7 research outputs found

    Multi-Policy Decision Making for Reliable Navigation in Dynamic Uncertain Environments

    Full text link
    Navigating everyday social environments, in the presence of pedestrians and other dynamic obstacles remains one of the key challenges preventing mobile robots from leaving carefully designed spaces and entering our daily lives. The complex and tightly-coupled interactions between these agents make the environment dynamic and unpredictable, posing a formidable problem for robot motion planning. Trajectory planning methods, supported by models of typical human behavior and personal space, often produce reasonable behavior. However, they do not account for the future closed-loop interactions of other agents with the trajectory being constructed. As a consequence, the trajectories are unable to anticipate cooperative interactions (such as a human yielding), or adverse interactions (such as the robot blocking the way). Ideally, the robot must account for coupled agent-agent interactions while reasoning about possible future outcomes, and then take actions to advance towards its navigational goal without inconveniencing nearby pedestrians. Multi-Policy Decision Making (MPDM) is a novel framework for autonomous navigation in dynamic, uncertain environments where the robot's trajectory is not explicitly planned, but instead, the robot dynamically switches between a set of candidate closed-loop policies, allowing it to adapt to different situations encountered in such environments. The candidate policies are evaluated based on short-term (five-second) forward simulations of samples drawn from the estimated distribution of the agents' current states. These forward simulations and thereby the cost function, capture agent-agent interactions as well as agent-robot interactions which depend on the ego-policy being evaluated. In this thesis, we propose MPDM as a new method for navigation amongst pedestrians by dynamically switching from amongst a library of closed-loop policies. Due to real-time constraints, the robot's emergent behavior is directly affected by the quality of policy evaluation. Approximating how good a policy is based on only a few forward roll-outs is difficult, especially with the large space of possible pedestrian configurations and the sensitivity of the forward simulation to the sampled configurations. Traditional methods based on Monte-Carlo sampling often missed likely, high-cost outcomes, resulting in an over-optimistic evaluation of a policy and unreliable emergent behavior. By re-formulating policy evaluation as an optimization problem and enabling the quick discovery of potentially dangerous outcomes, we make MPDM more reliable and risk-aware. Even with the increased reliability, a major limitation is that MPDM requires the system designer to provide a set of carefully hand-crafted policies as it can evaluate only a few policies reliably in real-time. We radically enhance the expressivity of MPDM by allowing policies to have continuous-valued parameters, while simultaneously satisfying real-time constraints by quickly discovering promising policy parameters through a novel iterative gradient-based algorithm. Overall, we reformulate the traditional motion planning problem and paint it in a very different light --- as a bilevel optimization problem where the robot repeatedly discovers likely high-cost outcomes and adapts its policy parameters avoid these outcomes. We demonstrate significant performance benefits through extensive experiments in simulation as well as on a physical robot platform operating in a semi-crowded environment.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/150017/1/dhanvinm_1.pd

    Policy-Based Planning for Robust Robot Navigation

    Full text link
    This thesis proposes techniques for constructing and implementing an extensible navigation framework suitable for operating alongside or in place of traditional navigation systems. Robot navigation is only possible when many subsystems work in tandem such as localization and mapping, motion planning, control, and object tracking. Errors in any one of these subsystems can result in the robot failing to accomplish its task, oftentimes requiring human interventions that diminish the benefits theoretically provided by autonomous robotic systems. Our first contribution is Direction Approximation through Random Trials (DART), a method for generating human-followable navigation instructions optimized for followability instead of traditional metrics such as path length. We show how this strategy can be extended to robot navigation planning, allowing the robot to compute the sequence of control policies and switching conditions maximizing the likelihood with which the robot will reach its goal. This technique allows robots to select plans based on reliability in addition to efficiency, avoiding error-prone actions or areas of the environment. We also show how DART can be used to build compact, topological maps of its environments, offering opportunities to scale to larger environments. DART depends on the existence of a set of behaviors and switching conditions describing ways the robot can move through an environment. In the remainder of this thesis, we present methods for learning these behaviors and conditions in indoor environments. To support landmark-based navigation, we show how to train a Convolutional Neural Network (CNN) to distinguish between semantically labeled 2D occupancy grids generated from LIDAR data. By providing the robot the ability to recognize specific classes of places based on human labels, not only do we support transitioning between control laws, but also provide hooks for human-aided instruction and direction. Additionally, we suggest a subset of behaviors that provide DART with a sufficient set of actions to navigate in most indoor environments and introduce a method to learn these behaviors from teleloperated demonstrations. Our method learns a cost function suitable for integration into gradient-based control schemes. This enables the robot to execute behaviors in the absence of global knowledge. We present results demonstrating these behaviors working in several environments with varied structure, indicating that they generalize well to new environments. This work was motivated by the weaknesses and brittleness of many state-of-the-art navigation systems. Reliable navigation is the foundation of any mobile robotic system. It provides access to larger work spaces and enables a wide variety of tasks. Even though navigation systems have continued to improve, catastrophic failures can still occur (e.g. due to an incorrect loop closure) that limit their reliability. Furthermore, as work areas approach the scale of kilometers, constructing and operating on precise localization maps becomes expensive. These limitations prevent large scale deployments of robots outside of controlled settings and laboratory environments. The work presented in this thesis is intended to augment or replace traditional navigation systems to mitigate concerns about scalability and reliability by considering the effects of navigation failures for particular actions. By considering these effects when evaluating the actions to take, our framework can adapt navigation strategies to best take advantage of the capabilities of the robot in a given environment. A natural output of our framework is a topological network of actions and switching conditions, providing compact representations of work areas suitable for fast, scalable planning.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144073/1/rgoeddel_1.pd

    Topological Mapping and Navigation in Real-World Environments

    Full text link
    We introduce the Hierarchical Hybrid Spatial Semantic Hierarchy (H2SSH), a hybrid topological-metric map representation. The H2SSH provides a more scalable representation of both small and large structures in the world than existing topological map representations, providing natural descriptions of a hallway lined with offices as well as a cluster of buildings on a college campus. By considering the affordances in the environment, we identify a division of space into three distinct classes: path segments afford travel between places at their ends, decision points present a choice amongst incident path segments, and destinations typically exist at the start and end of routes. Constructing an H2SSH map of the environment requires understanding both its local and global structure. We present a place detection and classification algorithm to create a semantic map representation that parses the free space in the local environment into a set of discrete areas representing features like corridors, intersections, and offices. Using these areas, we introduce a new probabilistic topological simultaneous localization and mapping algorithm based on lazy evaluation to estimate a probability distribution over possible topological maps of the global environment. After construction, an H2SSH map provides the necessary representations for navigation through large-scale environments. The local semantic map provides a high-fidelity metric map suitable for motion planning in dynamic environments, while the global topological map is a graph-like map that allows for route planning using simple graph search algorithms. For navigation, we have integrated the H2SSH with Model Predictive Equilibrium Point Control (MPEPC) to provide safe and efficient motion planning for our robotic wheelchair, Vulcan. However, navigation in human environments entails more than safety and efficiency, as human behavior is further influenced by complex cultural and social norms. We show how social norms for moving along corridors and through intersections can be learned by observing how pedestrians around the robot behave. We then integrate these learned norms with MPEPC to create a socially-aware navigation algorithm, SA-MPEPC. Through real-world experiments, we show how SA-MPEPC improves not only Vulcan’s adherence to social norms, but the adherence of pedestrians interacting with Vulcan as well.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144014/1/collinej_1.pd

    Ocean Energy in Belgium - 2020

    Get PDF

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems
    corecore