existing multi-view subspace clustering 

approaches are based on k-means or spectral clustering, in which the number of 

clusters k and the weights of different views are required to be pre-set manually. 

This may limit the further advancement of multi-view subspace clustering. To 

solve this problem, a Robust Multi-View Continuous Subspace Clustering 

(RMVCSC) approach is proposed, which utilises a robust estimator to 

automatically clip specious inter-cluster connections while maintaining 

convincing intra-cluster correspondences. 

Objective 3 involves developing a novel approach for polyphonic sound event 

detection, which aims to utilise the context information to untangle overlapping 

sound events. 

As discussed in Section 1.1.2, most of existing polyphonic sound event detection 

approaches rely heavily on CNNs or RNNs, in which all historical information is 

mixed together and packed into a single hidden memory vector. This may limit 

the ability to untangle overlapping sound events. To solve this problem, a novel 

Relational Recurrent Neural Network (RRNN) based polyphonic sound event 

detection approach is proposed, which utilises the relational reasoning ability of 

RRNNs to untangle the overlapping sound events across audio recordings. 
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1.3 Major Contributions 

Corresponding to the three research objectives proposed in the previous section, 

the contributions of this thesis are summarized as the following: 

(i) Developed a Large Margin Recurrent Neural Network (LMRNN), which 

utilises the large margin criteria to improve the discriminative ability of the 

original RNN.  

The proposed LMRNN improves the discriminative ability of the original RNNs 

while maintaining the capability of handling sequential data. The proposed large 

margin term is mathematically analysed and tested with two typical tasks. The 

experimental results demonstrate that the proposed LMRNN outperforms current 

RNNs, such as the specially Initialized Recurrent Neural Networks (IRNNs) and 

the bi-directional Long Short Term Memory networks in terms of accuracy and 

perplexity without increasing the depth. The details about the proposed LMRNN 

model can be found in Chapter 2 

(ii) Developed a Robust Multi-View Continuous Subspace Clustering 

(RMVCSC) approach, which can untangle heavily mixed clusters by optimising a 

single continuous objective function.  

The proposed objective function of RMVCSC uses robust estimators to 

automatically clip specious inter-cluster connections while maintaining 

convincing intra-cluster correspondences in the common representation subspace 
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learned from multiple views. RMVCSC is optimised in an alternating 

minimisation scheme, in which the clustering results and the common 

representation subspace are simultaneously optimised. Since different views can 

describe distinct perspectives of multi-view data, RMVCSC can achieve more 

accurate clustering performance than conventional approaches by exploring 

information among multi-view data. In other words, RMVCSC optimises a novel 

continuous objective function in the common representation subspace that is 

simultaneously learned across multiple views. By using robust redescending 

estimators, RMVCSC is not prone to stick into bad local minima even with 

outliers in data. This kind of robust continuous clustering approach has never been 

used for multi-view clustering before. Moreover, the convergence of the proposed 

approach is theoretically proved, and the experimental results show that the 

proposed RMVCSC can outperform several very recently proposed approaches in 

terms of clustering accuracy. The details about the proposed RMVCSC can be 

found in Chapter 3. 

(iii) Developed a novel approach for polyphonic sound event detection, which 

utilises Relational Recurrent Neural Network (RRNN) for polyphonic sound event 

detection, named RRNN-SED.  

The proposed RRNN-SED exploits the strength of RRNN in long-term temporal 

context extraction and relational reasoning across a polyphonic sound signal. 

Different from previous sound event detection approaches, which rely heavily on 

CNNs or RNNs, the proposed RRNN-SED approach can solve long-lasting and 
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overlapping problems in polyphonic sound event detection. Specifically, since the 

historical information memorised inside RRNNs is capable of interacting with 

each other across a polyphonic sound signal, the proposed RRNN-SED approach 

is effective and efficient in extracting temporal context information and reasoning 

the unique relational characteristic of the target sound events. Experimental 

results on two public datasets show that the proposed approach achieved better 

sound event detection results in terms of segment-based F-score and segment-

based error rate. The details about the proposed RRNN-SED can be found in 

Chapter 4. 

To sum up, three novel approaches are developed to correspondingly fulfil the 

three objectives proposed in Section 1.2. These three novel approaches are: (i) the 

Large Margin Recurrent Neural Networks in Chapter 2; (ii) the Robust Multi-

View Continuous Subspace Clustering approach in Chapter 3; (iii) the Relational 

Recurrent Neural Network (RRNN) based polyphonic sound event detection 

approach in Chapter 4. All these three developed novel approaches have already 

been submitted to or published on top journals. 

1.4 Organisation of the Thesis 

The rest of this thesis is organised as follows.  

Literature reviews of the most relevant fields are presented in each chapter 

corresponding to the developed three approaches.  
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Chapter 2 presents the Large Margin Recurrent Neural Network. Chapter 3 

presents the Robust Multi-View Continuous Subspace Clustering approach. 

Chapter 4 presents the Relational Recurrent Neural Network (RRNN) based 

polyphonic sound event detection approach. Chapter 5 concludes this thesis and 

discusses future works. 

 



 

Chapter 2 Large Margin Recurrent Neural 

Networks 

This chapter presents the first developed approach, named Large Margin 

Recurrent Neural Network (LMRNN), which fulfils the first research objective. 

Recurrent neural networks (RNNs) have proved to be one of the most successful 

deep neural network architectures for processing sequential data. However, in 

multi-class classification tasks, most of the current RNNs employ the cross-

entropy loss function, which does not fully benefit from the information provided 

by data labels, because it only considers target category without considering 

competing categories during training processes. To solve this problem, a Large 

Margin Recurrent Neural Network (LMRNN) is proposed in this chapter, which 

employs a large margin discriminative principle as a heuristic term to navigate the 

convergence process during training. The proposed LMRNN has improved the 

discriminative ability of the original RNN while maintaining the capability when 

generating sequential data. The proposed large margin term has been tested on 

both the original RNN and on the Long Short-Term Memory network with two 

typical tasks. The experimental results demonstrate that the proposed LMRNN 

outperforms current RNNs, such as the specially Initialized Recurrent Neural 

Network (IRNN) and the bi-directional Long Short Term Memory network in 

terms of accuracy and perplexity without increasing the depth. 
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This chapter is organised as follows. Section 2.1 introduces the deep learning 

research area and presents the motivation of the proposed LMRNN. Section 2.2 

reviews the most relevant works and presents the preliminaries. Section 2.3 

introduces the proposed LMRNN in details, together with the geometric 

interpretation and mathematic derivation. Section 2.4 presents the experiments 

and discusses experimental results. At the end of this chapter, conclusions are 

presented in Section 2.5. 

2.1 Introduction 

Deep learning has shown significant capabilities in many machine learning tasks 

in recent years [31], including image processing [67][68][92][96], video 

processing [99][100], speech recognition [69], natural language processing [70], 

information retrieval [71] and healthcare [72]. Various architectures of Deep 

Neural Networks (DNNs) have been proposed in the last few years such as Deep 

Belief Network [73][93], Deep Auto-Encoder [74][98], Convolutional Neural 

Networks (CNNs) [75][94][97], and Deep Stack Networks [76]. However, most 

of these architectures have difficulties in dealing with sequential data and 

identifying long-term dependencies embedded in sequences, mainly because the 

input and output sequences normally have to be subdivided by a fixed size of 

window in these architectures, and the input sub-sequences are assumed to be 

independent and identically distributed from each other [27]. 
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Among the prominent DNN architectures, Recurrent Neural Networks (RNNs) 

have shown its effectiveness in processing sequential data and identifying long-

term dependencies [27]. This is because RNNs have a specially designed recurrent 

operation inside hidden layers, which makes them capable of passing historical 

information from previous inputs and hidden layers to their successors [31]. Due 

to this characteristic, RNNs have been widely applied in many scenarios where 

input data are naturally in the form of sequences such as speech recognition [77], 

machine translation [78], language modelling [79] and video processing 

[80][92][95][99].  

Similar to other deep learning architectures, the cross-entropy loss function with a 

softmax layer has been widely used by RNNs in multi-class classification tasks 

[27].  A softmax layer is a fully connected layer employed as the last layer in 

DNNs to squash the output of its previous layers into probabilities of each 

category. Then, the cross-entropy loss function is used to ensure that the output 

probability of the target category is as large as possible. The combination of the 

softmax layer and the cross-entropy loss function helps DNNs to maintain their 

generative ability in characterising the joint distributions of the inputs and their 

relevant outputs [27]. 

However, the cross-entropy loss function does not fully utilise the information 

provided by data labels as it only considers the target category without taking the 

competing categories into account during training processes [81], whereas the 

ignored potentially useful information provided by the labels of competing 
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categories is crucial. This is especially significant when there are a large number 

of classification categories. For example, the target categories can be ten thousand 

or more in language modelling tasks, depending on the size of the vocabulary, in 

which proper use of all discriminative information may significantly increase the 

performance of the language models. 

In order to address this problem, a large margin penalty term was introduced into 

the cross-entropy loss function recently [82]. In this work, the authors first derived 

an upper bound of Rademacher Average for DNNs in the view of the margin 

bound and then investigated the influence of the depth to the empirical margin 

error in DNNs. From their theoretical derivation, they concluded that a large 

margin penalty term can be added into the cross-entropy loss function to reduce 

the empirical margin error of a DNN without increasing the depth of it [82]. 

Although this work provides a solid theoretical foundation to the combination of 

the penalty term and the cross-entropy loss function, the margin terms they 

proposed do not have a clear geometric intuition. Furthermore, their work focused 

exclusively on CNNs, whereas our work will focus on RNNs. 

Another work that utilised the large margin criteria was proposed in [106], which 

introduced a cosine similarity into the softmax layer and proposed a large-margin 

softmax loss function for CNNs. Different from this work, our work leaves the 

softmax layer untouched and focuses on the cross-entropy loss function and 

RNNs. Additionally, another work published recently [107] derived the 

generalisation error bounds of DNNs based on the Jacobian matrix in terms of the 
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classification margin and proposed a Jacobian regularizer based on their 

derivation. However, their work did not address the problem of the cross-entropy 

loss function. 

In this chapter, a constrained binary-optimisation sub-problem is introduced into 

the cross-entropy loss function to optimise both the target category and the 

competing categories jointly. Then, a Large Margin Recurrent Neural Network 

(LMRNN) is proposed by employing the large margin discriminative principle as 

a heuristic term to navigate the convergence process in the training procedure to 

enhance the discriminative ability of the original RNNs, while maintaining their 

capability when dealing with sequential data such as generating a sentence from a 

given context vector. The proposed model has a very clear geometric intuition, 

and experimental results show that the proposed margin term works well on both 

original RNN and Long Short-Term Memory (LSTM) network. 

The rest of this chapter is organised as follows: Section 2.2 introduces the 

research background and presents the preliminaries; Section 2.3 introduces the 

proposed LMRNN and discusses the geometric interpretation and mathematic 

derivation; Section 2.4 presents and discusses the experimental results; finally, 

Section 2.5 presents the conclusions. 
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2.2 Backgrounds and Preliminaries 

In this section, we will first review the original Recurrent Neural Networks 

(RNNs) and provide an overview of its architecture. Then, we introduce two RNN 

variations considered in our experiments. They are LSTM networks [83][102] and 

the special Initialized Recurrent Neural Networks (IRNNs) [84]. LSTM is one of 

the most widely used RNN architectures, whereas IRNN is designed to achieve 

comparable performance but consume much less computational resources than a 

complex LSTM, despite having similar architecture to the original RNN. At the 

end of this section, we will set up the preliminaries of this chapter by introducing 

the softmax layer combining with the cross-entropy loss function. 

2.2.1 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are known by a specially designed recurrent 

operation inside hidden layers, which can pass historical information from 

previous inputs and hidden layers to their successors [31]. This operation gives 

RNNs the ability to memorise the historical information inside hidden layers and 

identify long-term dependencies embedded in the sequence [27]. 

Figure 2.1 illustrates a typical RNN and its unrolling, in which x = {x0, …, xt, …} 

is the input sequence, h is the output hypothesis of the relevant input, A denotes 

the hidden cell, s is the hidden state and U, V, W are the weight matrices between 

layers. At time step t, the RNN will take the input xt and the state of previous 
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hidden layer st-1 to compute the current hypothesis ht and the current hidden 

layer’s state st with the following equations, where ϕs and ϕh are arbitrary 

activation functions: 

 

Figure 2.1 - Recurrent Neural Network (RNN) and its unrolling.  

 𝑠𝑡 = 𝜙𝑠(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1 + 𝑏) (2.1) 

 ℎ𝑡 = 𝜙ℎ(𝑉𝑠𝑡 + 𝑐) (2.2) 

Equations (2.1) and (2.2) show that the historical information is passed throughout 

the whole sequence and the output of every time step is affected by the historical 

information, which means RNNs are capable of making use of the historical 

information embedded in the sequences. Another advantage of RNNs is that the 

size of the input and output vectors are not fixed, which means that the input 

sequence x and the output sequence h can have arbitrary lengths. This flexibility 

makes RNNs a natural choice for handling sequential data with variable lengths. 

2.2.2 Long Short Term Memory Networks 

LSTM network is a variant of RNNs proposed by Hochreiter & Schmidhuber in 

1997 [83]. LSTM augments the classic RNN with a specially designed hidden unit 
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called the recurrent gate. The recurrent gate controls the scale of information to be 

remembered or forgotten by the networks and helps LSTM to overcome the 

vanishing or exploding gradient problem, which prevents the classic RNNs from 

learning very long-term dependencies in practice [85]. Subsequently, LSTM 

networks have been proved to be more effective than the classic RNNs, especially 

in the tasks that require very deep structures [78][100][101]. 

Figure 2.2 illustrates a typical LSTM structure at timestamp t. The red circles f, i 

and o denote the forget-gate, the input-gate and the output-gate respectively, and 

they are calculated with Equations (2.3), (2.4) and (2.5). The symbols W* and R* 

are the relevant weight matrices between layers. The symbol σ denotes the 

sigmoid function, which maps its input value into the interval (0, 1). Thus, these 

gates can be described as the proportion of information that can get through them. 

In other words, these gates can control what to be remembered or forgotten inside 

the sequence. The symbol c stands for the candidate value, which will renew the 

hidden states with current input xt, and it is calculated by Equation (2.6). The 

equations for the current hidden state st and the current output hypothesis ht are 

(2.7) and (2.8), respectively. 

In contrast to classical RNNs, LSTM replaces the hidden layer with a memory cell 

that can store and process historical values throughout the input sequence. The 

memory cell has an input gate, an output gate and a forget gate. The input gate 

controls how much input can affect the stored memory value; the output gate 

controls how much this stored memory value is allowed to affect the output; the 
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forget gate controls how much the stored memory value fades in each time step. 

All these three gates have a value in the range of (0, 1) and they are connected 

with the current input and the previous memory cell output. Each connection has 

its own weights that can be learnt during the training process. 

 

Figure 2.2 - A memory cell of Long Short-Term Memory (LSTM) network 

 

 𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓) (2.3) 

 𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑏𝑖) (2.4) 

 𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑅𝑜ℎ𝑡−1 + 𝑏𝑜) (2.5) 

 𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑅𝑐ℎ𝑡−1 + 𝑏𝑐) (2.6) 

 𝑠𝑡 = 𝑓𝑡𝑠𝑡−1 + 𝑖𝑡𝑐𝑡 (2.7) 

 ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑠𝑡) (2.8) 

This structure gives LSTM networks a significant property: the gradient error can 

be back-propagated all the way through the sequence [80]. In a special case, when 
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the input gate and the output gate are turned off, and the forget gate does not fade 

any memory, which means the value of input gate and output gate are set to zero 

while the value of forget gate is set to one, every memory cell constantly 

maintains the same memory state throughout the sequence. In the meantime, the 

gradient error of each memory cell also remains unchanged during the back-

propagating operation. Thus, LSTM networks have the ability to propagate the 

error backwards throughout the whole sequence and overcome the vanishing or 

exploding gradient problem [85]. 

