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Abstract: 
The reliability of micro-electronic devices depends on the device operating temperature 

and therefore self-heating can have an adverse effect on the performance and reliability of these 

devices. Hence, thermal measurement is crucial including accurate maximum operating 

temperature measurements to ensure optimum reliability and good electrical performance. In 

the research presented in this thesis, the high temperature thermal characterisation of novel 

micro-electro-mechanical systems (MEMS) infra-red (IR) emitter chips for use in gas sensing 

technology for stable long-term operation were studied, using both IR and a novel thermo-

incandescence microscopy.  

The IR emitters were fabricated using complementary-metal-oxide semiconductor 

(CMOS) based processing technology and consisted of a miniature micro-heater, fabricated 

using tungsten metallisation. There is a commercial drive to include MEMS micro-heaters in 

portable electronic applications including gas sensors and miniaturised IR spectrometers where 

low power consumption is required.  

IR thermal microscopy was used to thermally characterise these miniature MEMS 

micro-heaters to temperatures approaching 700 °C. The research work has also enabled further 

development of novel thermal measurement techniques, using carbon microparticle infra-red 

sensors (MPIRS) with the IR thermal microscopy. These microparticle sensors, for the first 

time, have been used to make more accurate high temperature (approaching 700 °C) spot 

measurements on the IR transparent semiconductor membrane of the micro-heater.  

To substantially extend the temperature measurement range of the IR thermal 

microscope, and to obtain the thermal profiles at elevated temperatures (> 700 °C), a novel 

thermal measurement approach has been developed by calibrating emitted incandescence 

radiation in the optical region as a function of temperature. The calibration was carried out 

using the known melting point (MP) of metal microparticles. The method has been utilised to 

obtain the high temperature thermo-optical characterisation of the MEMS micro-heaters to 

temperatures in excess of 1200 °C. The measured temperature results using thermo-

incandescence microscopy were compared with calculated electrical temperature results. The 

results indicated the thermo-incandescence measurements are in reasonable agreement (± 3.5 

%) with the electrical temperature approach. Thus, the measurement technique using optical 

incandescent radiation extends the range of conventional IR microscopy and shows a great 

potential for making very high temperature spot measurements on electronic devices.  

The high power (> 500mW) electrical characterisation of the MEMS micro-heaters 

were also analysed to assess the reliability. The electrical performance results on the MEMS 

micro-heaters indicated failures at temperatures greater than 1300 °C and Scanning Electron 

Microscope (SEM) was used to analyse the failure modes.     
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Nomenclature 
 

ɛ  Surface emissivity 

µ  Microns 

𝜆  Wavelength 

Ф  Thermal impedance  

𝜌  Resistivity 

𝜎  Stefan – Boltzmann constant 

°C  Degree Celsius 

𝑐  Speed of light in vacuum 

𝐶𝑇𝑅  Thermo-reflectance coefficient 

ℎ  Plank’s constant 

I  Current 

K  Kelvin 

𝑘𝐵  Boltzmann’s constant 

𝑞  Charge of an electron 

𝑅0  Level of background IR radiation  

𝑅𝑏  Emitted IR radiation by an ideal black body 

𝑅𝑝  Emitted IR radiation by a carbon microparticle 

𝑅𝑠  Emitted IR radiation  

T  Temperature 

V  Voltage 
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Material abbreviations 
 

Ag  Silver 

Al  Aluminium 

AlGaN  Aluminium gallium nitride 

Au  Gold 

CH4  Methane 

CO  Carbon monoxide  

CO2  Carbon dioxide 

Cr2O3  Chromium oxide 

Cu  Copper 

GaAs  Gallium arsenide 

GaN  Gallium nitride 

Ge  Germanium 

H2S  Hydrogen sulphide 

InSb  Indium antimony 

KOH  Potassium hydroxide 

Mn  Manganese 

Mn3O4  Manganese oxide 

NH3  Ammonia 

Ni  Nickel 

NO2  Nitrogen dioxide 

RhB  Rhodamine B 

Si  Silicon 

SiC  Silicon carbide  

SiGe  Silicon germanium 

Si3N4  Silicon nitride 
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SiO2  Silicon dioxide 

SnO2  Tin dioxide 

SO2  Sulphur dioxide 

TiN  Titanium nitride 

WO3  Tungsten oxide 

ZnO  Zinc oxide 

 

 

