1,622 research outputs found

    Thermal characterisation of miniature hotplates used in gas sensing technology

    Get PDF
    The reliability of micro-electronic devices depends on the device operating temperature and therefore self-heating can have an adverse effect on the performance and reliability of these devices. Hence, thermal measurement is crucial including accurate maximum operating temperature measurements to ensure optimum reliability and good electrical performance. In the research presented in this thesis, the high temperature thermal characterisation of novel micro-electro-mechanical systems (MEMS) infra-red (IR) emitter chips for use in gas sensing technology for stable long-term operation were studied, using both IR and a novel thermo-incandescence microscopy. The IR emitters were fabricated using complementary-metal-oxide semiconductor (CMOS) based processing technology and consisted of a miniature micro-heater, fabricated using tungsten metallisation. There is a commercial drive to include MEMS micro-heaters in portable electronic applications including gas sensors and miniaturised IR spectrometers where low power consumption is required. IR thermal microscopy was used to thermally characterise these miniature MEMS micro-heaters to temperatures approaching 700 °C. The research work has also enabled further development of novel thermal measurement techniques, using carbon microparticle infra-red sensors (MPIRS) with the IR thermal microscopy. These microparticle sensors, for the first time, have been used to make more accurate high temperature (approaching 700 °C) spot measurements on the IR transparent semiconductor membrane of the micro-heater. To substantially extend the temperature measurement range of the IR thermal microscope, and to obtain the thermal profiles at elevated temperatures (> 700 °C), a novel thermal measurement approach has been developed by calibrating emitted incandescence radiation in the optical region as a function of temperature. The calibration was carried out using the known melting point (MP) of metal microparticles. The method has been utilised to obtain the high temperature thermo-optical characterisation of the MEMS micro-heaters to temperatures in excess of 1200 °C. The measured temperature results using thermo-incandescence microscopy were compared with calculated electrical temperature results. The results indicated the thermo-incandescence measurements are in reasonable agreement (± 3.5 %) with the electrical temperature approach. Thus, the measurement technique using optical incandescent radiation extends the range of conventional IR microscopy and shows a great potential for making very high temperature spot measurements on electronic devices. The high power (> 500mW) electrical characterisation of the MEMS micro-heaters were also analysed to assess the reliability. The electrical performance results on the MEMS micro-heaters indicated failures at temperatures greater than 1300 °C and Scanning Electron Microscope (SEM) was used to analyse the failure modes

    The Optical Design and Characterization of the Microwave Anisotropy Probe

    Full text link
    The primary goal of the MAP satellite, now in orbit, is to make high fidelity polarization sensitive maps of the full sky in five frequency bands between 20 and 100 GHz. From these maps we will characterize the properties of the cosmic microwave background (CMB) anisotropy and Galactic and extragalactic emission on angular scales ranging from the effective beam size, <0.23 degree, to the full sky. MAP is a differential microwave radiometer. Two back-to-back shaped offset Gregorian telescopes feed two mirror symmetric arrays of ten corrugated feeds. We describe the prelaunch design and characterization of the optical system, compare the optical models to the measurements, and consider multiple possible sources of systematic error.Comment: ApJ in press; 22 pages with 11 low resolution figures; paper is available with higher quality figures at http://map.gsfc.nasa.gov/m_mm/tp_links.htm

    Optical Fiber Pyrometer Designs for Temperature Measurements Depending on Object Size

    Get PDF
    The modelling of temperature measurements using optical fiber pyrometers for different hot object sizes with new generalized integration limits is presented. The closed equations for the calculus of the radiated power that is coupled to the optical fiber for two specific scenarios are proposed. Accurate predictions of critical distance for avoiding errors in the optical fiber end location depending on fiber types and object sizes for guiding good designs are reported. A detailed model for estimating errors depending on target size and distance is provided. Two-color fiber pyrometers as a general solution are also discussed

    Accurate temperature measurements on semiconductor devices.