2.2.3 Special Initialized Recurrent Neural Network (IRNN) 

Proposed by Quoc V. Le [84], IRNN has the same structure as the original RNNs; 

however, the weight matrix of the recurrent layer is initialised to an identity 

matrix with all zero biases, and the tanh activation function is replaced by a 

Rectified Linear Unit (ReLU). This means that the hidden unit will just copy the 

value of the hidden state from the previous time step, and then add the effects of 

the current input to produce the current hidden state. The ReLU units will then 

preserve all the positive values of the current hidden state and replace all the 

negative values with 0. In a special situation, when the input effects are ignored, 

all the hidden states throughout the sequence will stay the same indefinitely. 

Due to this special initialisation, IRNN has a similar expected property that 

gradient error can be back-propagated all the way through the sequence. Thus, 

IRNN has the ability to overcome the vanishing or exploding gradient problem 
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and learn extremely long-term dependencies while achieving comparable 

performance with a complex LSTM network but remains less resource 

consuming, as demonstrated in [84]. 

2.2.4 Preliminaries 

In this section, we will set up the preliminaries of this chapter by introducing the 

softmax layer combining with the cross-entropy loss function. 

In a typical multi-class classification task, the input space is usually defined as X 

= ℝd, where d stands for the dimension of the input space. The output space is 

then defined as Y = {1, …, K}, where K stands for the total number of categories. 

The joint distribution over X, Y is defined as P(X, Y), and the training set sampled 

from the distribution P(X, Y) is denoted as S = {( x(1), y(1)), …, (x(n), y(n))}, where 

xX and yY, the superscript denotes the number of the sample. The goal of this 

classification task is to learn a prediction model F from the training set S, which 

takes each xS as input and predicts the probabilities of the input x belonging to 

each category k, where kY. If P(k | x) is defined as the probability which input x 

belongs to category k, then F(x, k) = P(k | x). The final prediction decision is made 

by argmaxkP(k | x), where kY, which means we choose the category in which the 

maximum probability belongs to as the final decision of the prediction model F. 

In a deep neural network based prediction task, a softmax output layer can be used 

to properly present the outputs as probability distributions. In particular, a softmax 

layer is a fully connected layer, in which the number of nodes is the same as the 
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number of categories K. Each node will first produce a value that maps the 

outputs from previous layers into each category. Then, these values will be 

normalised by the softmax function to produce the final outputs of the softmax 

layer. More specifically, if zk is defined as the intermediate output of the softmax 

layer belonging to category k, then, the softmax function is applied to each zk to 

produce the output probabilities of each category. The softmax function is defined 

as: 

 
𝑠𝑜𝑓𝑡 𝑚𝑎𝑥𝑘(𝑥) = 𝑃(𝑘|𝑥) =

𝑒𝑥𝑝( 𝑧𝑘)

∑ 𝑒𝑥𝑝( 𝑧𝑗)𝑗∈𝑌
 , (2.9) 

where softmaxk(x) denotes the output of the softmax layer for category k taking 

sample x as input. From the definition of softmaxk(x) and P(k|x), it can be 

comprehended that softmaxk(x) = P(k|x). 

The output of the softmax layer is a vector, in which each element illustrates the 

probability of given input belonging to each corresponding category. The purpose 

of the training process is to make sure that the output probability of the target 

category illustrated by the sample label y is the largest one in this vector. This can 

be achieved by putting the vector into a loss function to evaluate it. In terms of 

DNNs, the most commonly used loss function is the cross-entropy loss function, 

which is: 

 

𝐶𝐸(𝑥, 𝑦) = − ∑ 1𝑘 𝑙𝑛 𝑃 (𝑘|𝑥)

𝐾

𝑘=1

 (2.10) 
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where 1k = 1 if k = y, and 1k = 0, otherwise. 

Equation (2.10) depicts that minimising the loss function leads to increasing the 

output probability value corresponding to the correct category as expected. 

Nonetheless, since 1k = 0 when k ≠ y, the sign function 1k enforces the cross-

entropy loss function only taking the output probability corresponding to the 

target category into account and ignoring the remaining probabilities of all other 

competing categories. It can be argued that the cross-entropy loss function 

implicitly uses the output probabilities of competing categories as the sum of all 

the outputs constantly equals to 1, when the output probability corresponding to 

the target category increases, all other outputs decrease accordingly. However, 

this is not exactly true, and we will discuss this in-depth in the next section. 

2.3 Large Margin Recurrent Neural Networks 

This section further explains the drawback of the cross-entropy loss function and 

then discusses the proposed margin term and its geometric interpretation. At the 

end of this section, the mathematic derivation for optimisation is also presented. 

2.3.1 The drawback of Cross-Entropy Loss Function  

As discussed in the previous section, the cross-entropy loss function does not fully 

utilise the information provided by the competing categories since it only takes 

the output probability corresponding to the target category into account and 

ignores all other probabilities from competing categories. Although the sum of all 
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the output probabilities from competing categories decreases when the output 

probability of target category increases, it does not necessarily mean that the 

probabilities from competing categories go down equally. This may decrease the 

performance of DNNs when increasing the probability of the target category does 

not lead to modification, or even increment of the maximum output probability 

values of competing categories, which may result in the prediction model not 

being able to make a correct prediction. This problem can happen in all multi-

class classification problems that have more than two categories. 

For example, Figure 2.3 illustrates a classification problem with five categories. 

Each bar illustrates the output probability produced by a prediction model for each 

category. Suppose the target category of the current input sample is 3. Hence the 

other categories are competing categories. In Figure 2.3(a), the output probability 

for the target category is 0.3, whereas the maximum probability from competing 

categories is 0.4, which means the prediction model does not produce an accurate 

prediction. Applying the cross-entropy loss function to enlarge the output 

probability for the target category could result in Figure 2.3(b): the output 

probability for target category increases by 0.05 to 0.35, whereas only the first 

category decreases by 0.05 and the maximum output probability of all categories 

is still category 4, which means the prediction model still cannot produce a correct 

answer.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.3 - Example 1 for classification problem with 5 categories. 
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(a) 

 

(b) 

Figure 2.4 - Example 2 for classification problem with 5 categories 

The worst-case scenario is that the predication model successfully makes the 

classification and produces the correct answer initially; however, after the next 

step of training with the cross-entropy loss function, one of the competing output 

probabilities suddenly jumps to be the top one due to the changes to the weights 

of DNNs, and becomes the new maximum output probability of all categories 

despite increasing the output probability of the target category simultaneously. 

This will make the DNN produce a wrong answer regardless of the correct answer 

produced previously. Figure 2.4 illustrates this scenario: during the training 
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process, the output probability of target category 3 was the maximum one of all 

categories, which means the DNN produced a correct answer, as illustrated in 

Figure 2.4(a). However, as shown in Figure 2.4(b), after training another epoch, 

the cross-entropy loss function increases the output probability of category 3 as 

expected, but the output probability of category 4 increases simultaneously and 

becomes the maximum one of all categories, which means the DNN will produce 

a wrong prediction instead of the previous correct one. 

Such problems are caused by ignoring the output probabilities of competing 

categories during the training process. In order to solve this problem, we have 

developed a mechanism that utilises the information provided by the competing 

categories to constrain the cross-entropy loss function to converge towards the 

expected direction. 

2.3.2 Margin Term and Geometric Interpretation 

From the discussion of the previous section, we can see that the output probability 

of the target category and the maximum output probability of all competing 

categories are the two main factors that affect the prediction model producing a 

correct answer. The output probability of the target category is expected to be as 

large as possible, while the maximum output probability of all the competing 

categories is expected to be as small as possible. This will maximise the distance 

between correct and incorrect predictions, in order that the prediction model can 

easily distinguish the correct category from any other competing category. 
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The problem is that the maximum output probability of all the competing 

categories may vary from one to another. Nevertheless, they are all competing 

categories, which enables us to introduce a binary optimisation sub-problem here. 

In this binary optimisation sub-problem, all the output probabilities produced by 

softmax layer and evaluated by the cross-entropy loss function are treated as 

samples of this sub-problem. The output probability of the target category is 

considered as a positive sample, while all other output probabilities from 

competing categories are considered as negative samples. The purpose of this 

problem is to distinguish these two sample groups. In order to do so, a margin 

term can be defined as: 

 𝑀(𝑥, 𝑦) = 𝑃(𝑦|𝑥) − 𝑚𝑎𝑥
𝑘∈𝑌,𝑘≠𝑦

𝑃(𝑘|𝑥) 

𝑠. 𝑡. 𝑃(𝑦|𝑥), 𝑃(𝑘|𝑥) ∈ (0,1), ∑ 𝑃(𝑘|𝑥) = 1

𝑘∈𝑌

 
(2.11) 

where P(y|x) is the output probability of target category y provided by the label of 

the input sample, P(k|x) is the output probability of category k with input training 

sample x, as defined in the preliminaries section. 

Then, the new loss function is defined as: 

 𝐿(𝑥, 𝑦) = 𝐶𝐸(𝑥, 𝑦) − 𝜆𝑀(𝑥, 𝑦) (2.12) 

where λ is the margin parameter to balance these two terms. 
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It is clear that the sample space of this sub-problem has only one dimension, and 

the discriminative relation between these two sample groups is straightforward. 

Thus, a complex margin term may not be necessary. Additionally, in this binary 

classification sub-problem, the relationship between the samples is not 

independent, because they are all probabilities of corresponding categories, and 

the sum of them constantly equals to 1. If one of them increases its value, some of 

the others must decrease. Hence, if we take all the output probabilities into 

account, there must be some redundancy information in the margin term, which 

may decrease the performance. Furthermore, according to a recent review of the 

margin-based approaches [87], a simple margin term is usually adequate to 

achieve competing performance to a complex one. 

When minimising the loss function in Equation (2.12), the cross-entropy term 

enlarges the output probabilities corresponding to the sample labels to achieve 

high classification accuracy, while the margin term magnifies the gaps between 

the correct predictions and the maximum incorrect predictions in order to make 

the correct predictions more distinguishable. λ in Equation (2.12) is a weight 

parameter to balance these two terms. 

The geometric interpretation of this margin term is simple and clear. Figure 2.5 

illustrates how the margin term works during training. The margin term faces two 

main situations during training. Figure 2.5(a) is the ideal situation in which the 

output probability of the target category is the maximum one of all the categories.  
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Figure 2.5 - Geometric interpretation of the proposed margin term. 

Thus, the value of the margin term is positive, and when Equation (2.12) is 

minimised, the optimiser enlarges the margin between these two classes, which 

makes the target category more distinguishable from the competing categories. 

Figure 2.5(b) shows the situation we are trying to optimise. In this situation, the 

output probability of the target category is smaller than some output probabilities 

of the competing categories. Thus, the margin value is negative when Equation 

(2.12) is minimised so that the optimiser reduces the margin between them. This 

guides the training process towards the expected direction, as depicted in Figure 

2.5(a). 

In summary, the margin term here can be considered as additional navigation or 

constraint for the loss function. Since the output probabilities generated by DNNs 

are left untouched, this loss function properly maintains their generative ability 

2.3.3 Optimisation 

From the geometric interpretation, we can intuitively see how the proposed 

margin term works in the training process. In this section, the mathematical 

derivation of the margin term is provided to explain how backpropagation 

algorithm with gradient descent benefits from it. 
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Since the original network structure of the prediction model is untouched, we will 

only focus on the gradient descent aspect of the the loss function in respect to the 

output of the last layer, which is the intermediate output of softmax layer before 

the softmax function is applied. This intermediate output of the softmax layer is 

denoted as zk in the preliminaries section, where kY denotes the corresponding 

category. When this gradient is determined, it can be easily propagated backwards 

to every weight in the previous layers as the softmax layer is fully connected to 

the previous layer of deep neural network. Then, the network can be adjusted to 

produce a better prediction with the gradient descent algorithm. 

 In the previous section, we have defined the new loss function in Equation (2.12). 

The gradient of the proposed loss function in respect of zk is derived as follows: 

 𝜕𝐿(𝑥, 𝑦)

𝜕𝑧𝑘
=

𝜕𝐶𝐸(𝑥, 𝑦)

𝜕𝑧𝑘
− 𝜆

𝜕𝑀(𝑥, 𝑦)

𝜕𝑧𝑘
 (2.13) 

The partial derivative of the cross-entropy term is: 

 𝜕𝐶𝐸(𝑥, 𝑦)

𝜕𝑧𝑘
= − ∑ 1𝑘

𝜕 𝑙𝑛 𝑃 (𝑘|𝑥)

𝜕𝑧𝑘

𝐾

𝑘=1

= 𝑃(𝑘|𝑥) − 1𝑘 (2.14) 

where 1k = 1 if k = y, and 1k = 0, otherwise. 

The partial derivative of the margin term is: 

 𝜕𝑀(𝑥, 𝑦)

𝜕𝑧𝑘
=

𝜕𝑃(𝑦|𝑥)

𝜕𝑧𝑘
−

𝜕𝑃(𝑘𝑚𝑎𝑥|𝑥)

𝜕𝑧𝑘
 (2.15) 
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where P(kmax|x) is the short denotation of maxkP(k | x), kY and k ≠ y; kmax denotes 

the corresponding category. Thus, P(kmax|x) is the maximum output probability of 

the competing categories. 

According to the definitions of softmax function in Equation (2.9) in the previous 

section, thus, 

 
𝜕𝑀(𝑥, 𝑦)

𝜕𝑧𝑘
= {

𝑃(𝑦|𝑥)(1 − 𝑃(𝑦|𝑥) + 𝑃(𝑘𝑚𝑎𝑥 |𝑥)), 𝑖𝑓 𝑘 = 𝑦

−𝑃(𝑘𝑚𝑎𝑥 |𝑥)(1 − 𝑃(𝑘𝑚𝑎𝑥 |𝑥) + 𝑃(𝑦|𝑥)), 𝑖𝑓 𝑘 =  𝑘𝑚𝑎𝑥

𝑃(𝑘|𝑥)(𝑃(𝑘𝑚𝑎𝑥 |𝑥) − 𝑃(𝑦|𝑥)), 𝑖𝑓 𝑘 ≠ {𝑦, 𝑘𝑚𝑎𝑥}

 (2.16) 

Then, by putting the partial derivative of the cross-entropy term and the margin 

term together, the final partial derivative of the proposed loss function is: 

If k = y, then 

 𝜕𝐿(𝑥, 𝑦)

𝜕𝑧𝑘
= 𝑃(𝑦|𝑥) (1 − 𝜆(𝑃(𝑦|𝑥) − 𝑃(𝑘𝑚𝑎𝑥|𝑥))) − 1            

= 𝑃(𝑦|𝑥) (1 − 𝜆(𝑃(𝑦|𝑥) − 𝑀(𝑥, 𝑦))) − 1 

(2.17) 

If k = kmax, then 

 𝜕𝐿(𝑥, 𝑦)

𝜕𝑧𝑘
= 𝑃(𝑘𝑚𝑎𝑥 |𝑥) (1 + 𝜆 (1 + (𝑃(𝑦|𝑥) − 𝑃(𝑘𝑚𝑎𝑥 |𝑥))))

= 𝑃(𝑘𝑚𝑎𝑥 |𝑥)(1 + 𝜆(1 + 𝑀(𝑥, 𝑦))) 

(2.18) 

If k ≠ {y, kmax}, then 
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 𝜕𝐿(𝑥, 𝑦)

𝜕𝑧𝑘
= 𝑃(𝑘 |𝑥) (1 + 𝜆(𝑃(𝑦|𝑥) − 𝑃(𝑘𝑚𝑎𝑥 |𝑥)))

= 𝑃(𝑦 |𝑥)(1 + 𝜆𝑀(𝑥, 𝑦)) 

(2.19) 

Comparing with the partial derivative of the original cross-entropy loss function 

(2.10), the partial derivative of the new loss function can be considered as 

multiplying a coefficient to constrain its value in respect to the margin between 

the target category and the competing categories. Thus, by adding the proposed 

margin term to the cross-entropy loss function, the original prediction model will 

be redirected towards the direction of enlarging the margin between the target 

category and the maximum competing category.  