Key acronyms 
 

2D  Two dimensional 

AFM  Atomic force microscopy 

CMOS  Complementary-metal-oxide-semiconductor 

CNTs  Carbon nanotubes 

CW  Continuous wave  

DC  Direct current 

DRIE  Deep reactive-ion etching 

DUT  Device under test 

FET   Field-effect-transistor 

HBT  Hetero-structures bipolar transistor  

HEMT  High electron mobility transistor 

HFET  Heterojunction-field-effect-transistor 

IC  Integrated circuit 

IGBT  Insulated gate bipolar transistor  

IR  Infra-red 

IV  Current-voltage 

LED  Light emitting diode 
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LEL  Lower explosive limit 

MEMS  Micro-Electro-Mechanical Systems 

MMIC  Monolithic microwave integrated circuit 

MOSFET Metal-oxide-semiconductor field effect transistor 

MP  Melting point  

MPIRS Microparticle infra-red sensor  

NDIR  Non-dispersive infra-red 

RF  Radio frequency  

RFICs  Radio frequency integrated circuits  

RTIL  Room temperature ionic liquid 

SEM  Scanning electron microscope 

TSP  Temperature-sensitive-parameter 

UV  Ultraviolet 

VOCs  Volatile organic compounds 

QCM  Quartz crystal microbalance 

QFI  Quantum Focus Instruments 
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Chapter 1  

Introduction: 

1.1. Background and motivation: 

Gas sensors are significantly important in different fields of advanced technology 

including scientific, environmental and industrial safety, medical, commercial and domestic 

applications [1], [2]. Over the past few decades, the need for reliable low cost, low power gas 

sensors is increasing, and with the emerging trend in miniaturisation, various possibilities are 

expected for gas sensors, for example, integration into automobiles, mobile devices and other 

battery operated electronic medical devices [3]. Micro-electro-mechanical systems (MEMS) 

technology is key to meeting these requirements with the design and fabrication of such 

miniaturised integrated modern sensors. One of the key components of a modern gas sensor is 

the MEMS micro-heater, which is required to heat the sensing material (e.g., metal oxides, 

polymers etc.) for better sensitivity, selectivity and fast response/recovery time. Additionally, 

MEMS micro-heaters can also be used as an IR source in a non-dispersive (NDIR) gas sensors. 

Thus, thermal analysis including thermal uniformity and accurate peak operating temperature 

of the MEMS micro-heater is important to ensure reliable operation of the gas sensors [4]. This 

thesis reports on the thermal characterisation of novel MEMS micro-heaters [5], based on 

tungsten metallisation, which can also be used as a mid and near field infra-red (IR) source [6], 

[7]. 

In recent years, miniature mid and short wave IR emitters are of interest, for use in NDIR 

gas sensing and spectroscopy applications [8]. At present many of these applications use a glass 

micro-bulb as a broadband IR source. The micro-bulb manufacturing costs are low but it suffers 

from a number of disadvantages, which include; high DC power consumption  (typically 

several 100mW) [6], large form factor compared to most silicon based IR sources, slow 

transient response time and limited  emission in the mid to long IR wavelengths due to optical 

absorption by the glass envelope. Different methods have been used for the fabrication of 

miniature silicon based IR sources [9], [10], many based on propriety MEMS processing 

technologies. The complementary-metal-oxide-semiconductor (CMOS) based IR source, 

studied in this work, is based on tungsten metallisation technology, which can be heated to high 

operating temperatures [11]. Tungsten has been used as an interconnect metal because of its 

high melting point (> 3400 °C) and resistant to electromigration induced failure, when 

compared to aluminium or poly-silicon [12]. The use of tungsten enables the design and 

fabrication of an IR thermal source with long-term stability, having all the advantages of 

CMOS technology including low manufacturing cost, excellent device reproducibility, and the 

possibility of integration with a wide range of electronic circuitry. The device typically operates 

at temperatures around 500 °C [11] to thermally generate optical emission for mid-IR 

spectroscopy applications, including optical gas sensing [6]. A future requirement is to operate 

the CMOS based IR source at higher operating temperatures (> 800 °C) for spectral sensing 

applications in the short-wave region of the IR spectrum (1.4 µm – 2.5 µm) where many 

molecules have absorption lines [7], [13]. A chip scale source has the advantage of a smaller 
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physical envelope, compared to the micro-bulb based IR source, and can also be assembled in 

a surface mount package.  

It is important to maximise thermal uniformity across the micro-heater to ensure consistent 

IR emission and to minimise the localised hotspots, which could induce thermal stress leading 

to premature failure. There are several thermal characterisation techniques that can be used to 

thermally profile micro-scale semiconductor devices [14]. Optical methods have been widely 

used to characterise the thermal behaviour of micro-electronic devices, because of their major 

benefits of being non-contact and non-invasive. In addition, optical method can be used to 

image different regions enabling the identification of hot areas within a device [15].  

