11 research outputs found

    Decomposition Methods for Nonlinear Optimization and Data Mining

    Full text link
    We focus on two central themes in this dissertation. The first one is on decomposing polytopes and polynomials in ways that allow us to perform nonlinear optimization. We start off by explaining important results on decomposing a polytope into special polyhedra. We use these decompositions and develop methods for computing a special class of integrals exactly. Namely, we are interested in computing the exact value of integrals of polynomial functions over convex polyhedra. We present prior work and new extensions of the integration algorithms. Every integration method we present requires that the polynomial has a special form. We explore two special polynomial decomposition algorithms that are useful for integrating polynomial functions. Both polynomial decompositions have strengths and weaknesses, and we experiment with how to practically use them. After developing practical algorithms and efficient software tools for integrating a polynomial over a polytope, we focus on the problem of maximizing a polynomial function over the continuous domain of a polytope. This maximization problem is NP-hard, but we develop approximation methods that run in polynomial time when the dimension is fixed. Moreover, our algorithm for approximating the maximum of a polynomial over a polytope is related to integrating the polynomial over the polytope. We show how the integration methods can be used for optimization. The second central topic in this dissertation is on problems in data science. We first consider a heuristic for mixed-integer linear optimization. We show how many practical mixed-integer linear have a special substructure containing set partition constraints. We then describe a nice data structure for finding feasible zero-one integer solutions to systems of set partition constraints. Finally, we end with an applied project using data science methods in medical research.Comment: PHD Thesis of Brandon Dutr

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Advances in Discrete Differential Geometry

    Get PDF
    Differential Geometr

    Advances in Discrete Differential Geometry

    Get PDF
    Differential Geometr

    Tracing back the source of contamination

    Get PDF
    From the time a contaminant is detected in an observation well, the question of where and when the contaminant was introduced in the aquifer needs an answer. Many techniques have been proposed to answer this question, but virtually all of them assume that the aquifer and its dynamics are perfectly known. This work discusses a new approach for the simultaneous identification of the contaminant source location and the spatial variability of hydraulic conductivity in an aquifer which has been validated on synthetic and laboratory experiments and which is in the process of being validated on a real aquifer

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods
    corecore