From the geometric interpretation of the proposed margin term, we can clearly see 

that the margin term constantly pushes the cross-entropy loss function towards the 

direction where the margin between the target category and the competing 

categories will be enlarged. From the mathematical derivation, it can be seen that 

the same effect of the margin term constrains the optimisation process towards the 

expected direction. Thus, the additional margin term can bring more 

discriminative power into the original prediction model without changing 

anything else. For example, we usually manipulate the hidden layers to expect the 

original neural network to achieve a better test performance. 

We also derived the two margin terms proposed in [82], since they did not provide 

a clear geometric interpretation or a mathematical derivation to explain how the 
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margin terms work. The loss functions corresponding to the two margin terms are 

called C1 and C2 in their paper [82]. C1 is defined as the following: 

 𝐿𝑐1(𝑥, 𝑦) = 𝐶𝐸(𝑥, 𝑦) + 𝜆(1 − 𝑀(𝑥, 𝑦))
2
 (2.20) 

Similarly, C2 is defined as: 

 

𝐿𝑐2(𝑥, 𝑦) = 𝐶𝐸(𝑥, 𝑦) +
𝜆

𝐾 − 1
∑ (1 − (𝑃(𝑥, 𝑦) − 𝑃(𝑘|𝑥)))

2
𝐾

𝑘≠𝑦

 (2.21) 

The margin term in Lc1(x, y) is similar to our proposed margin term. However, it 

lacks the geometric interpretation. Furthermore, we derived the partial derivative 

of Lc1(x, y) with respect to zk as following: 

If k = y, then 

 𝜕𝐿𝑐1(𝑥, 𝑦)

𝜕𝑧𝑘
= 𝑃(𝑦|𝑥) (1 − 2(1 − 𝑀(𝑥, 𝑦))𝜆(1 − 𝑀(𝑥, 𝑦))) − 1 (2.22) 

If k = kmax, then 

 𝜕𝐿𝑐1(𝑥, 𝑦)

𝜕𝑧𝑘
= 𝑃(𝑘𝑚𝑎𝑥|𝑥) (1 + 2(1 − 𝑀(𝑥, 𝑦))𝜆(1 + 𝑀(𝑥, 𝑦))) (2.23) 

If k ≠ {y, kmax}, then 

 𝜕𝐿𝑐1(𝑥, 𝑦)

𝜕𝑧𝑘
= 𝑃(𝑘|𝑥) (1 + 2(1 − 𝑀(𝑥, 𝑦))𝜆𝑀(𝑥, 𝑦)) (2.24) 

Comparing with the partial derivative of the proposed loss function L(x, y), the 

Lc1(x, y) can be considered as multiplying a dynamic coefficient 2(1-M(x, y)) by 
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our proposed loss function. The Lc1(x, y) might work well on some datasets since 

it pushes harder when M(x, y) is negative. In such a case, the prediction model 

produces a wrong answer with the current input sample. However, when M(x, y) 

increases, the dynamic coefficient 2(1-M(x, y)) is decreased to zero. Thus, the 

ability to maintain the margin constraint is weak in Lc1(x, y). Furthermore, we can 

choose a larger margin parameter λ for the proposed margin term to achieve 

comparable performance as the Lc1(x, y) when dealing with the wrong predicted 

training samples, since the maximum value of the dynamic coefficient 2(1-M(x, 

y)) is 4. 

The Lc2(x, y) can be considered as the mean squared value of 1 minus the margin 

between each competing category and the target category. Since it uses all the 

competing categories, there must be some redundancy information in this loss 

function, because the inputs of the loss function are all output probabilities and the 

sum of them equals 1. If one of them increases its value, some of the others must 

decrease respectively. Thus, Lc2(x, y) cannot achieve an overall better performance 

than Lc1(x, y), as explained in the original work [82]. 

In summary, from the view of mathematical derivation, the proposed loss function 

L(x, y) can achieve a comparable performance to Lc1(x, y), and both L(x, y) and 

Lc1(x, y) can achieve a better performance than Lc2(x, y). However, both Lc1(x, y) 

and Lc2(x, y) suffer from a lack of geometric interpretation, whereas our proposed 

loss function L(x, y) has a simple and clear geometric interpretation.  
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An RNN that employs the proposed loss function L(x, y) is called LMRNN. The 

next section describes the experimental studies conducted to evaluate the 

proposed LMRNN on two different tasks and presents the performance of these 

three margin terms in practice. 

2.4 Experiments 

In order to verify the ability of the proposed LMRNN, two different experiments 

were conducted with two typical tasks that RNNs have shown to be successful.  

Furthermore, in order to explore the differences between the original RNN model 

and the model with an additional margin term, all the configurations of the models 

in our experiments were kept the same as the baseline model except for the 

margin term. 

We also tested the two models reported in [82], which also introduced additional 

large margin penalty terms into the cross-entropy loss function except for the 

authors only tested them on CNNs. Here, the RNN using the Lc1(x, y) loss 

function is called LMRNN-C1, and the RNN using the Lc2(x, y) loss function is 

called LMRNN-C2. 

All the experiments were conducted on an HP-Z840 workstation with an NVIDIA 

GeForce GTX 1080 graphic card, and all the neural networks were impended 

using Theano deep learning framework [86]. 



2.4 Experiments 41 

 

2.4.1 MNIST dataset 

The first experiment was conducted using the MNIST dataset [108]. This dataset 

is a well-known handwriting digit recognition dataset and has been widely used in 

machine learning studies. The standard dataset has ten categories and contains 

60,000 images in the training set and 10,000 images in the test set. Each category 

has an equal number of images in both training and test sets. To find the best 

hyper-parameter, 10,000 images from the training set were randomly selected 

from each category to form a validation set, which means 1000 images per 

category.  

Each image in this dataset is presented as a 28×28 matrix of pixels. Thus, in this 

experiment, we reshape the image into a long sequence with 28 time-steps and 

each time step has a vector of 28 pixels. At each time step, we input one column 

vector of the original image, which contains 28 pixels, and after 28 time-steps, the 

prediction model was given the whole image data and asked to predict which 

category the input image should be. Hence, this is a “many to one” task.  

The prediction model in this experiment was IRNN. The configuration of IRNN 

in this experiment was similar to the network reported in [84]. The hidden 

recurrent node was 100 in the hidden layer. The recurrent weights were initialised 

to be an identity matrix with all zero biases. Nonetheless, the non-recurrent 

weights were initialised to be random matrices in Gaussian distribution with a 

mean of zero and the standard deviation of 0.001. The output vectors of the 
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recurrent network’s hidden states were fed into a softmax layer with ten nodes to 

generate the predicted probabilities of each category. 

A typical mini-batch stochastic gradient descent optimisation method with a fixed 

learning rate 1e-8, a 0.9 momentum, and gradient clipping [-1, 1] was used in the 

training process. The size of the batch was set to 16. The training process 

concluded after it converged or when it reached 10,000 iterations and the network 

that achieved the highest validation accuracy was saved for testing on the test set. 

We tested the margin parameter from one to ten with step-size one and chose the 

one that achieved the highest accuracy on the validation set as the best margin 

parameter. The best validation accuracy and the corresponding test accuracy are 

reported in Table 2.1. 

Table 2.1 - Best results on MNIST dataset 

Model 
Margin 

Parameter 

Validation 

Accuracy 

Test Accuracy at 

max Valid 

IRNN 

baseline 
N/A 97.11 96.45 

LMRNN 10 97.47 97.28 

LMRNN-C1 2 97.61 97.02 

LMRNN-C2 5 97.39 96.96 
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From Table 2.1, we can see that all the margin terms have achieved better results 

than the original IRNN baseline, and the margin term proposed in this thesis 

achieved the highest test accuracy on the test set. In particular, by applying the 

proposed margin term, the test error reduced from 3.55 to 2.72, which is about 

23.4% error reduction. The LMRNN-C1 achieved the highest validation accuracy. 

However, it did not achieve the same success on the test set. The LMRNN-C2 

achieved a better result than the original IRNN baseline, but it did not achieve the 

same success as LMRNN and LMRNN-C1. 

 

Figure 2.6 - LMRNN accuracy with different margin parameters 

The best validation accuracy for each margin parameter and corresponding test 

accuracy are depicted in Figure 2.6, in which the LMRNN consistently 

outperformed the original IRNN with all the tested margin parameters. There was 

a wide range of the margin parameter to choose from for the LMRNN to achieve 

acceptable validation accuracy, which means the proposed LMRNN had stable 

performance.  
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We also noticed that by adding the margin term, the training process converged 

faster to the highest validation accuracy. The average iteration to achieve the 

highest validation accuracy for the original IRNN was about 7852 iterations on 

average; in contrast, by adding the margin term, that average iteration decreased 

to 2778 iterations.  

The experimental results prove that the proposed margin term enables the original 

IRNN to achieve superior performance. Particularly, by adding the proposed 

margin term, the original IRNN had a better generalisation ability on the test set 

and converged faster to the highest validation accuracy. 

2.4.2 Penn Treebank Corpus 

In the second set of experiments, we applied the proposed model to a language-

modelling task in which each sample was a sentence containing a vector of words. 

At each time step, the prediction model took one word from the sentence as input 

and produced an output that indicated the upcoming word of the sentence. Thus, 

both the input and output of the task were a sequence of words. This kind of tasks 

is usually referred to as “many to many” or “sequence to sequence” tasks. The 

purpose of the training process was to produce the same sentence as the input 

sentence but predicting one word ahead with respect to the current given sequence 

of words. Thus, at each time step, it is still a classification task, which is required 

to produce a vector of output probabilities corresponding to each word in the 
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vocabulary, and the word with the maximum probability in the vector is chosen to 

be the predicted word. 

Table 2.2 - Configurations of each model 

Models 
Hidden 

cells 

Uniform 

range 

Time 

steps 

Training 

epochs 

Decay 

rate 

Start 

epoch 

Small-

LSTMs 
200 ±0.1 20 15 1/2 6 

Medium-

LSTMs 
650 ±0.05 35 40 1/1.2 6 

Large-

LSTMs 
1500 ±0.04 35 55 1/1.15 15 

 

 

The corpus used in this experiment was the standard split of the Penn Treebank 

corpus [88], which contains 929k words in the training set, 73k words in the 

validation set and 82k words in the test set. The vocabulary of this corpus consists 

of 10k unique words. Thus, the classification task has 10k categories in each time 

step.  

We employed the same network configuration and implementation as reported in 

[89] but changed the loss function. 

The prediction model employed in this experiment was the LSTM network. Three 

different sizes of LSTMs were used in this experiment, and each model consisted 

of two stacked LSTM layers, and a summary of the configurations is presented in 



46 Large Margin Recurrent Neural Networks 

 

Table 2.2. Each size of the models was constructed with the given number of 

hidden cells, and all the parameters were initialised with a uniform distribution in 

the given range in Table 2.2. 

All the networks were trained with mini-batch stochastic gradient descent 

optimisation method with the mini-batch size of 32. Each of the models back-

propagated with the given time steps and trained with the given epochs. Likewise, 

in the medium and large LSTMs, the dropout technique [90] with a probability of 

50% was also applied between all layers. The learning rate in each of the models 

was decayed with the given decay rates in every epoch after the given starting 

epochs. 

Initially, we tested the margin parameter from 1 to 5 with step-size 0.5 and found 

that all the models achieved the best result when the margin parameter was set to 

1. Hence, we proceeded with testing the margin parameter from 0.1 to 1 with step-

size 0.1. We used the perplexity as the criteria to evaluate the performance of the 

prediction model, which is one of the popular criteria for language modelling 

tasks. The lower the perplexity is, the better the model is. We chose the margin 

parameter that achieved the lowest perplexity on the validation set as the best 

margin parameter. 

The margin parameters and the corresponding perplexities on the training set and 

validation set are reported in Figure 2.7. Furthermore, the best perplexities on the 

training and validation sets for each model are reported in Table 2.3. 
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Figure 2.7 - Margin parameter and corresponding training and validation perplexities 
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Table 2.3 - Best perplexities of each model 

Models 
Margin 

Parameter 

Training 

Perplexity 

Validation 

Perplexity 

Small-baseline N/A 78.5 119.2 

Small-LMRNN 0.8 44.37 117.01 

Small-LMRNN-C1 0.7 45.69 116.71 

Small-LMRNN-C2 0.1 42.74 116.87 

Medium-baseline N/A 49.1 89.0 

Medium-LMRNN 0.3 46.72 88.46 

Medium-LMRNN-C1 0.6 50.17 87.87 

Medium-LMRNN-C2 0.1 46.18 89.5 

Large-baseline N/A 49.3 81.8 

Large-LMRNN 0.1 28.56 84.78 

Large-LMRNN-C1 0.8 34.43 84.92 

Large-LMRNN-C2 0.5 26.19 88.66 

 

 

From Table 2.3, we can see that the three margin terms delivered superior 

performances over the original baselines on the training set. However, they did 

not achieve the same success on the validation set because the original models 

already over fitted the dataset, especially the medium and large LSTMs. 
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Comparing the models based on medium LSTM and the models using large 

LSTM, it is obvious that the model that achieved the lowest perplexity on the 

training set achieved the highest perplexity on the validation set. Nevertheless, by 

only adding a margin term, the original baseline models achieved significantly 

lower perplexities, which means that the margin term can bring additional 

discriminative power to the original model. In addition, the three margin terms 

achieved comparable performance. 

2.4.3 Discussion 

In order to further investigate the effectiveness of the margin term, we recorded 

the mean value of the cross-entropy term and the margin term on every iteration in 

the MNIST experiments during the training process for all three margin enhanced 

loss functions.  

Figure 2.8 shows the value of the cross-entropy term and the margin term on each 

iteration in the MNIST experiments. As can be seen, the proposed margin term 

value in L(x, y) followed the same trend as the margin term in Lc1(x, y) and Lc2(x, 

y), whereas its value shifted down below 0. The value of the cross-entropy term in 

Lc1(x, y) dropped faster than the other two at the beginning of the training process. 

This can demonstrate our mathematical interpretation presented in the 

optimization section that the Lc1(x, y) pushes harder when the predication 

produces wrong answers due to the dynamic coefficient 2(1-M(x, y)) making the 

value of the partial derivation up to nearly four times larger than that in L(x, y). 
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However, at the end of the training process, the L(x, y) delivered a lower value of 

the cross-entropy term because the dynamic coefficient 2(1-M(x, y)) decreased to 

zero when the predication model produced correct answers, which made the Lc1(x, 

y) fail to keep the training process in the correct direction. 

 

Figure 2.8 - Values of cross-entropy term and margin term in each iteration during 

training 

Both L(x, y) and Lc1(x, y) produced comparable low values of the cross-entropy 

term, whereas Lc2(x, y) did not. This confirms what we discussed in Section 2.3.3. 

All three margin-enhanced loss functions tend to achieve performance at a similar 

degree. This is because all these additional margin terms utilise the same 

information provided by the competing categories. This information is very 

limited, since only the cross-entropy term can achieve a good result already, and 

the margin term itself does not have proper optimisation property as the cross-

entropy term. Thus, the additional margin term can only help the cross-entropy 

term in achieving better results by bringing in additional discriminative 
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information, but it cannot replace the cross-entropy term to perform the primary 

optimisation during the training process. 

In summary, the experimental results demonstrate our mathematic interpretation 

and prove that the additional margin terms can help RNNs to achieve superior 

generalisation results. 

2.5 Conclusions 

In this chapter, a novel Large Margin Recurrent Neural Network (LMRNN) is 

developed, which maintains the generative ability of the original RNN model and 

extends its discriminative ability by introducing the large margin principle into the 

cross-entropy loss function.  

As discussed in detail in Section 2.3.1 with an example of 5-categories 

classification task, the cross-entropy loss function clearly shows its drawback on 

such a task. This drawback is that the information provided by the competing 

categories is not fully exploited by the cross-entropy loss function. This is because 

the cross-entropy loss function only takes the output probability corresponding to 

the target category into account and ignores all other probabilities from competing 

categories.  