IR thermal microscopy is an established optical technique and has been extensively used 

in this work to thermally characterise the temperature distribution across the IR source [5], 

which showed excellent thermal uniformity for temperatures approaching 700 °C. To enable 

thermal characterisation of the IR source, at elevated temperature (> 700 °C), a passive optical 

approach is presented in which, uniform thermally emitted incandescent radiation is used. The 

development of high temperature measurements using the combination of IR and thermo-

incandescence microscopy will enable other high operating temperature micro-electronic 

devices to be explored.   

1.2. Outline of the work: 

Self-heating in RF and microwave based micro-electronic devices can adversely affect 

the RF performance (power and frequency), and if the operating temperature becomes 

sufficiently high, may result in complete device failure. The focus of the research presented in 

this thesis was to investigate the high temperature thermal characterisation of CMOS 

compatible miniature infra-red emitters for stable long-term operation, for use in gas sensing 

technology. A review of different thermal characterisation techniques to thermally profile 

micro-scale semiconductor electronic devices was undertaken resulting in the use of IR thermal 

microscopy to study the thermal performance of novel IR emitter chips. The method utilises 

naturally emitted IR radiation from the device under test (DUT), resulting in a real-time two-

dimensional (2D) thermal images. The accuracy of temperature measurements using IR 

thermal microscopy is dependent on the accurate determination of the surface emissivity of the 

device being measured. It is challenging to accurately measure the surface emissivity of 

optically transparent semiconductor materials, which allow IR radiation from underlying layers 

to be collected by the microscope. To overcome some of the limitations, a novel IR thermal 

point measurement  using a carbon based microparticle sensor technology has been developed 

at DMU [16]. Work was undertaken to further improve the microparticle measurement 

technique which included a more effective and reliable micro-manipulation of the microparticle 

sensor. In addition, the effect of the microparticle diameter on the temperature measurement 

has also been investigated. The revised technique was used to make improved high temperature 

measurements on the miniature IR emitter chip to temperatures of approximately 700 °C.  

To obtain further improvements to temperature uniformity and operation at higher 

temperatures the IR thermal emitter chip was re-designed to have a higher surface emissivity 

by ams Sensors Cambridge, Ltd. The chip was fabricated in ams Sensors facilities. IR 

microscopy was used to characterise the thermal behaviour of these improved design IR 
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emitters. Preliminary thermal measurements were also made on the IR emitters using a thermo-

reflectance technique at Quantum Focus Instruments (QFI) Bristol (UK), facility to compare 

with IR temperature measurement results. The thermo-reflectance measurements was not 

practical on these devices due to the challenges posed by multiple internal reflections and small 

mechanical fluctuation of the thin heater membrane.  

 A novel thermal measurement approach based on thermo-incandescence microscopy 

was developed in this research work which enabled thermo-optical characterisation of these IR 

thermal emitters to temperature in excess of 1200 °C. As the technique is optical, it also has 

the potential of identifying hotspots, similar to IR microscopy. The measurement technique 

could also be used to perform high temperature measurements on other micro-scale electronic 

devices.  

1.3. Thesis outline: 

The research work has been divided into eight chapters and the summary of each chapter is 

given below: 

Chapter-1: The chapter describes the research motivation, background to the CMOS based IR 

sources and outlines the work undertaken. The chapter also highlights the novelty in this 

research work. 

Chapter-2: The chapter describes the different types of available thermal measurement 

techniques for performing the temperature measurements on micro-electronic devices and 

undertakes a review of them. 

Chapter-3: The conventional IR thermal measurement technique is described in detail and 

critical analysis of methods used in this research, which includes instrumentation and 

experimental design and setup. 

Chapter-4: The chapter provides a detailed description of the IR thermal measurements, using 

the microparticle infra-red sensor (MPIRS) technology, which can be used to obtain an 

improved accuracy of IR temperature measurements made on low emissivity/ highly reflective, 

and uncoated semiconductor devices. The radiance calibration as a function of temperature and 

the effect of the background surface radiation on the emissivity measurement of the MPIRS is 

discussed. In addition, a reliable micro-manipulation method to pick individual microparticles 

and place onto the surface of the DUT is discussed.    

Chapter-5: The chapter provides an overview of gas sensor technology including the MEMS 

micro-heater technology sensors, gasses which can be detected, the principle of operation and 

applications.   

Chapter-6: The chapter reports the work undertaken to assess the electrical and thermal 

performance of the MEMS micro-heaters used in IR emitter chips, based on CMOS technology. 

These include IV characterisation and analysis of thermal uniformity across the micro-heater 

structure using conventional IR thermal microscopy. The thermal characterisation of the micro-

heater is also described using electrical, and for the first time, using the MPIRS technology to 
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temperatures approaching 700 °C. The chapter also includes the temperature measurement 

results made on the improved design IR emitters using IR thermal microscopy and comparison 

with electrical temperature results. 

