4 research outputs found

    Scalable schemes against Distributed Denial of Service attacks

    Get PDF
    Defense against Distributed Denial of Service (DDoS) attacks is one of the primary concerns on the Internet today. DDoS attacks are difficult to prevent because of the open, interconnected nature of the Internet and its underlying protocols, which can be used in several ways to deny service. Attackers hide their identity by using third parties such as private chat channels on IRC (Internet Relay Chat). They also insert false return IP address, spoofing, in a packet which makes it difficult for the victim to determine the packet\u27s origin. We propose three novel and realistic traceback mechanisms which offer many advantages over the existing schemes. All the three schemes take advantage of the Autonomous System topology and consider the fact that the attacker\u27s packets may traverse through a number of domains under different administrative control. Most of the traceback mechanisms make wrong assumptions that the network details of a company under an administrative control are disclosed to the public. For security reasons, this is not the case most of the times. The proposed schemes overcome this drawback by considering reconstruction at the inter and intra AS levels. Hierarchical Internet Traceback (HIT) and Simple Traceback Mechanism (STM) trace back to an attacker in two phases. In the first phase the attack originating Autonomous System is identified while in the second phase the attacker within an AS is identified. Both the schemes, HIT and STM, allow the victim to trace back to the attackers in a few seconds. Their computational overhead is very low and they scale to large distributed attacks with thousands of attackers. Fast Autonomous System Traceback allows complete attack path reconstruction with few packets. We use traceroute maps of real Internet topologies CAIDA\u27s skitter to simulate DDoS attacks and validate our design

    Forensics Tracking for IP User using the Markov Chain Model

    Full text link

    Multi-Tier Diversified Service Architecture for Internet 3.0: The Next Generation Internet

    Get PDF
    The next generation Internet needs to support multiple diverse application contexts. In this paper, we present Internet 3.0, a diversified, multi-tier architecture for the next generation Internet. Unlike the current Internet, Internet 3.0 defines a new set of primitives that allows diverse applications to compose and optimize their specific contexts over resources belonging to multiple ownerships. The key design philosophy is to enable diversity through explicit representation, negotiation and enforcement of policies at the granularity of network infrastructure, compute resources, data and users. The basis of the Internet 3.0 architecture is a generalized three-tier object model. The bottom tier consists of a high-speed network infrastructure. The second tier consists of compute resources or hosts. The third tier consists of data and users. The “tiered” organization of the entities in the object model depicts the natural dependency relationship between these entities in a communication context. All communication contexts, including the current Internet, may be represented as special cases within this generalized three-tier object model. The key contribution of this paper is a formal architectural representation of the Internet 3.0 architecture over the key primitive of the “Object Abstraction” and a detailed discussion of the various design aspects of the architecture, including the design of the “Context Router-” the key architectural element that powers an evolutionary deployment plan for the clean slate design ideas of Internet 3.0

    FAST: Fast Autonomous System Traceback

    No full text
    corecore