To solve this issue, a large margin term is introduced into the cross-entropy loss 

function. The geometric interpretation of the developed large margin term is 

discussed in Section 2.3.2, together with the mathematic derivation in Section 
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2.3.3. Both of the geometric interpretation and mathematic derivation clearly 

show that the developed large margin term can help the cross-entropy loss 

function to exploit the information from competing categories during the training 

process. 

Experimental results on the MNIST dataset and the Penn Treebank corpus 

demonstrate that the proposed margin term cooperates well with RNNs and the 

proposed model achieves significant performance improvement over the original 

model. From further discussion on the training process in Section 2.4.3, the 

developed LMRNN clearly shows its advantages on the MNIST dataset and 

demonstrates the mathematic interpretation.  

The limitation of the developed large margin term is that it can only be effective 

on the classification tasks with more than two categories. This is because the large 

margin cross-entropy loss function will degenerate into a normal cross-entropy 

loss function on the binary classification tasks, as the probability of the competing 

category equals to one minus the probability of the target category. In other 

words, the information on the competing category has already been implicitly 

used. 

It is worth mentioning that the margin term can help the model converge during 

the training process, which will reduce the computational costs and accelerate the 

training process. This is extremely helpful for Neural Architecture Search (NAS) 

tasks. A detailed discussion can be found in Section 5.2 Future works.



 

Chapter 3 Robust Multi-View Continuous 

Subspace Clustering 

This chapter presents the second developed approach, named Robust Multi-View 

Continuous Subspace Clustering (RMVCSC), which fulfils the second research 

objective.  

A novel Robust Multi-View Continuous Subspace Clustering (RMVCSC) 

approach is developed in this chapter, which can untangle heavily mixed clusters 

by optimising a single continuous objective. The proposed objective uses robust 

estimators to automatically clip specious inter-cluster connections while 

maintaining convincing intra-cluster correspondences in the common 

representation subspace learned from multiple views. The common representation 

subspace can reveal the underlying cluster structure in data. RMVCSC is 

optimised in an alternating minimisation scheme, in which the clustering results 

and the common representation subspace are simultaneously optimised. Since 

different views can describe distinct perspectives of input data, the proposed 

approach has more accurate clustering performance than conventional approaches 

by exploring information among multi-view data. In other words, the proposed 

approach optimises a novel continuous objective in the simultaneously learned 

common representation subspace across multiple views. By using robust 

redescending estimators, the proposed approach is not prone to stick into bad local 

minima even with outliers in data. This kind of robust continuous clustering 
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approaches has never been used for multi-view clustering before. Moreover, the 

convergence of the proposed approach is theoretically proved, and the 

experimental results show that the proposed RMVCSC can outperform several 

very recently proposed approaches in terms of clustering accuracy. 

This chapter is organised as follows. Section 3.1 introduces the motivation of the 

developed approach. Two most relevant topics are reviewed in Section 3.2. The 

model formulation is presented in Section 3.3, followed by the optimisation 

process in Section 3.4. The convergence of the proposed approach is analysed in 

Section 3.5. Section 3.6 presents the experiments, and Section 3.7 summarises the 

conclusion. 

3.1 Introduction 

Clustering is one of the main approaches for data mining and statistical analysis, 

which is the process of partitioning a data set into different subsets according to 

some defined measures [110]. In real-world applications, multi-view data are 

obtained naturally, since data are often collected across multiple domains or 

extracted by different feature extractors [111]. Each view can be considered as a 

distinctive perspective of the data [112]. For example, a webpage can be described 

according to the contents of this webpage, the webpage contents linked to this 

webpage and the link structures used by this webpage, while an image can be 

described according to its colours, textures, shapes and so on. Thus, exploring 
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information among multiple views to create accurate multi-view clustering 

approaches is beneficial for big data analysis [113][114]. 

Multi-view clustering is a machine learning paradigm, which aims to leverage the 

complementary information among multiple views to improve the clustering 

accuracy and generalisation ability [111][113][114]. There are mainly two 

approaches to do the multi-view clustering [114]. The first one is the fusion 

approach, which fuses similarity measurements from multiple views to construct a 

graph for clustering [115][116]. The other one is the subspace-clustering 

approach, which aims to learn a common latent subspace for all the multiple 

views [116][117][118][119]. Since the subspace approach can reveal the 

underlying cluster structure in multi-view data and achieves the state-of-the-art 

performance [116], multi-view subspace clustering has attracted arising attention 

in the past years. 

Multi-view subspace clustering performs clustering on a common subspace 

representation of all the views simultaneously with the assumption that all the 

views are generated from this latent subspace [120][121]. Many multi-view 

subspace clustering approaches have been developed in recent years 

[118][127][128][129][130], such as iteration based approaches [120][121], 

factorization based approaches [122][123], statistical approaches [124], and 

spectral clustering based approaches [125][126]. 

Although multi-view subspace clustering has permeated into many fields and has 

made a great performance, there are still some limitations. Especially, since most 
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existing multi-view subspace clustering approaches are based on k-means or 

spectral clustering, the number of clusters k and the weights of different views are 

required to be pre-set manually. This may limit the further advancement of multi-

view subspace clustering. 

More recently, Shah et al. [131] proposed a Robust Continuous Clustering (RCC) 

algorithm, which does not need to know the number of clusters in advance and 

has the ability to achieve high accuracy efficiently even the data is in high-

dimension. RCC optimised a clear continuous objective by using standard 

numerical methods and has the ability to be integrated into a dimensionality 

reduction system. However, RCC has not been integrated into a multi-view 

subspace clustering system yet. 

In this chapter, a novel Robust Multi-View Continuous Subspace Clustering 

(RMVCSC) approach is proposed to untangle heavily mixed clusters by 

optimising a single continuous objective. We use the self-expressiveness property 

of multi-view data, which is proposed in [132] to learn a common representation 

subspace across multiple views. By using robust redescending estimators, the 

proposed approach is optimised in an alternating minimisation scheme, in which 

the clustering results and the common representation subspace are simultaneously 

optimised. Without the requirement of the number of clusters given in advance, 

RMVCSC is not prone to stick into bad local minima even with outliers in data 

and is insensitive to initialisation. 
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Over the iteration of the proposed approach, the representatives will move and 

merge into several discrete clusters. This kind of robust continuous clustering 

approaches has never been used for multi-view clustering before. The proposed 

RMVCSC approach can outperform several very recently proposed approaches in 

terms of clustering accuracy. 

The rest of this chapter is organised as follows: Section 3.2 reviews the most 

relevant topics. Section 3.3 formulates our proposed RMVCSC approach; Section 

3.4 introduces the optimisation process; Section 3.5 analyses the convergence 

behaviour; experimental results and conclusions are presented in Section 3.6 and 

Section 3.7. 

3.2 Related Work 

In this section, we review the approaches in multi-view subspace clustering and 

continuous clustering, which are the two most relevant topics to our developed 

approach. 

3.2.1 Multi-view Subspace Clustering 

Multi-view subspace clustering aims to find the shared latent subspace for all the 

views of a data set and obtain the segments of the data set in this subspace [133]. 

As this subspace is jointly learned from all the views using the self-expression 

property of the data set, it can represent the data set and unveil the underlying 

cluster structure of the data set.  
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Currently, many multi-view subspace clustering approaches have been proposed. 

Gao et al. [134] proposed a multi-view subspace clustering model which performs 

subspace clustering on each view and guarantees the consistency of the clustering 

structure among different views. Zhang et al. [135] performed clustering on multi-

views simultaneously with a low-rank tensor constraint, which is constructed by 

subspace representation matrices. Ding et al. [136] proposed a multi-view 

subspace clustering approach via dual low-rank decompositions, which expects to 

find a low-dimensional view-invariant subspace for multi-view data. Fan et al. 

[137] proposed a localised multi-view subspace clustering model by fusing 

noiseless structures among views and samples. Zhuge et al. [116] proposed an 

auto-weighted multi-view subspace clustering approach based on a common 

subspace representation matrix. 

However, most of these works are based on the k-means and its variants. Thus, 

their performance are sensitive to the choice of the cluster numbers. 

3.2.2 Continuous Clustering 

Continuous clustering is another topic related to our proposed approach in 

Chapter 3. The main idea of continuous clustering is to transform the clustering 

problem into a continuous optimisation problem [115]. Lindsten et al. [138] 

proposed a formulation, which can relax k-means clustering to convex 

optimisation problems. Hocking et al. [139] proposed a convex relaxation of 

hierarchical clustering in calculating continuous regularisation. Chi et al. [140] 
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proposed a splitting method for solving convex clustering problem. Chi et al. 

[141] proposed a convex bi-clustering algorithm Convex Bicluste Ring Algorithm 

(COBRA), which settles on a graph-based representation of both samples and 

features. All the works mentioned above are regularised by convex function (l2-

norm). 

In addition, Shah et al. [131] proposed Robust Continuous Clustering (RCC) 

algorithm, regularisation using a non-convex function (Geman-McClure). RCC 

does not have the prior knowledge of the number of clusters, and it has the ability 

to achieve high accuracy efficiently, even the data is in high-dimension. He et al. 

[115] proposed an optimisation method for Robust Continuous Co-Clustering 

(ROCCO), which formulated a co-clustering problem as a continuous non-convex 

optimisation problem. ROCCO learns the representation regularised on both 

samples and feature graphs. 

3.3 Model Formulation 

In this section, we introduce the subspace representation and formulation of 

RMVCSC. 

In multi-view clustering, the clustering results of different views should be 

consistent, which means the clustering assignments of all the views should be the 

same [117]. As multi-view data is collected across different domains, different 

views may show a considerable divergence when learning a consensus 
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representation. Thus, multi-view subspace representation is used in the proposed 

approach to learn a common view-invariant subspace while reducing the influence 

of view-variance [113].  

Consider the problem of spectral-based subspace representation. The ith row, jth 

column and ijth element in a matrix M can be denoted as mi:, m:j, and mij 

respectively. Suppose single-view data matrix is X = [x:1, x:2, …, x:n] ∈ ℝd×n  

which includes n data points in d dimensions. If X presents multi-view data, the 

data matrix of X in the vth view can be denoted as Xv ∈ ℝdv×n. 

Thus, based on the self-expressiveness property, the data matrix of X in the vth 

view is represented as: 

 𝑋𝑣 = 𝑋𝑣𝑍 + 𝐸𝑣 (3.1) 

where 𝑍 =  [𝑧:1, 𝑧:2, … , 𝑧:𝑛]  ∈  ℝ𝑛×𝑛  is the self-representation matrix, in which 

each z:i is the representative of data point x:i, and Ev is an error matrix. The 

nonzero elements of z:i correspond to the data points from the same subspace. 

Since the input data is denoted as Xv ∈ ℝdv×n and Z is the self-representation matrix 

of Xv, the new representatives are initialised based on X. After that, all steps of 

RMVCSC are operated by the new representatives. Over times of iteration, the 

new representatives will migrate and merge into several discrete clusters. 

The objective function of RMVCSC is defined as follows: 

 𝛷(𝑍) = ‖𝑋𝑣 − 𝑋𝑣𝑍‖2,𝑝
𝑝 + 𝜆𝛺𝑣(𝑍) (3.2) 
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where ‖  ‖2,𝑝
𝑝

 is the sparsity-inducing norm with 0 ≤ p ≤ 1; λ is a trade-off factor, 

and Ωv(Z) is a smooth regularizer on Z. 

Given the representation error matrix Ev ∈ ℝdv×n of the vth view as: 

 𝐸𝑣 = 𝑋𝑣 − 𝑋𝑣𝑍 (3.3) 

the ‖  ‖2,𝑝
𝑝

-norm of the representation error matrix Ev can be defined as: 

 

‖𝐸𝑣‖2,𝑝
𝑝 = ∑ (∑|𝑒𝑖𝑗

𝑣 |
2

𝑛

𝑗=1

)

𝑝
2

= ∑(‖𝑒𝑖:
𝑣‖2)𝑝

𝑑𝑣

𝑖=1

𝑑𝑣

𝑖=1

 (3.4) 

where ev
i: is the ith row of Ev, and ‖𝐸𝑣‖2,𝑝

𝑝
 is a ℓ2,p-norm [142]. 

Ωv(Z) aims to smooth the distribution of the common representation Z on the vth 

view. The common subspace representation matrix Z will be enforced to meet the 

grouping effect using Ωv(Z). 

Based on the original data X and the new representatives Z, a graph is constructed 

automatically by using m-kNN graphs, a variant of the standard kNN graphs 

[143]. Compared with standard kNN graphs, all vertices in an m-kNN graph have 

a k-upper bound, which helps the graph not to produce vertices (hub vertices) with 

an extremely high degree and is more robust for utilising. 

Specifically, for v = 1, 2, …, m, each regularised term Ωv(Z) in our proposed 

approach is defined as: 
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𝛺𝑣(𝑍) =

1

2
∑ 𝑤𝑠,𝑡

𝑣 𝜌(‖𝑧𝑠 − 𝑧𝑡‖2,𝑝
𝑝 )

(𝑠,𝑡)∈𝜀

 
(3.5) 

Thus, the objective function of RMVCSC can be rewritten as: 

 
𝛷(𝑍) = ∑ (∑‖𝑥𝑖

𝑣 − 𝑥𝑖
𝑣𝑧𝑖‖2,𝑝

𝑝
+

𝜆

2

𝑛

𝑖=1

∑ 𝑤𝑠,𝑡
𝑣 𝜌(‖𝑧𝑠 − 𝑧𝑡‖2,𝑝

𝑝
)

(𝑠,𝑡)∈𝜀

)

𝑚

𝑣=1

 (3.6) 

where (s, t) means there is a connection between data xs and data xt, and ε is the 

edge set of this graph; weights 𝑤𝑠,𝑡
𝑣  measure the strength of each data to the 

pairwise terms that exist, and λ is used to measure the proportion of each objective 

term to the whole; function ρ(·) is a penalty on the regularisation terms. 

Since our approach is based on the duality between robust estimation and line 

processes [131], an auxiliary variable hs,t
v is introduced for each connection (s, t) 

∈ ε. Thus, a joint objective over the representatives Z and the line process H 

={hs,t
v} is proposed: 

 
𝛷(𝑍, 𝐻) = ∑ (∑‖𝑥𝑖

𝑣 − 𝑥𝑖
𝑣𝑧𝑖‖2,𝑝

𝑝

𝑛

𝑖=1

𝑚

𝑣=1

+
𝜆

2
∑ 𝑤𝑠,𝑡

𝑣 (ℎ𝑠,𝑡
𝑣 ‖𝑧𝑠 − 𝑧𝑡‖2,𝑝

𝑝 + 𝛹(ℎ𝑠,𝑡
𝑣 ))

(𝑠,𝑡)∈𝜀

) 

(3.7) 

where Ψ (hs,t
v) is a penalty on ignoring a connection (s,t), i.e., when the 

connection is active (i.e., hs,t
v→1) then Ψ(hs,t

v) tends to zero; when the connection 

is disabled (i.e., hs,t
v→0) then Ψ(hs,t

v) tends to one. Each robust estimator ρ(·) has 
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its own corresponding penalty function Ψ(·) so that Equation (3.6) and Equation 

(3.7) are equivalent with respect to the representatives of X. In other words, the 

same set of Z will be produced by optimising either of these two objectives. 

Equation (3.7) is based on the iteratively reweighted least squares. However, it is 

more flexible because of the explicit variables H and the additional terms defined 

by these variables. Although many different gradient-based methods can be used 

to optimise Equation (3.7), the iterative solution of linear least-squares systems 

can achieve more efficient and scalable optimisation [144]. 

