80 research outputs found

    Low Complexity DOA Estimation of Multiple Coherent Sources Using a Single Direct Data Snapshot

    Get PDF
    The direction of arrival (DOA) estimation of multiple radio frequency (RF) coherent signals using conventional algorithms such as Multiple Signal Classification (MUSIC), Estimation of the Signal Parameters via the Rotational Invariance Technique (ESPRIT), and their variants is computationally complex and usually requires a large number of data snapshots for accurate estimation. As the number of antenna elements grows, particularly in massive MIMO systems, the complexity of real-time DOA estimation algorithms significantly rises, placing higher demands on computational power and memory resources. In this paper, we present an efficient approach that operates effectively with just a single snapshot for DOA estimation of multiple coherent and non-coherent signals. The proposed method has the following advantages over existing methods: 1) constructs a Toeplitz structure data matrix from a single data snapshot, 2) applies forward-backward averaging operation to the data matrix instead of the covariance matrix constructed using hundreds of snapshots, 3) resolves the differences in the noise elements of the data matrix, preserving the conjugate symmetry property of the Toeplitz matrix, 4) converts the complex Toeplitz data matrix to a real-valued matrix in an efficient way without unitary transformations, and 5) employs QR decomposition to extract the signal and noise subspaces, eliminating the need for computationally complex eigenvalue (EVD) or singular value decomposition (SVD). Finally, we establish the effectiveness of our proposed method through both MATLAB simulations and real-time experiments. Compared to existing methods like Unitary root-MUSIC, the proposed approach demonstrates significantly reduced complexity and faster estimation times

    High-resolution imaging methods in array signal processing

    Get PDF

    Bayesian super-resolution with application to radar target recognition

    Get PDF
    This thesis is concerned with methods to facilitate automatic target recognition using images generated from a group of associated radar systems. Target recognition algorithms require access to a database of previously recorded or synthesized radar images for the targets of interest, or a database of features based on those images. However, the resolution of a new image acquired under non-ideal conditions may not be as good as that of the images used to generate the database. Therefore it is proposed to use super-resolution techniques to match the resolution of new images with the resolution of database images. A comprehensive review of the literature is given for super-resolution when used either on its own, or in conjunction with target recognition. A new superresolution algorithm is developed that is based on numerical Markov chain Monte Carlo Bayesian statistics. This algorithm allows uncertainty in the superresolved image to be taken into account in the target recognition process. It is shown that the Bayesian approach improves the probability of correct target classification over standard super-resolution techniques. The new super-resolution algorithm is demonstrated using a simple synthetically generated data set and is compared to other similar algorithms. A variety of effects that degrade super-resolution performance, such as defocus, are analyzed and techniques to compensate for these are presented. Performance of the super-resolution algorithm is then tested as part of a Bayesian target recognition framework using measured radar data

    Acoustic source localization : exploring theory and practice

    Get PDF
    Over the past few decades, noise pollution became an important issue in modern society. This has led to an increased effort in the industry to reduce noise. Acoustic source localization methods determine the location and strength of the vibrations which are the cause of sound based onmeasurements of the sound field. This thesis describes a theoretical study of many facets of the acoustic source localization problem as well as the development, implementation and validation of new source localization methods. The main objective is to increase the range of applications of inverse acoustics and to develop accurate and computationally efficient methods for each of these applications. Four applications are considered. Firstly, the inverse acoustic problem is considered where the source and the measurement points are located on two parallel planes. A new fast method to solve this problem is developed and it is compared to the existing method planar nearfield acoustic holography (PNAH) from a theoretical point of view, as well as by means of simulations and experiments. Both methods are fast but the newmethod yields more robust and accurate results. Secondly, measurements in inverse acoustics are often point-by-point or full array measurements. However a straightforward and cost-effective alternative to these approaches is a sensor or array which moves through the sound field during the measurement to gather sound field information. The same numerical techniques make it possible to apply inverse acoustics to the case where the source moves and the sensors are fixed in space. It is shown that the inverse methods such as the inverse boundary element method (IBEM) can be applied to this problem. To arrive at an accurate representation of the sound field, an optimized signal processing method is applied and it is shown experimentally that this method leads to accurate results. Thirdly, a theoretical framework is established for the inverse acoustical problem where the sound field and the source are represented by a cross-spectral matrix. This problem is important in inverse acoustics because it occurs in the inverse calculation of sound intensity. The existing methods for this problem are analyzed from a theoretical point of view using this framework and a new method is derived from it. A simulation study indicates that the new method improves the results by 30% in some cases and the results are similar otherwise. Finally, the localization of point sources in the acoustic near field is considered. MUltiple SIgnal Classification (MUSIC) is newly applied to the Boundary element method (BEM) for this purpose. It is shown that this approach makes it possible to localize point sources accurately even if the noise level is extremely high or if the number of sensors is low