    Get PDF
    Self-heating can have a detrimental effect on the performance and reliability of high power microwave devices. In this work, the thermal performance of the gallium arsenide (GaAs) Gunn diode was studied. Infrared (IR) thermal microscopy was used to measure the peak operating temperature of the graded-gap structured device. Temperature measurements were experimentally validated using micro-thermocouple probing and compared to values obtained from a standard 1D thermal resistance model. Thermal analysis of the conventionally structured Gunn diode was also undertaken using high resolution micro-Raman temperature profiling, IR thermal microscopy and electro/thermal finite element modeling. The accuracy of conventional IR temperature measurements, made on semiconductor devices, was investigated in detail. Significant temperature errors were shown to occur in IR temperature measurements made on IR transparent semiconductors layers and low emissivity/highly reflective metals. A new technique, employing spherical carbon microparticles, was developed to improve the measurement accuracy on such surfaces. The new ‘IR microparticle’ technique can be used with existing IR microscopes and potentially removes the need to coat a device with a high emissivity layer, which causes damage and heat spreading

    Thermal Characterization of Next-Generation Workloads on Heterogeneous MPSoCs

    Get PDF
    Next-generation High-Performance Computing (HPC) applications need to tackle outstanding computational complexity while meeting latency and Quality-of-Service constraints. Heterogeneous Multi-Processor Systems-on-Chip (MPSoCs), equipped with a mix of general-purpose cores and reconfigurable fabric for custom acceleration of computational blocks, are key in providing the flexibility to meet the requirements of next-generation HPC. However, heterogeneity brings new challenges to efficient chip thermal management. In this context, accurate and fast thermal simulators are becoming crucial to understand and exploit the trade-offs brought by heterogeneous MPSoCs. In this paper, we first thermally characterize a next-generation HPC workload, the online video transcoding application, using a highly-accurate Infra-Red (IR) microscope. Second, we extend the 3D-ICE thermal simulation tool with a new generic heat spreader model capable of accurately reproducing package surface temperature, with an average error of 6.8% for the hot spots of the chip. Our model is used to characterize the thermal behaviour of the online transcoding application when running on a heterogeneous MPSoC. Moreover, by using our detailed thermal system characterization we are able to explore different application mappings as well as the thermal limits of such heterogeneous platforms

    COrE (Cosmic Origins Explorer) A White Paper

    Full text link
    COrE (Cosmic Origins Explorer) is a fourth-generation full-sky, microwave-band satellite recently proposed to ESA within Cosmic Vision 2015-2025. COrE will provide maps of the microwave sky in polarization and temperature in 15 frequency bands, ranging from 45 GHz to 795 GHz, with an angular resolution ranging from 23 arcmin (45 GHz) and 1.3 arcmin (795 GHz) and sensitivities roughly 10 to 30 times better than PLANCK (depending on the frequency channel). The COrE mission will lead to breakthrough science in a wide range of areas, ranging from primordial cosmology to galactic and extragalactic science. COrE is designed to detect the primordial gravitational waves generated during the epoch of cosmic inflation at more than 3σ3\sigma for r=(T/S)>=10−3r=(T/S)>=10^{-3}. It will also measure the CMB gravitational lensing deflection power spectrum to the cosmic variance limit on all linear scales, allowing us to probe absolute neutrino masses better than laboratory experiments and down to plausible values suggested by the neutrino oscillation data. COrE will also search for primordial non-Gaussianity with significant improvements over Planck in its ability to constrain the shape (and amplitude) of non-Gaussianity. In the areas of galactic and extragalactic science, in its highest frequency channels COrE will provide maps of the galactic polarized dust emission allowing us to map the galactic magnetic field in areas of diffuse emission not otherwise accessible to probe the initial conditions for star formation. COrE will also map the galactic synchrotron emission thirty times better than PLANCK. This White Paper reviews the COrE science program, our simulations on foreground subtraction, and the proposed instrumental configuration.Comment: 90 pages Latex 15 figures (revised 28 April 2011, references added, minor errors corrected
    • 

    corecore