Although RMVCSC can accommodate different estimators within the same 

computational efficiency framework, our presentations and experiments are all 

based on a well-known estimator: Geman-McClure estimator [145], 

 
𝜌(𝑦) =

𝜇𝑦2

𝜇 + 𝑦2
 (3.8) 

where μ is a scale parameter. The corresponding penalty function that makes 

Equation (3.6) and Equation (3.7) equivalent with respect to the representatives is: 

 𝜓(ℎ𝑠,𝑡) = 𝜇(√ℎ𝑠,𝑡 − 1)
2
 (3.9) 

3.4 Optimisation 

Based on Equation (3.7) we observe that (i) when the variable H is fixed, 

Equation (3.7) will transform into a linear least-squares problem; (ii) when the 

variable Z is fixed, the decoupling of individual pairwise terms and the optimal 
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value of each connection hs,t
v can be calculated independently. Based on these two 

conditions, the objective can be optimised by updating the variable sets Z and H 

alternatingly. As a block coordinate descent approach, this alternating 

minimisation scheme provably converges. 

The first step is fixing the variable H, updating the common subspace 

representation Z. When the variable H is fixed, Equation (3.2) can be rewritten in 

a matrix form to obtain a simplified expression by solving the variable Z: 

 
𝑚𝑖𝑛

𝑍
∑‖𝑋𝑣 − 𝑋𝑣𝑍‖2,𝑝

𝑝 + 𝜆

𝑚

𝑣=1

𝛺𝑣(𝑍) (3.10) 

Intuitively, there are no weight factors explicitly defined in Equation (3.10), so 

that all different views are treated equally. Thus, the Lagrange function of 

Equation (3.10) can be written as: 

 
∑‖𝑋𝑣 − 𝑋𝑣𝑍‖2,𝑝

𝑝 + 𝜆

𝑚

𝑣=1

𝑇𝑟(𝑍𝐿𝑣𝑍𝑇) (3.11) 

Lv = Dv-Qv is the Laplacian matrix, in which Dv is a diagonal matrix; Qv measures 

the spatial closeness of the data points on vth view. Qv = [q11, q12, …, qnn]∈ℝn×n, 

where qst = qts = ws,t
v·hs,t

v when ws,t
v and hs,t

v is nonzero, otherwise qst = qts = 0. 

Taking the derivative of Equation (3.11) with respect to Z and setting the 

derivative to zero, we have: 
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∑
𝜕 (‖𝑋𝑣 − 𝑋𝑣𝑍‖2,𝑝

𝑝 + 𝜆𝑇𝑟(𝑍𝐿𝑣𝑍𝑇))

𝜕𝑍

𝑚

𝑣=1

= 0 (3.12) 

In order to solve Equation (3.12), we consider the following problem to tackle a 

non-smooth norm problem: 

 
𝑚𝑖𝑛
𝑍,𝑈𝑣

∑ 𝐻𝑣 + 𝜆

𝑚

𝑣=1

𝑇𝑟(𝑍𝐿𝑣𝑍𝑇) (3.13) 

where 

 𝐻𝑣 = 𝑇𝑟((𝑋𝑣 − 𝑋𝑣𝑍)𝑇𝑈𝑣(𝑋𝑣 − 𝑋𝑣𝑍)) (3.14) 

Uv ∈ ℝdv×dv is a diagonal matrix corresponding to the vth view. The ith entry on the 

diagonal is defined as: 

 𝑢𝑖𝑖
𝑣 =

𝑝

2
‖𝑒𝑖:

𝑣‖2
𝑝−2, ∀𝑖 = 1,2, … , 𝑑𝑣 (3.15) 

Then differentiating the objective function with respect to Z and setting it to zero: 

 𝐴𝑍 + 𝑍𝐵 + 𝐶 = 0 (3.16) 

where 

 
𝐴 = ∑ 𝑋𝑣𝑇𝑈𝑣𝑋𝑣

𝑚

𝑣=1

 (3.17) 

 
𝐵 = 𝜆 ∑ 𝐿𝑣

𝑚

𝑣=1

 (3.18) 
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𝐶 = − ∑ 𝑋𝑣𝑇𝑈𝑣𝑋𝑣

𝑚

𝑣=1

 (3.19) 

Equation (3.16) is a standard Sylvester equation, which has a unique optimal 

solution [109]. 

As discussed in Section 3.2, the proposed objective function Equation (3.7) is a 

joint objective over the representatives Z and the line process H ={hs,t
v}. Thus, the 

second step is fixing the variable Z, then the optimal value of each connection hs,t
v 

is calculated by:  

 
ℎ𝑠,𝑡

𝑣 = (
𝜇

𝜇 + ‖𝑧𝑠 − 𝑧𝑡‖2
)

2

 (3.20) 

According to the above two steps, we alternatively update Z and H, and repeat the 

process iteratively. 

Algorithm 1 shows the whole process of RMVCSC. Note that all updates to Z and 

H optimise the same continuous global objective in Equation (3.7). Step I and II 

are the input and output statements of the proposed approach. Step III to VI are 

the initialisation steps, which are discussed in Section 3.2 above Equation (3.5). 

Step VII to XII are the main optimisation steps, which are discussed in detail in 

this section. Step XIII and XIV are the output steps of the final clustering results. 
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Algorithm 1. RMVCSC 

I: Input: Data for m views {X1, …,Xm} and Xv∈ℝdv×n. 

II: Output: Cluster assignment {ϕi}i=1
n. 

III: Construct connectivity structure ε. 

IV: Precompute χv=||Xv||2, ws,t
v, δ. 

V: Initialise hs,t
v = 1, μ˃˃max||xs-xt||2

2, λ = Σm(χv/||Lv||2). 

VI: Initialise the feature weight matrix Uv=Iv for each view, where 

Iv∈ℝdv×dv is the identity matrix. 

VII: While |ϕt – ϕ t-1| < ε or t < max-iterations do: 

VIII:         Compute the common representation Z by solving Equation 

(3.16) with Equations (3.17), (3.18) and (3.19). 

IX         Update the diagonal feature weight matrix Uv for each view by 

Equation (3.15). 

X:         Update hs,t
v  with Equation (3.20) and Lv = Dv-Qv. 

XI:         Every four itrations, update λ = Σm(χv/||Lv||2) and μ=max(μ/2, 

δ/2). 

XII: End while 

XIII: Construct graph G = (V, F) with fs,t=1 if ||zs
*-zt

*||2<δ. 

XIV: Output clusters are given by the connected components of G. 
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3.5 Convergence Analysis 

In order to prove the convergence of our proposed approach can reach at least a 

locally optimal solution, we first introduce the following lemma [146]. 

Lemma 1: When 0 < p ≤ 2, for any positive number a and b, the inequality holds: 

 
𝑎𝑝 −

𝑝

2

𝑎2

𝑏2−𝑝
≤ 𝑏𝑝 −

𝑝

2

𝑎2

𝑏2−𝑝
 (3.21) 

The first step is fixing the variable H, updating the common subspace 

representation Z. 

Theorem 1: Each updated Z in Algorithm 1 will monotonically decrease the 

objective in Equation (3.13) in each iteration. 

Proof: Denote 𝑍̃ as the updated Z in each iteration and 𝐸̃𝑣 = 𝑋𝑣 − 𝑋𝑣𝑍̃ is the vth 

representation error matrix calculated by 𝑍̃. According to the optimisation to 𝑍̃ in 

Algorithm 1, 𝑍̃ reaches the unique optimal solution of Equation (3.10) when Uv 

are fixed. Thus, 

 
∑ (𝑇𝑟(𝐸̃𝑣𝑇𝑈𝑣𝐸̃𝑣) + 𝜆𝑇𝑟(𝑍̃𝐿𝑣𝑍̃𝑇))

𝑚

𝑣=1

≤ ∑(𝑇𝑟(𝐸𝑣𝑇𝑈𝑣𝐸𝑣) + 𝜆𝑇𝑟(𝑍𝐿𝑣𝑍𝑇))

𝑚

𝑣=1

 

(3.22) 

Combining weight matrix Uv which 
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 𝑢𝑖𝑖
𝑣 =

𝑝

2
‖𝑒𝑖:

𝑣‖2
𝑝−2

 (3.23) 

the inequation can be rewritten as: 

 

∑ (∑
𝑝

2

‖𝑒̃𝑖:
𝑣‖2

2

‖𝑒𝑖:
𝑣‖

2

2−𝑝

𝑑𝑣

𝑖=1

+ 𝜆𝑇𝑟(𝑍̃𝐿𝑣𝑍̃𝑇))

𝑚

𝑣=1

≤ ∑ (∑
𝑝

2

‖𝑒𝑖:
𝑣‖2

2

‖𝑒𝑖:
𝑣‖

2

2−𝑝

𝑑𝑣

𝑖=1

+ 𝜆𝑇𝑟(𝑍𝐿𝑣𝑍𝑇))

𝑚

𝑣=1

 

(3.24) 

Generally, ‖𝑒𝑖:
𝑣‖2 > 0 and ‖𝑒̃𝑖:

𝑣‖2 > 0, the regularised l2,p-norm can be used to 

guarantee it. According to Lemma 1, we can derive 

 
‖𝑒̃𝑖:

𝑣‖2
𝑝 −

𝑝

2

‖𝑒̃𝑖:
𝑣‖2

2

‖𝑒𝑖:
𝑣‖

2

2−𝑝 ≤ ‖𝑒𝑖:
𝑣‖2

𝑝 −
𝑝

2

‖𝑒𝑖:
𝑣‖2

2

‖𝑒𝑖:
𝑣‖

2

2−𝑝 
(3.25) 

Thus, the following inequality holds 

 

∑ ∑‖𝑒̃𝑖:
𝑣‖2

𝑝

𝑑𝑣

𝑖=1

𝑚

𝑣=1

− ∑ ∑
𝑝

2

‖𝑒̃𝑖:
𝑣‖2

2

‖𝑒𝑖:
𝑣‖

2

2−𝑝

𝑑𝑣

𝑖=1

𝑚

𝑣=1

≤ ∑ ∑‖𝑒𝑖:
𝑣‖2

𝑝

𝑑𝑣

𝑖=1

𝑚

𝑣=1

− ∑ ∑
𝑝

2

‖𝑒𝑖:
𝑣‖2

2

‖𝑒𝑖:
𝑣‖

2

2−𝑝

𝑑𝑣

𝑖=1

𝑚

𝑣=1

 (3.26) 

Summing Equation (3.24) and Equation (3.26), we have 

 
∑ (‖𝑋𝑣 − 𝑋𝑣𝑍̃‖

2,𝑝

𝑝
+ 𝜆𝑇𝑟(𝑍̃𝐿𝑣𝑍̃𝑇))

𝑚

𝑣=1

≤ ∑ (‖𝑋𝑣 − 𝑋𝑣𝑍‖2,𝑝
𝑝 + 𝜆𝑇𝑟(𝑍𝐿𝑣𝑍𝑇))

𝑚

𝑣=1

 

(3.27) 
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Thus, each updated Z will monotonically decrease Φ(Z, H) in each iteration, 

which means the following inequality holds: 

 𝑚𝑖𝑛 𝛷 (𝑍̃, 𝐻) ≤ 𝑚𝑖𝑛 𝛷 (𝑍, 𝐻) (3.28) 

The second step is fixing the variable Z, updating the variable H. 

Since Equation (3.20) is the optimal solution of H, this step will have a unique 

optimal solution H decreasing our objective function Φ(Z, H). Moreover, the 

second-order partial derivatives of Φ(Z, H) with respect to H is greater than zero. 

Thus, it is obvious that each updated H will monotonically decrease Φ(Z, H) in 

each iteration, which means the following inequality holds: 

 𝑚𝑖𝑛 𝛷 (𝑍̃, 𝐻̃) ≤ 𝑚𝑖𝑛 𝛷 (𝑍̃, 𝐻) (3.29) 

To sum up, the alternately updated Z and H in Algorithm 1 can monotonically 

decrease the objective function in the iteration process. 

 𝑚𝑖𝑛 𝛷 (𝑍̃, 𝐻̃) ≤ 𝑚𝑖𝑛 𝛷 (𝑍̃, 𝐻) ≤ 𝑚𝑖𝑛 𝛷 (𝑍, 𝐻) (3.30) 

3.6 Experiments 

In this section, we evaluate the RMVCSC approach and several reference 

approaches on three widely used datasets. Experimental results show their 

convergence behaviour. 
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3.6.1 Dataset Descriptions 

Three multi-view benchmark datasets, which are commonly used for multi-view 

learning, have been used to validate the effectiveness of RMVCSC. They are 

Caltech101 [147], Handwritten Dutch Digit Recognition (Digit) [148], and Web 

Knowledge Base (WebKB) [149]. The statistics information about these three 

datasets is concluded in Table 3.1.  

Table 3.1 - Details of the multi-view datasets 

View type WebKB Caltech101-7 Digit 

1 Fulltext (2949) LBP (256) FOU(76) 

2 Inlinks (334) PHOG (680) FAC(216) 

3 - GIST (512) KAR(64) 

4 - Gabor (32) PIX(240) 

5 - SURF (200) ZER(47) 

6 - SIFT (200) MOR(6) 

Data points 1051 441 2000 

Classes 2 7 10 

 

All the experiments are following the 5-fold cross-validation scheme. Each 

dataset is randomly split into five subsets equally. Each clustering approach is 

tested on a selected subset and trained on the rest of the subsets. The final results 

are reported as the average of these 5 clustering results. 
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The Caltech101-7 dataset is composed of 8677 objective images, which belong to 

101 categories. Following [150], we selected seven widely used classes, including 

DollaBill, Faces, Garfield, Motorbikes, Snoopy, Stop-Sign and Windsor-Chair, 

which have 441 images in total. In order to obtain different views, we extract 256 

LBP, 100 PyramidHOG (PHOG), 512 GIST, 32 Gabor textures, 200 SURF and 

200 SIFT features.  

The Digit dataset contains 2,000 data points for 0 to 9 ten-digit classes, and each 

class has 200 data points [148]. Six published features can be used for multi-view 

clustering: 76 Fourier coefficients of the character shapes (FOU), 216 profile 

correlations (FAC), 64 Karhunen-love coefficients (KAR), 240 pixel averages in 2 

× 3 windows (PIX), 47 Zernike moment (ZER) and 6 morphological (MOR) 

features. 

The WebKB dataset is a subset of web documents from four universities [149]. 

This dataset consists of 1051 pages, which are classified into 2 classes: 230 

Course pages and 821 Non-Course pages. Each page has two views: Fulltext view 

contains 2949 features representing the textual content on the web pages, and 

Inlinks view consists of 334 features recording that the anchor text on the 

hyperlinks pointing to the pages. 

3.6.2 Experimental Setup 

In order to evaluate the performance of RMVCSC, we compared RMVCSC with 

several state-of-the-arts approaches, which includes robust multi-view k-means 
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clustering (RMKMC) [152], pair-wised co-regularized multi-modal spectral 

clustering (PC-SPC) [153], centroid co-regularized multi-modal spectral 

clustering (CC-SPC) [154], multi-view subspace clustering (MVSC) [134], 

diversity induced multi-view subspace clustering (DiMSC) [155], and auto-

weighted multi-view subspace clustering (RAMSC) [116]. 

RMKMC: RMKMC obtains common cluster indicators across multiple views by 

minimising the linear combination of the relaxed k-means on each view with 

learned weight factors [152]. 

PC-SPC: PC-SPC enforces the corresponding point in different modality to have 

the same cluster membership by a pair-wise co-regularization term, which makes 

different views be the same as each other [153]. 

CC-SPC: Similar to PC-SPC, CC-SPC makes different views be the same as a 

common one based on a centroid-based co-regularization term [154]. 

MVSC: MVSC performs subspace clustering on individual modality, respectively 

and then unify them with a common indicator matrix [134]. 

DiMSC: DiMSC learns subspace representations and employs the Hilbert-

Schmidt Independence Criterion to enhance complementary information [155]. 

RAMSC: RAMSC is an auto-weighted multi-view subspace clustering approach 

based on common subspace representation matrix [116]. 
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The source codes of these reference approaches are downloaded from the Internet. 

The best performances of these approaches are achieved according to these 

reference papers’ setting. All the experiments are written in Matlab R2017a and 

processed on an HP Elite Desk 800 workstation with Intel i7-4790 CPU and 

16GB RAM. 