    Unit Circle Roots Based Sensor Array Signal Processing

    Get PDF
    As technology continues to rapidly evolve, the presence of sensor arrays and the algorithms processing the data they generate take an ever-increasing role in modern human life. From remote sensing to wireless communications, the importance of sensor signal processing cannot be understated. Capon\u27s pioneering work on minimum variance distortionless response (MVDR) beamforming forms the basis of many modern sensor array signal processing (SASP) algorithms. In 2004, Steinhardt and Guerci proved that the roots of the polynomial corresponding to the optimal MVDR beamformer must lie on the unit circle, but this result was limited to only the MVDR. This dissertation contains a new proof of the unit circle roots property which generalizes to other SASP algorithms. Motivated by this result, a unit circle roots constrained (UCRC) framework for SASP is established and includes MVDR as well as single-input single-output (SISO) and distributed multiple-input multiple-output (MIMO) radar moving target detection. Through extensive simulation examples, it will be shown that the UCRC-based SASP algorithms achieve higher output gains and detection probabilities than their non-UCRC counterparts. Additional robustness to signal contamination and limited secondary data will be shown for the UCRC-based beamforming and target detection applications, respectively

    Discrete and Continuous Sparse Recovery Methods and Their Applications

    Get PDF
    Low dimensional signal processing has drawn an increasingly broad amount of attention in the past decade, because prior information about a low-dimensional space can be exploited to aid in the recovery of the signal of interest. Among all the different forms of low di- mensionality, in this dissertation we focus on the synthesis and analysis models of sparse recovery. This dissertation comprises two major topics. For the first topic, we discuss the synthesis model of sparse recovery and consider the dictionary mismatches in the model. We further introduce a continuous sparse recovery to eliminate the existing off-grid mismatches for DOA estimation. In the second topic, we focus on the analysis model, with an emphasis on efficient algorithms and performance analysis. In considering the sparse recovery method with structured dictionary mismatches for the synthesis model, we exploit the joint sparsity between the mismatch parameters and original sparse signal. We demonstrate that by exploiting this information, we can obtain a robust reconstruction under mild conditions on the sensing matrix. This model is very useful for radar and passive array applications. We propose several efficient algorithms to solve the joint sparse recovery problem. Using numerical examples, we demonstrate that our proposed algorithms outperform several methods in the literature. We further extend the mismatch model to a continuous sparse model, using the mathematical theory of super resolution. Statistical analysis shows the robustness of the proposed algorithm. A number-detection algorithm is also proposed for the co-prime arrays. By using numerical examples, we show that continuous sparse recovery further improves the DOA estimation accuracy, over both the joint sparse method and also MUSIC with spatial smoothing. In the second topic, we visit the corresponding analysis model of sparse recovery. Instead of assuming a sparse decomposition of the original signal, the analysis model focuses on the existence of a linear transformation which can make the original signal sparse. In this work we use a monotone version of the fast iterative shrinkage- thresholding algorithm (MFISTA) to yield efficient algorithms to solve the sparse recovery. We examine two widely used relaxation techniques, namely smoothing and decomposition, to relax the optimization. We show that although these two techniques are equivalent in their objective functions, the smoothing technique converges faster than the decomposition technique. We also compute the performance guarantee for the analysis model when a LASSO type of reconstruction is performed. By using numerical examples, we are able to show that the proposed algorithm is more efficient than other state of the art algorithms
    corecore