We normalise each view of the multi-view data firstly. All values of these input 

data will be in the range [-1, 1] before clustering. The threshold δ is set to be the 

mean of the lengths of the shortest 1% of the edges in the edge set ε. The 

parameter μ is initially set to μ =3r2, where r is the maximal edge length in the 

edge set ε. All experiments are repeated five times independently. We reported the 

mean and standard deviation of them as experimental results. 

Three standard clustering evaluation metrics are utilised to measure the multi-

view clustering performance, i.e., Clustering Accuracy (ACC), Normalized 

Mutual Information (NMI) and Purity. 

3.6.3 Experimental Results 

The experimental results on three datasets with three metrics are shown in Table 

3.2, Table 3.3 and Table 3.4, respectively. The final representation produced by 

RMVCSC on the Digit dataset is shown in Figure 3.1. The convergence 

behaviours of RMVCSC on three datasets are illustrated in Figure 3.2.  

In terms of clustering accuracy, we have the following conclusions. From Table 

3.2, Table 3.3 and Table 3.4, RMVCSC outperforms the reference approaches on 
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all benchmark datasets. According to three different evaluation metrics: ACC, 

NMI, and Purity, our proposed approach can achieve a better or at least 

comparable performance. 

As shown in Table 3.2, Table 3.3 and Table 3.4, the previous multi-view 

clustering approaches cannot always achieve better performances. This may be 

because the previous approaches characterise the structure of each view data 

separately and combine them with naïve addition operations, which makes the 

final clustering result affected by these inaccurate structures. RMVCSC can 

produce better results in most cases since our proposed approach assigns small 

weight factors to the inaccurate view and learns a common self-expressiveness 

matrix Z among different views. 

Table 3.2, Table 3.3 and Table 3.4 also show the robustness of RMVCSC. Our 

proposed approach learns view weight factors without an extra parameter and uses 

the ℓ2,p-norm to eliminate the effects of inaccurate functions. 
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Figure 3.1 - The common representations produced by RMVCSC on Digit dataset 
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Figure 3.2 - Convergence behaviours of RMVCSC on three datasets. 
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Table 3.2 - Clustering results of different approaches on the Cal-tech101-7 dataset.  

Approach ACC NMI Purity 

RMKMC 0.6034 (±0.0680) 0.5488 (±0.0482) 0.6846 (±0.0541) 

PC-SPC 0.6975 (±0.0499) 0.6547 (±0.0262) 0.7581 (±0.0288) 

CC-SPC 0.7047 (±0.0654) 0.6879 (±0.0378) 0.7972 (±0.0389) 

MVSC 0.6034 (±0.0309) 0.4766 (±0.0373) 0.6559 (±0.0314) 

DiMSC 0.7312 (±0.0244) 0.6458 (±0.0179) 0.7698 (±0.0268) 

RAMSC 0.7384 (±0.0082) 0.7276 (±0.0080) 0.8258 (±0.0115) 

RMVCSC 0.7360 (±0.0078) 0.7631 (±0.0075) 0.8912 (±0.0112) 

 

 

Table 3.3 - Clustering results of different approaches on the WebKB dataset. 

Approach ACC NMI Purity 

RMKMC 0.8049 (±0.0000) 0.1592 (±0.0000) 0.8159 (±0.0000) 

PC-SPC 0.7659 (±0.0000) 0.0991 (±0.0000) 0.7812 (±0.0000) 

CC-SPC 0.5785 (±0.0000) 0.0019 (±0.0000) 0.7812 (±0.0000) 

MVSC 0.7802 (±0.0000) 0.0041 (±0.0000) 0.7812 (±0.0000) 

DiMSC 0.6147 (±0.0000) 0.0006 (±0.0000) 0.7812 (±0.0000) 

RAMSC 0.9401 (±0.0000) 0.5689 (±0.0000) 0.9401(±0.0000) 

RMVCSC 0.9402 (±0.0000) 0.5694 (±0.0000) 0.9420 (±0.0000) 
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Table 3.4 - Clustering results of different approaches on the Digit dataset. 

Approach ACC NMI Purity 

RMKMC 0.7853 (±0.0800)  0.8125 (±0.0384)  0.8190 (±0.0614)  

PC-SPC 0.8682 (±0.0604) 0.8267 (±0.0303) 0.8759 (±0.0500) 

CC-SPC 0.8768 (±0.0605) 0.8234 (±0.0338) 0.8855 (±0.0471) 

MVSC 0.8242 (±0.0686) 0.8399 (±0.0355) 0.8286 (±0.0664) 

DiMSC 0.8400 (±0.0569) 0.8076 (±0.0347) 0.8465 (±0.0518) 

RAMSC 0.9299 (±0.0439) 0.8864 (±0.0199) 0.9343 (±0.0333) 

RMVCSC 0.9312 (±0.0245) 0.8867 (±0.0123) 0.9962 (±0.0323) 

3.7 Conclusion 

In this chapter, a novel Robust Multi-view Continuous Subspace Clustering 

(RMVCSC) approach is developed, which utilises a single continuous objective 

function to untangle heavily mixed clusters for multiple views data. In RMVCSC, 

the self-expressiveness is used to learn a common representation subspace across 

multiple views, in which the underlying cluster structure is revealed. The common 

representation subspace and the clustering result are simultaneously optimised in 

an alternating minimisation scheme by a robust redescending estimator. Thus, 

RMVCSC is not prone to stick into bad local minima even with outliers in data. 

As equipped with the recent developed robust continuous clustering algorithm, the 

developed RMVCSC is insensitive to initialisation, which means it does not 
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require to pre-set the number of clusters. Due to these advantages, RMVCSC can 

achieve higher clustering accuracy across multiple views and is more robust for 

utilising. 

A detailed optimisation process is discussed in Section 3.4. The convergence of 

the proposed approach is proved rigorously in Section 3.5. Compared with several 

very recently approaches, RMVCSC has more accurate clustering performance 

without pre-setting the number of clusters. 

One limitation of this research is worth to mention. Although RMVCSC released 

the requirement of pre-setting the number of clusters, it still needs to pre-set the 

upper bound of the connections in the m-kNN graphs. A proper upper bound of 

connections can help the model to converge faster and lead to a better clustering 

result. However, it has much less effect than the number of clusters, as the pre-set 

number of clusters has a high potential to ruin the underlying clustering structure 

and is sensitive to the outliers in data. 

As RMVCSC has great advantages in untangling heavily mixed clusters for 

multiple-view data, it can be widely extended into the active learning area. A 

detailed discussion about this can be found in Section 5.2 Future works. 

 



 

Chapter 4 Polyphonic Sound Event 

Detection 

This chapter presents the third developed approach, which fulfils the third 

research objective.  

A smart environment is one of the application scenarios of the Internet of Things 

(IoT). In order to provide a ubiquitous smart environment for humans, a variety of 

technologies are developed. In a smart environment system, sound event detection 

is one of the fundamental technologies, which can automatically sense sound 

changes in the environment and detect sound events that cause the changes. In this 

chapter, we propose the use of Relational Recurrent Neural Network (RRNN) for 

polyphonic sound event detection, called RRNN-SED, which utilised the strength 

of RRNN in long-term temporal context extraction and relational reasoning across 

a polyphonic sound signal. Different from previous sound event detection 

approaches, which rely heavily on convolutional neural networks or recurrent 

neural networks, the proposed RRNN-SED can solve long-lasting and overlapping 

problems in polyphonic sound event detection. Specifically, since the historical 

information memorised inside RRNNs is capable of interacting with each other 

across a polyphonic sound signal, the proposed RRNN-SED is effective and 

efficient in extracting temporal context information and reasoning the unique 

relational characteristic of the target sound events. Experimental results on two 

public datasets show that the proposed RRNN-SED achieved better sound event 
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detection results than other approaches, in terms of segment-based F-score and 

segment-based error rate. 

This chapter is organised as follows. Section 4.1 introduces the motivation of the 

developed approach. Section 4.2 presents a literature review for sound event 

detection approaches. Section 4.3 firstly introduces the architecture of Relational 

Recurrent Neural Networks (RRNN), then a detailed description of the developed 

approach is presented in Section 4.3.2. Section 4.4 presents the evaluation 

framework and discusses the experimental results.  

4.1 Introduction 

In recent years, the Internet of Things (IoT) has received much attention and 

increasingly affects how we live [156][157][158][159]. Based on the interactions 

with multiple sensor devices, mobile computing devices, and advanced 

communications technologies, IoT provides smart and ubiquitous services for 

humans [159][160]. A smart environment is one of the application scenarios of 

IoT. The primary goal of the smart environment is to sense changes in the 

environment and to automatically adapt and act based on the changes, especially 

sensing and responding to human activities[156].  

Among all the technologies used in a smart environment (e.g., infra-red sensors, 

contact doors and video cameras), sound event detection plays an important role. 

Specifically, since our daily life is filled with a rich variety of environmental 
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sound events, such as dog barks, footsteps, baby crying and thunder, an effective 

sound event detection approach is beneficial to sense changes in the environment 

[161][162][163]. For example, if the sound of thunder is detected, it means that it 

is raining outside; if the sound of footsteps is detected, it means that someone is 

moving. Due to sounds are physically intangible, sound event detection does not 

specify the operation that produces a sound event to be physically at a particular 

place [164][165][166]. 

Sound event detection is to identify sound events in a continuous sound signal, 

which can be broadly classified to monophonic sound event detection and 

polyphonic sound event detection [174][176]. Monophonic sound event detection 

is to recognise the most dominant of sound events in a sound segment, whereas 

polyphonic sound event detection recognises all sound events (not only the most 

dominant sound event) in a sound segment [168][169][170][175]. In realistic 

scenarios, multiple sound events are very likely to overlap in time. For example, 

in Figure 4.1, car horn, footsteps, dog barking, and speech are interwoven in an 

urban sound segment. Thus, polyphonic sound event detection is more suitable for 

smart environment applications. 

Moreover, since sound events occur in unstructured environments, there are a 

large amount of environmental noise and overlapping sounds existing in sound 

segments. In addition, the acoustic characteristics of realistic sound events are 

variable. For example, although the barks of Labrador and Samoyed are different, 
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they all belong to the sound event named dog bark. The complexity of real-life 

environments reflects the great challenges of polyphonic sound event detection. 

 

 

Figure 4.1 - Sound events in a real-life scenario can occur in isolation or overlap. 

Due to the complexity of living environments, conventional classifiers (e.g., 

support vector machines), which are suitable for monophonic sound event 

detection, are not successful in polyphonic sound event detection [161]. 

Specifically, when monophonic sound event detection approaches are applied to 

polyphonic data, only one prominent sound event is detected. This will result in a 

loss of information in realistic environments [162]. Previous work for polyphonic 

sound event detection has chosen Mel Frequency Cepstrum Coefficient (MFCC) 

to characterise sound segments and uses Gaussian Mixture Model-Hidden Markov 

Models (GMM-HMMs) as classifiers with consecutive passes of the Viterbi 

algorithm [169][170][172][174][176]. 
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Recently, Deep Neural Networks (DNNs, such as Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs)) have dramatically improved the 

accuracy when solving complex problems (e.g., image recognition, speech 

recognition, and machine translation) [27][31]. Thus, numerous DNN-based 

approaches that are considered as the cutting-edge approaches have been 

developed for the sound event detection. CNN-based sound event detection 

approaches [177][178][179] have the ability to learn both time and frequency 

invariances using convolutional filters. However, this kind of approaches has 

difficulties in modelling long-lasting sound events (e.g., raining) [176]. RNN-

based sound event detection approaches [180][181][182][183] have the ability to 

learn long-term context information by integrating historical information in 

memory units. However, standard RNNs cannot easily capture the invariance in 

the frequency domain. 

In order to combine the strengths of both RNNs and CNNs, Convolutional 

Recurrent Neural Networks (CRNNs), which implements convolutional layers 

followed by recurrent layers, is developed [184][185]. However, all information 

in CRNNs is packed into a common hidden memory vector, in which all the 

historical information is mixed together. This results in the lack of the ability to 

solve the two critical issues in polyphonic sound event detection: (i) long-lasting 

sound event detection, and (ii) overlapping sound event detection. These two 

problems demand a network to have the abilities to capture the long-term 
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temporal context information and to reason the unique relational characteristic of 

the reference sound events. 

More recently, a new memory-based neural network called Relational Recurrent 

Neural Network (RRNN) is proposed in [171]. In RRNN, a new memory module 

called Relational Memory Core (RMC) is developed to memorise information for 

a long-term and perform complex relational reasoning with the information stored 

inside the memory module. Based on this novel memory module, the history 

information in RMC will be memorised for a long time and interacted with other 

context information in the history [171]. Thus, RRNN can be used to solve the 

aforementioned two issues in polyphonic sound event detection. 

In this chapter, we propose the use of RRNN for polyphonic sound event 

detection in real-life environments, called RRNN-SED. Since RRNN has the 

capacity to allow memories to interact across a sound segment, it is more capable 

of extracting temporal context information in the segment. The proposed RRNN-

SED can improve the detection accuracy of complex and varied sound events in 

real-life environments. The proposed RRNN-SED is evaluated on two datasets, 

and the experimental results show that the proposed RRNN-SED outperforms 

previous sound event detection approaches in terms of segment-based F-score and 

segment-based error rate. 

The rest of this chapter is organized as follows. Section 4.2 presents a literature 

review for sound event detection approaches. Section 4.3 introduces the 

architecture of RRNN, which is then utilized for polyphonic sound event 
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detection. Section 4.4 presents the evaluation framework used to measure the 

performance of different DNN architectures and discusses the experimental 

results. Section 4.5 presents conclusions. 

4.2 Related Work 

Polyphonic sound event detection involves detecting sound events in a sound 

segment and assigning them to the known labels [184]. There are no fixed patterns 

of sound events in reality. Different sound events may occur independently or 

overlap with other sound events. A polyphonic sound event detection approach 

aims to correctly and simultaneously detect all the overlapping events. Although 

identifying isolated sound events can be done with an appreciable accuracy in 

recent years, detecting a series of overlapping sound events is still a challenging 

task. An ideal sound event detection approach should be able to deal with such 

overlapping sound events.  

In the past decades, different approaches have been developed for polyphonic 

sound event detection. Early approaches relied on the combination of standard 

features (e.g., MFCC) and standard machine learning algorithms, such as support 

vector machines or GMM-HMMs. Annamaria et al. [172] presented an acoustic 

event detection approach based on HMMs. The size and topology of the proposed 

approach are chosen based on a study of isolated events recognition. Toni et al. 

[173] proposed a GMM-based sound event detection approach, which utilises 

both context-dependent acoustic models and count-based event priors to improve 



88 Polyphonic Sound Event Detection 

 

the detection accuracy. By using the coupled matrix factorisation of spectral 

representations and class activity annotations, Annamaria et al. [174] developed a 

sound event detection approach to detect sound events in real-life recordings. 

However, these approaches are suitable for monophonic sound event detection but 

not for polyphonic sound event detection. 

Recently, since DNN has achieved great success in image and speech domain, 

numerous deep learning approaches have been proposed for sound event 

detection. In [175], a multi-label DNN is proposed for detection of temporally 

overlapping sound events in realistic environments. However, there are two 

limitations exist in this proposed DNN structure: (i) the lack of ability to extract 

time and frequency invariance, (ii) the lack of ability to memorise long-term 

context information [176]. Thus, two types of powerful neural networks (CNNs 

and RNNs) are introduced to sound event detection. 

Multiple convolutional filters are utilised by the CNN structure so that they can 

learn both time and frequency invariance. Il-Young et al. [177] used both short- 

and long-term audio signals simultaneously as the input of CNNs to maximise 

detection performance. Yukun et al. [178] calculated Mel-band energy for the 

merged multi-channel audio signals and train the sound event detection model 

using a CNN. A CNN-based sound event detection approach coupled with two 

loss functions (the weighted loss function and multi-task loss function) is 

proposed in [179], where the weighted loss function is used to solve the problem 

of imbalanced data (in background/foreground classification) and the multi-task 
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loss function is designed to model class distribution and temporal structures of 

sound events simultaneously. However, CNN structures have difficulties in 

modelling long-lasting sound events (e.g., raining). 

On the contrary, by integrating early time information in memory units, RNNs can 

learn long-term temporal context information from the input signals. Sharath et al. 

[180] proposed the use of spatial and harmonic features in combination with Long 

Short Term Memory (LSTM) neural network for automatic sound event detection. 

Toan et al. [181] presented a sound event detection approach for real-life audio 

using log Mel-band energy features and bi-directional RNN structure. 

Giambattista et al. [182] presented a Bi-directional Long Short-Term Memory 

(BLSTM) based approach for the polyphonic sound event detection. Since real-

life sound segments consist of multiple sound events, the acoustic features will be 

mapped to binary activity indicators of each sound event class by using a single 

multilabel BLSTM. A polyphonic sound event detection approach for stereo 

(multichannel) audio signals is proposed in [183], which uses log Mel-band 

energy features with LSTM. Besides the left channel and right channel, it also 

constructs two more channels (mean channel and different channel) for feature 

extraction. Then the detection is based on the fusion results of these channels. 

However, standard RNNs do not easily capture the invariance in the frequency 

domain. 

In recent years, a combination of CNNs and RNNs, named CRNN and integrate 

the strengths of both RNNs and CNNs, has shown to outperform previous sound 
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event detection approaches. Giambattista et al. [184] proposed to use low-level 

spatial features extracted from stereo audios and use Gated Recurrent Units 

(GRUs) for CRNN-based sound event detection. Sharath et al. [185] proposed to 

use low-level spatial features extracted from multichannel audio for CRNN-based 

sound event detection approach. However, all information in the previous CNN or 

RNN structures is packed into a common hidden memory vector, which 

potentially makes compartmentalisation and relational reasoning more difficult.  

More recently, a memory-based neural network RRNN is proposed in [171]. 

RRNN employs multi-head attention for memory interaction so that the network 

has the ability to perform complex relational reasoning with the information 

‘remembered’. Based on its novel memory structure and relational reasoning 

ability across sequence information, RRNN can be utilized for polyphonic sound 

event detection. For long-lasting or overlapping sound events, RRNN can learn 

the unique characteristics of different environmental sound events and distinguish 

them by using its RMC structure [171]. 

This chapter proposed a novel RRNN-based approach for polyphonic 

environmental sound event detection. Since RRNN has the capacity to allow 

memories to interact across a sound segment, it is more capable of extracting 

temporal context information in the sound segments. The proposed RRNN-SED 

can improve the detection accuracy of polyphonic sound events in real-life 

environments. 
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4.3 Models 

In this section, the Relational Recurrent Neural Network (RRNN) is introduced 

first. Then, the proposed RRNN-SED approach is presented in detail. 

4.3.1 Relational Recurrent Neural Networks 

In order to enable the network to perform complex relational reasoning with the 

information ‘remembered’, RRNN employs multi-head attention for memory 

interaction. As shown in Figure 4.2, the Relational Memory Core (RMC) in 

RRNN modifies the structure of memory cell in a standard Long Short Term 

Memory network (LSTM) [171].  

 

Figure 4.2 - Relational Memory Core 

Attention mechanisms have become an integral part of sequence modelling tasks, 

which is to select the most pertinent piece of information rather than all available 

information to the current state [186]. Thus, the attention mechanism can be 

described as the process of mapping a query and a set of key-value pairs to an 

output, where the query, key, value, and output are all vectors [186]. The output is 

calculated as a weighted sum of the value, where the weight assigned to each 
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value is calculated by querying a compatibility function with the corresponding 

key. 

The multi-head dot product attention (MHDPA) is a self-attention algorithm 

proposed in [186]. Since the attention function is calculated on a set of queries 

simultaneously, all queries, keys, and values will be stored respectively in 

matrices Q, K, and V. The dot products of the query (i.e., dot-product attention) is 

calculated with all keys K, the dimensionality of the key vectors dk, and a softmax 

function, which is used to obtain the weights on the values. Equivalently, 

 
𝐴(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (4.1) 

Using a linear projection, all queries, keys, and values can be constructed 

with 𝑄 = 𝑀𝑊𝑞 , 𝐾 = 𝑀𝑊𝑘, and 𝑉 = 𝑀𝑊𝑣, where 𝑊∗ denotes the weight matrix, 

and 𝑀 is a matrix of memories, which is randomly initialized. The dot-product 

attention can be calculated with the following equation: 

 
𝐴𝜃(𝑀) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑀𝑊𝑞(𝑀𝑊𝑘)𝑇

√𝑑𝑘

) 𝑀𝑊𝑣, where 𝜃 = (𝑊𝑞 , 𝑊𝑘, 𝑊𝑣) (4.2) 

The output of 𝐴𝜃(𝑀), which can be presented as 𝑀′, is a matrix with the same 

dimensionality as  𝑀 .  𝑀′  can be considered as the update of  𝑀 , where each 

element 𝑚𝑒
′  in 𝑀′  is consisted of information from the matrix of memories 𝑀 . 

Thus, in one step of the attention, each memory is updated with information from 
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other memories, and learning how to shuttle information from memory to memory 

via the parameters 𝑊𝑞, 𝑊𝑘 and 𝑊𝑣. 

RRNN is based on the multi-head attention mechanism, where there are 𝑙 heads 

exist in the input, and the attention mechanism is processed on each head. In other 

words, the algorithm will generate 𝑙 sets of queries, keys, and values for 𝑙 heads, 

and then calculates a linear projection from the original memory for each head 

using unique parameters. For example, 𝑀 is a 𝑁ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑁𝑤𝑖𝑑𝑡ℎ memory matrix, 

and the number of the attention head is 2, hence 𝑀1
′ = 𝐴𝜃(𝑀) and 𝑀2

′ = 𝐴𝜗(𝑀), 

where  𝑀1
′  and  𝑀2

′  are  𝑁ℎ𝑒𝑖𝑔ℎ𝑡 2⁄ × 𝑁𝑤𝑖𝑑𝑡ℎ  matrices,  𝜃  and  𝜗  denote unique 

parameters for linear projections to process the queries, keys, and values. 𝑀′ =

[𝑀1
′ ; 𝑀2

′ ] is a row-wise concatenation for 𝑀′. In general, the multi-head attention 

allows memory to share different information and focus on the same information 

from different perspectives (i.e., heads). 

Suppose there is a temporal dimension with new observations at each time step t. 

Since  𝑀  and  𝑀′  have the same dimensionality, the recurrence will randomly 

initialise 𝑀, and then update it with 𝑀′ at each time step. Thus, Equation (4.2) can 

be rewritten as: 

 
𝑀′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑀𝑊𝑞([𝑀;  𝑥]𝑊𝑘)𝑇

√𝑑𝑘

) [𝑀; 𝑥]𝑊𝑣 (4.3) 
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In RRNN, the memory matrix 𝑀 is considered as a matrix of cell states 𝐶 for a 

standard LSTM. Specifically, the operations on each 𝑚𝑒,𝑡 in RRNN replace the 

operations on each 𝑐𝑒,𝑡 in a standard LSTM. Equivalently, 

 𝑠𝑒,𝑡 = (ℎ𝑒,𝑡−1, 𝑚𝑒,𝑡−1) (4.4) 

 𝑓𝑒,𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑒,𝑡−1 + 𝑏𝑓) (4.5) 

 𝑖𝑒,𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑒,𝑡−1 + 𝑏𝑖) (4.6) 

 𝑜𝑒,𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑒,𝑡−1 + 𝑏𝑜) (4.7) 

 𝑚𝑒,𝑡 = 𝑓𝑒,𝑡𝑚𝑒,𝑡−1 + 𝑖𝑒,𝑡𝑔𝜑(𝑚𝑒,𝑡
′ ) (4.8) 

 ℎ𝑒,𝑡 = 𝑜𝑒,𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑚𝑒,𝑡) (4.9) 

 𝑠𝑒,𝑡+1 = (𝑚𝑒,𝑡, ℎ𝑒,𝑡) (4.10) 

where  𝑚𝑒,𝑡  is the eth row in  𝑀  at time step t, and  𝑔𝜑  denotes a post-attention 

processor (i.e., the output of Equation (4.3)). Since the parameters 𝑊∗, 𝑈∗ and 𝜑 

are shared for each 𝑚𝑒, the modifications of the number of memories do not affect 

the number of parameters. In other words, it just modifies the number of 

memories (i.e., the total number of elements in the memory matrix 𝑀) and the size 

of each memory (i.e., the dimensionality of 𝑚𝑒). Comparing with the structure of 

LSTM introduced in Section 2.2.2, the main change in RRNN is that it replaced 

the candidate value c in LSTM with the new memory cell states  𝑚𝑒.  
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4.3.2 Proposed Approach 

The proposed RRNN-SED approach follows the state-of-the-art CRNN 

architecture in the sound event detection area. The proposed RRNN-SED consists 

of four modules: (i) a time-frequency representation module to convert a sound 

segment into Mel-spectrograms; (ii) a CNNs module to extract the time and 

frequency invariant features; (iii) a RRNNs module to extract long-term 

dependency and overlapping sound event information across a sound segment; 

(iv) a prediction module to estimate the probabilities of each sound event and 

output the final prediction by binarizing these probabilities over a constant 

threshold. Figure 4.3 illustrates the framework of proposed RRNN-SED approach. 

In the first module, a raw stereo sound segment is firstly split into frames. Then, 

Mel-filterbanks are applied to these frames to generate the Mel-spectrogram for 

each sound channel. After this, an input sound segment is represented into a set of 

MF×T×CH Mel-spectrograms, where MF is the number of Mel-filterbanks, T is 

the number of frames of the sound segment, CH is the number of sound channels.  

The Mel-spectrograms generated by the first module are then fed into the CNNs 

module to extract the time and frequency invariant features. Each CNN layer 

utilises a certain number of convolutional filters to generate the feature maps. 

Then, max pooling is used to reduce the dimensionality of the data and provide 

time and frequency invariance. To preserve the time dimension, the max-pooling 

operation is calculated with zero-padding along the frequency axis. The output of 
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the CNNs module from the last CNN layer is a F×MF'×T tensor, where F is the 

number of convolutional filters in the last CNN layer, MF' is the number of Mel-

filterbanks remaining after the max pooling operation in the last CNN layer. This 

output tensor is then reshaped into a (F∙MF') ×T feature sequence by 

concatenating along the frequency axis to produce the final output. 

 

Figure 4.3 - Relational recurrent neural networks for polyphonic sound event detection 

The concatenated (F∙MF') ×T tensor is then fed into the RRNNs module as a 

sequence of features for each frame to extract the long-term context information 

for sound events. The bi-directional technology is applied to extract the context 

information along both forward and backward time dimension. The output of the 

RRNNs module from the last RRNN layer is an R×T sequence, where R is the 

size of the output in each frame. 
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The prediction module consists of a fully-connected time-distributed layer, which 

takes the output sequence from the RRNNs module as input. At each frame, Nl 

sigmoid units are applied to estimate the probabilities for each sound event, where 

Nl is the total number of reference labels in the dataset. These probabilities are 

then binarised by a constant threshold to predict whether a reference sound event 

happened at this frame or not. A binary cross-entropy loss function is applied at 

each frame for each reference sound event to measure the predictions. The output 

of the prediction module is an Nl×T sequence with binary values. For a sound 

event, if it happened at the frame, it will be denoted as “1”; otherwise, it will be 

denoted as “0”. 

The prediction results are evaluated by two widely used metrics for polyphonic 

sound event detection, the segment-based F-score and segment-based error rate, 

which will be introduced in detail in Section 4.4.2 Evaluation Metrics. Batch 

normalisation and drop out technologies are also applied after every layer of the 

proposed RRNN-SED approach. 

The configuration used in the proposed network has several points of similarity 

with the networks presented in [162][184], as all of them are based on the CRNN 

architecture. The main difference is that instead of GRU or LSTM, RRNNs are 

used to improve the relational reasoning ability of the proposed network, which 

significantly improved the performance of sound event detection for complex and 

varied sound events in terms of segment-based F-score and segment-based error 

rate. 
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4.4 Evaluation 

In order to test the proposed approach, a series of experiments have been done on 

two widely used polyphonic sound event detection datasets: TUT Sound Events 

2016 dataset (TUT-SED 2016) [187] and TUT Sound Events 2017 dataset (TUT-

SED 2017) [187]. The experimental results are evaluated by two widely used 

metrics: segment-based F-score [188] and segment-based error rate [189]. 

4.4.1 Datasets 

The proposed approach is tested on two polyphonic sound event detection 

datasets: Tampere University of Technology Sound Events 2016 dataset (TUT-

SED 2016) [187] and Tampere University of Technology Sound Events 2017 

dataset (TUT-SED 2017) [187]. Both datasets are used as the competition datasets 

in an IEEE Audio and Acoustic Signal Processing Challenge event, named 

Detection and Classification of Acoustic Scenes and Events (DCASE) challenges 

[190]. 

The TUT-SED 2016 dataset is captured in real-life environments, which mean the 

number of overlapping sound events at each time is uncontrolled, neither in 

training nor in test recordings. This dataset consists of recordings from two 

acoustic scenes: home (indoor) and residential area (outdoor). Each recording was 

captured in a different location (e.g. different homes and different streets) with 3-5 

minutes long, 44.1 kHz sampling rate and 24-bit resolution. Each recording is 
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annotated with 18 different sound events (e.g. object impact, people walking and 

birds singing) together with the start time and end time of each event. 

The TUT-SED 2016 dataset is officially split into two subsets: development 

dataset and evaluation dataset. The four-fold cross-validation setup published 

along with the dataset is used in the experiments. 25% of the training recordings 

are assigned for validation in the training stage of the proposed approach. Since 

the proposed approach discards the information about the scene, we train a single 

model for both scenes, rather than train two separate models for each scene. 

The TUT-SED 2017 dataset is also captured in real-life environments, but only in 

the street acoustic scenes. Each scene contains various levels of traffic and human 

activity. The recordings were captured in different streets with 3-5 minutes long, 

44.1 kHz sampling rate and 24-bit resolution. Each recording is annotated with six 

sound events (e.g. car, children and people walking) together with the start time 

and end time of each event. The activities annotated with the same sound event 

are variable. For example, “car passing by”, “car engine running” and “car idling” 

are all annotated with “car” label, which means the acoustic characteristics of the 

same annotated sound events may vary. An official five-fold cross-validation 

setup is also published along with the TUT-SED 2017 dataset, which is used in 

the experiments. 
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4.4.2 Evaluation Metrics 

In this section, two segment-based evaluation metrics are used to evaluate the 

performance of experimental results: segment-based F-score [188] and segment-

based error rate [189]. Both metrics use segments of one-second length to 

compare the system output with the ground truth. They are also the official 

metrics used in the DCASE challenges. 

The segment-based F-score is used as the primary evaluation metric. For each 

segment in the test dataset, Precision (P) and Recall (R) are calculated from the 

accumulated intermediate statistics (i.e., the number of true positive (TP), false 

positive (FP) and false-negative entries (FN)). In each sound segment k, TP 

presents the events indicated as active by both the ground truth and the output, FP 

presents the events indicated as active by the output but inactive by the ground 

truth, and FN presents the events indicated as inactive by the output but active by 

the ground truth. Thus, F-score can be formulated as: 

 
𝐹 =

2 ∙ 𝑃 ∙ 𝑅

𝑃 + 𝑅
, 

 𝑤ℎ𝑒𝑟𝑒 𝑃 =
∑ 𝑇𝑃(𝑘)

∑ 𝑇𝑃(𝑘) + ∑ 𝐹𝑃(𝑘)
, 𝑅 =

∑ 𝑇𝑃(𝑘)

∑ 𝑇𝑃(𝑘) + ∑ 𝐹𝑁(𝑘)
 

(4.11) 

The other evaluation metric is segment-based error rate (ER), in which four 

intermediate statistics (i.e., the number of substitutions (S), insertions (I), 

deletions (D) and reference events (N)) are calculated per segment. In each sound 

segment k, a substitution (S) is the system output indicating as activing a wrong 
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label event, which means the system did not detect the correct event (false 

negative for the correct class) but detected something (false positive for another 

class). Insertions (I) are the false-positive events after subtracting the 

substitutions. Deletions (D) are the false-negative events after subtracting the 

substitutions, and referent events (N) are the total number of events in the ground 

truth. Equivalently, 

 
𝐸𝑅 =

∑ 𝑆(𝑘) + ∑ 𝐼(𝑘) + ∑ 𝐷(𝑘)

∑ 𝑁(𝑘)
 (4.12) 

A more detailed explanation of the segment-based F-score and the segment-based 

error rate in multi-label setting can be found in [188]. 

4.4.3 Experiments 

The experimental setups and the evaluation results are presented in this section. 

All the experiments are following the official cross-validation setup published 

along with the dataset. All the reported results are calculated on the test datasets. 

The experiments are executed on a deep learning workstation with four GTX 1080 

Ti GPUs, 128GB RAM, and Intel Core i9 CPU. The proposed RRNN-SED 

approach is implemented in Python with the DeepMind Sonnet library [191], 

which is a deep learning library built on top of TensorFlow [192].  

All the sound segments in both TUT-SED 2016 and TUT-SED 2017 datasets are 

preprocessed with the same procedure in the time-frequency representation 

module of the proposed RRNN-SED approach. The raw sound recordings are 
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firstly split by a 50% overlapping window. Each window contains 2048 samples 

(approximate 46 milliseconds per frame with 44.1 kHz sample-rate). Then, the 

sound recordings are split into sound segments with 256 frames each as the 

training samples. After that, standard 40 Mel-filterbanks are applied on each 

frame to calculate log Mel-band energy and generate the Mel-spectrogram as the 

acoustic features. At the end of the preprocessing, the sound segments are 

represented as a set of Mel-spectrograms from each sound channel.  

As introduced in Section 4.3.2, the CNNs module will take the Mel-spectrograms 

as input to extract the time and frequency invariant features. These features will 

be fed into the RRNNs module to extract temporal context information and to 

reason the unique relational characteristic of the target sound event. The 

prediction module will take the output sequence from the RRNNs module to 

predict which sound events happened in each frame. 

The proposed RRNN-SED is trained with Adam [193] optimiser and binary cross-

entropy loss function. Batch normalisation [194] and drop out [195] technologies 

are also applied in the proposed RRNN-SED approach to improving the 

generalisation ability. Training is stopped if the value of loss function does not 

decrease for 100 epochs. The binary threshold is set to 0.5 during the testing. 
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Table 4.1 - The configurations of RRNN-SED for each dataset 

 
TUT-SED 2016 TUT-SED 2017 

CNN RRNN CNN RRNN 

CNN layers 3 - 3 - 

pool size (5,2,2) - (5,2,2) - 

RRNN layers - 2 - 2 

feature maps/ 

hidden units 
96 32 128 32 

memory slots - 2 - 4 

head size - 16 - 16 

number of heads - 2 - 2 

frame size (ms) 46 46 

frame overlap 50% 50% 

Mel-filterbanks 40 40 

sequence length 

(frames) 
128 256 

batch size 64 128 

sigmoid layer 32 32 

dropout rate 0.5 0.5 
 

 

Table 4.1 summarises the configurations of the proposed RRNN-SED approach 

for each dataset. The inputs are stereo sound segments from datasets, which 

contains two sound channels. The raw sound segments are firstly split into 46 

milliseconds long (2048 sample points of a 44100Hz sample-rate recording) 

frames with 50% overlap. Then, the acoustic features are calculated by using 
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standard 40 Mel-filterbanks to generate the Mel-spectrogram for each sound 

channel. (3×3) kernels are used for the CNN layers. The max-pooling of each 

CNN layer is five, two, and two, respectively. After that, two bi-directional 

RRNNs are utilised for extracting temporal information through the sound 

segments and a fully-connected time-distributed layer is used to produce final 

detection results. 

Table 4.2 - Experimental results on TUT-SED 2016 dataset 

 
TUT-SED 2016 

segment-based F-score  segment-based ER 

Official baseline 0.343 0.8773 

Adavanne et al. [169] 0.478 0.8051 

Lai et al. [198] 0.345 0.9287 

Vu and Wang [200] 0.419 0.9124 

RRNN-SED 0.475 0.7459 
 

 

The proposed RRNN-SED approach is compared with the official baselines and 

the top three competition results from the corresponding DCASE challenge for 

each dataset. The official baselines are published together with the datasets, which 

is based on a multilayer perceptron architecture with two dense layers of 50 

hidden units per layer. The details about the baselines can be found here [190]. 

The top three competition results are selected from the DCASE challenge 2016 

and 2017 official evaluation servers, which report all the results during the 
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competition. The technical reports about each selected approach can be found here 

[196][197]. 

Table 4.2 and Table 4.3 list the experimental results of the best performing (based 

on the validation data) of the proposed approach, and other reference approaches. 

As shown in the tables, considering both metrics, the proposed approach 

consistently outperforms other reference approaches on the two datasets in terms 

of the segment-based F-score and the segment-based error rate. 

Table 4.3 - Experimental results on TUT-SED 2017 dataset 

 
TUT-SED 2017 

segment-based F-score  segment-based ER 

Official baseline 0.428 0.9358 

Kroos and Plumbley [199] 0.449 0.8979 

Adavanne and Virtanen [161] 0.417 0.7914 

Dang et al. [200] 0.442 1.0318 

RRNN-SED 0.461 0.7973 
 

 

The experimental results shown in Table 4.2 and Table 4.3 indicate that the 

proposed RRNN-SED approach has a better performance on distinguishing 

overlapped sound events. When different sound events overlap with each other, 

the acoustic characteristics of them may heavily mix together within the raw 

sound signals. Thus, it is hard to untangle these acoustic characteristics of 

different sound events and detect them accurately. In addition, as the datasets are 
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recorded in real-life environments, background noises and irrelevant sounds are 

also mixed inside the raw sound signals, which makes the polyphonic sound event 

detection problem more complicated. 

The advantage of RRNN is that it enables historical information to interact with 

each other within the Relational Memory Core (RMC). Inside the RMC, the 

Multi-Head Dot Product Attention (MHDPA) mechanism is applied. Thus, during 

the interaction of historical information inside the RMC, the features that are more 

discriminatively reflecting the acoustic characteristics of reference sound events 

will be highlighted, whereas the irrelevant features will be ignored. This special 

designed RMC helps the proposed RRNN-SED gain better performance when 

facing overlapped sound events. 

4.5 Conclusions 

In this chapter, the RRNN-SED approach is developed, which utilises Relational 

Recurrent Neural Network (RRNN) for polyphonic sound event detection in real-

life environments. Since RRNN employs multi-head self-attention inside 

Relational Memory Core (RMC) for memory interaction, it is more capable of 

performing complex relational reasoning with the information ‘remembered’. 

Because of its novel memory structure and relational reasoning ability across a 

sequence, RRNN is utilised for polyphonic sound event detection to achieve better 

results. Specifically, for long-lasting or overlapping sound events, RRNN can 

learn the unique acoustic characteristics of different sound events and distinguish 
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them inside the relational memory core, in which the historical information can 

interact with each other with the self-attention mechanism. For the acoustic 

characteristics of sound events, the information that can distinguish a sound event 

from others will be highlighted by the self-attention mechanism, whereas other 

irrelevant information will be ignored. Thus, the proposed RRNN-SED can 

improve the detection accuracy of complex and varied sound events in real-life 

environments. 

The developed RRNN-SED is evaluated on two public datasets recorded from 

real-life environments. The performance of RRNN-SED is compared with the 

approaches presented in the DCASE Challenge. The experimental results show 

that the proposed approach outperforms previous polyphonic sound event 

detection approaches in terms of segment-based error rate and segment-based F-

score. 

As the relational memory core is much complex than the original memory cell in 

Long Short Term Memory (LSTM) networks, RRNN-SED will consume more 

computational resources than LSTM, which may limit the deployment of RRNN-

SED in real-world scenarios. 

Since polyphonic sound event detection can provide important information about 

the changes in the real-world environment, the proposed RRNN-SED can be 

widely extended into many other tasks such as the video caption. A detailed 

discussion about RRNN-SED for video caption can be found in Section 5.2 Future 

works. 



 

Chapter 5 Conclusions and Future Works 

This final chapter firstly summarises each previous chapter and highlights the 

major contributions of this thesis. At the end of this chapter, future works are 

discussed for continuous research. 

5.1 Research Overview and Summary 

Machine learning is a blooming and fast-growing research area, which covers a 

vast of diverse sub-fields and real-world applications. Two novel approaches are 

developed to address two crucial theoretical issues in deep neural networks and 

clustering, which are the two most popular subfields in the machine learning area. 

In addition, another novel approach is developed for polyphonic sound event 

detection, which is one of the most important applications in the audio processing 

area. Each developed approach is explicitly presented in the corresponding 

chapter. 

Chapter 2 presents the developed Large Margin Recurrent Neural Networks 

(LMRNNs), which fulfils the first research objective. Since RNNs is one of the 

most successful approaches for processing sequential data, most of the state-of-

the-art audio processing models are based on RNNs. However, in the most 

common multi-class classification tasks, most of the current RNNs employ the 

cross-entropy loss function, which does not fully benefit from the information 

provided by the data labels. This is because the cross-entropy loss function only 
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considers the target category without considering the competing categories during 

the training processes. 

 To solve this problem, LMRNNs is developed, which utilises a large margin 

discriminative principle as a heuristic term to improve the discriminative ability of 

original RNNs. A detailed explanation about the drawback of the cross-entropy 

loss function can be found in Section 2.3.1. Section 2.3.2 presents the proposed 

margin term. Section 2.3.3 mathematically discusses the behaviour of the 

proposed margin term. Section 2.4 tests the proposed LMRNNs with two widely 

used datasets and further discussed the behaviour of margin term in the 

experiments. 

Chapter 3 presents the developed, Robust Multi-View Continuous Subspace 

Clustering (RMVCSC) approach, which fulfils the second research objective. 

Multi-view clustering is one of the most efficient ways to analyse multi-view data. 

Multi-view subspace clustering is the most promising approach to do so, as this 

approach can reveal the underlying cluster structure in multi-view data from a 

learned representation inside a common subspace. However, most existing multi-

view subspace clustering algorithms are based on k-means or spectral clustering, 

which requires to manually set the number of clusters beforehand. This limited the 

further advancement of multi-view subspace clustering. 

To solve this problem, a Robust Multi-View Continuous Subspace Clustering 

(RMVCSC) approach is developed. RMVCSC utilises the recently developed 

Robust Continuous Clustering (RCC), which does not need to know the number 
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of clusters in advance and can efficiently achieve high accuracy even the data is in 

high-dimension. The proposed RMVCSC extends RCC into multi-view setting, 

which optimises a novel continuous objective in the simultaneously learned 

common representation subspace across multiple views. RMVCSC is optimized in 

an alternating minimisation scheme, in which the clustering result and the 

common representation subspace are simultaneously optimised. By using robust 

redescending estimators, the proposed RMVCSC is not prone to stick into bad 

local minima even with outliers in data. Section 3.3 introduces the proposed 

RMVCSC. Section 3.4 gives a detailed optimisation process. Section 3.5 analyses 

the convergence behaviour and Section 3.6 tests the proposed RMVCSC on three 

widely used multi-view datasets. 

Chapter 4 presents the developed polyphonic Sound Event Detection approach 

based on the recent developed Relational Recurrent Neural Network (RRNN), 

named RRNN-SED. As reviewed in Section 4.2, the current state-of-the-art 

approaches for polyphonic Sound Event Detection are based on Convolutional 

Recurrent Neural Network (CRNN). However, one limitation of CRNN based 

approaches is that all the historical information is mixed together into the hidden 

state vector. This results in the disadvantage of reasoning the unique relational 

characteristic of overlapping sound events.  

To solve this problem, RRNN-SED is developed, which exploit the strength of 

RRNN in complex relational reasoning with the information stored inside the 

memory module, called Relational Memory Core (RMC). The history information 



5.2 Future Works 111 

 

in RMC will be memorised for a long time and interacted with other context 

information in history. Thus, the proposed RRNN-SED is effective and efficient 

in extracting temporal context information and reasoning the unique relational 

characteristic of the target sound events. Section 4.3.1 introduces RRNN and 

explains the mechanism of RMC. Section 4.3.2 presents the proposed RRNN-

SED approach in detail. Section 4.4.3 tests RRNN-SED on two competition 

datasets and evaluate RRNN-SED performance in terms of segment-based F-

score and segment-based error rate.  

To sum up, this thesis developed three novel approaches in machine learning and 

audio processing research areas. These novel approaches are (i) Large Margin 

Recurrent Neural Networks in Chapter 2; (ii) Robust Multi-View Continuous 

Subspace Clustering in Chapter 3; (iii) Relational Recurrent Neural Network 

based polyphonic sound event detection (RRNN-SED) approach in Chapter 4. All 

these three developed novel approaches have already been submitted to or 

published on top journals. 

5.2 Future Works 

Three novel approaches have been developed in machine learning and audio 

processing areas in this thesis. However, the potential of these developed 

approaches has not been fully explored. In this section, several research directions 

are discussed to extend the potential of these developed approaches. 
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The first research direction is Neural Architecture Search (NAS). NAS aims to 

automatically design the architecture of Deep Neural Networks, which is one of 

the critical aspects that affect DNN’s performance [201]. Although DNNs are 

dominating many research areas, such as audio processing, video processing, and 

machine translation, most of the current DNN architectures are designed manually 

by human experts [202]. Such designing process is extremely error-prone and 

time-consuming [201]. NAS can automate this process and achieve comparable 

performance with human experts [203]. One of the key problems in NAS is how 

to accelerate the evaluation process of the potential architectures, as training a 

DNN is usually time-consuming [201][204][205]. As discussed in Chapter 2, the 

proposed large margin term in Large Margin Recurrent Neural Network can 

navigate the convergence process during training, which may be extended to NAS 

to help to accelerate the evaluation process. 

The second research direction is Active Learning, in which the proposed Robust 

Multi-View Continuous Subspace Clustering (RMVCSC) approach can be 

extended. Active Learning is a special case of semi-supervised learning [4][206]. 

Different from other semi-supervised learning approaches, Active Learning aims 

to interactively select the most informative and representative samples for the 

users or experts to label [207]. This is a very efficient way to label a large amount 

of data while reducing the labelling cost [208]. Active Learning usually consists 

of two stages [209]. The first stage is to select the most informative and 

representative samples from the unlabelled dataset, which is usually done by 
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clustering approaches [168][210]. Clustering approaches can group the unlabelled 

data into clusters based on given similarity criteria. The cluster centres are 

naturally the most representative samples of the corresponding cluster [211]. The 

second stage is to query the users or experts to label the selected data. Then, the 

data in the same cluster will automatically get the same label as the cluster centre. 

It is obvious that the clustering step is the most critical step in this process, in 

which the proposed RMVCSC can help to improve the clustering accuracy by 

comprehensively exploit information from multiple views of data. 

The third research direction is the video caption. Video caption aims to generate 

natural language descriptions for video recordings [212], which can be widely 

used in video information retrieval [213] and video understanding [214]. Current 

research on video caption is mainly focusing on visual information while ignoring 

the audio information [215][216][217]. However, audios in a video recording is 

an important information source about what is happening in this video [218]. 

Sometimes, audios can provide additional information for Video Caption. For 

example, footsteps may mean a person is approaching, while this person may not 

necessarily appear in the visual stream. Thus, how to exploit the audio 

information is one of the key problems in video caption[219]. Sound event 

detection is one of the solutions. The proposed Relational Recurrent Neural 

Network based polyphonic Sound Event Detection (RRNN-SED) approach can 

help to detect all the overlapping sound events in a video, which will help to 

improve the generation of video captions. 
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In summary, the proposed approaches in this thesis can be further extended to 

many research directions, such as Active Learning, Neural Architecture Search, 

and Video Caption. 
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