Chapter-7: The chapter describes the development of a high temperature thermal measurement 

approach based on thermo-incandescence microscopy, which can be integrated with IR 

microscope. To calibrate the emitted incandescent radiation with temperature a novel approach 

using metal microparticles with a known melting point was developed. To the author’s 

knowledge the temperature measurement method is novel and enables the thermal 

characterisation of the MEMS micro-heaters to temperatures in excess of 1200 °C.  

Chapter-8: The chapter concludes the main findings from this research work, and also 

describes future work.  

1.4. Novelty in the research work: 

The areas of novelty reported in this research work are listed below: 

 Improvements to the novel carbon MPIRS thermal measurement technique which was 

first developed at De Montfort University [16]. These include showing that the MPIRS 

with more than >10µm in diameter will provide a more accurate temperature 

measurement (note there may have to be a compromise to the thermal spatial 

resolution). The work also suggests the microparticle sensor would be best adopted for 

making temperature measurements on materials with very low surface emissivity, for 

example gold, where the background surface radiation is very low. To make 

temperature measurements utilising the MPIRS technique on IR transparent 

semiconductor materials (for example GaAs), the real surface emissivity of the MPIRS 

needs to be measured independent of the DUT and must be higher than the DUT.        

 

 The use of the MPIRS, for the first time, utilising IR thermal microscopy for measuring 

the thermal profiles of the MEMS based IR micro-emitters to temperatures approaching 

700 °C [5]. The MPIRS technique was also used, for the first time, for measuring the 

improved thermal profiles on the semi-packaged MEMS micro heater of an IR emitter 

chip.  

 

 The development of a novel thermal measurement technique which was based on 

measuring the emitted optical incandescent radiation as a function of operating 

temperature. The high temperature thermal performance of MEMS micro-heaters based 

on tungsten CMOS technology, have been measured for the first time using a 

combination of IR and optical incandescence thermography to temperatures in excess 

of 1200 °C. The high power electrical performance of the MEMS micro-heater was 

analysed and the reliability of the chip at the high temperatures was assessed. 
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Chapter 2  

A review of temperature measurement techniques: 

2.1. Introduction: 

Thermal measurement techniques have been developed over many years to measure the 

operating temperature of electronic devices [1]. The operating temperature has significant 

consequences on the overall performance and reliability of electronic devices [2]. For example, 

the maximum operating frequency or speed of a microprocessor usually decreases when the 

operating temperature increases [3]. Similarly, the current gain cut-off frequency or 

transconductance of field effect transistors (FET), for example, aluminium gallium nitride 

(AlGaN/GaN) HEMTs decreases with an increase in operating temperature [4]. Thermal 

simulation models [5] can be used to predict electronic device operating temperatures, but it is 

often difficult to compute them accurately because of  uncertainty of the thermal properties of 

complex semiconductors layers [6]. Therefore, highly specialised experimental temperature 

measurement techniques are required to help understand the overall thermal performance of a 

particular device type.  

There has been the development of a wide range of techniques for measuring the 

operating temperature of electronic devices. The thermal measurement techniques can be 

broadly categorised  into two  classifications; (1) contact methods and (2) non-contact methods 

[3], [7]. In the contact methods, a temperature measuring sensor, is in direct physical contact 

with the device and is used to monitor the temperature of the device.  Electric thermocouples 

and Atomic Force Microscopy (AFM) are some of the common examples of contact 

temperature measurement techniques. The non-contact thermal measurement techniques 

depend on the device’s electrical or optical properties, which change with temperature and are 

monitored to use as a thermometer. A review of the measurement methods for measuring the 

temperature performance of electronic devices and their respective advantages and weakness 

will be fully discussed in this chapter.   

2.2. Contact thermal measurement techniques: 

Temperature measurement depends on the transfer of heat energy from the surface of 

device under test (DUT) to an object which acts as temperature sensor, for example, mercury 

or alcohol based thermometers as used in a domestic applications. Temperature sensitive liquid 

crystals and thermocouple probes are also included in this category. In this method the 

temperature of a material or sensor which is in thermal contact with the DUT is monitored. A 

single point or a 2D matrix of thermal measurements is possible with this temperature 

measurement technique, by moving the point contact in the 𝑋 and 𝑌 directions. For example: 

thermocouples can be used to take a reading of a single point temperature or to create a matrix 

of temperature measurements, and atomic force microscopy (AFM) can be used to scan a 

thermal probe across the surface of the DUT to create a 2D thermal map [8], [9]. In the physical 

contact method, spatial resolution is limited by the physical size of the contacting probe, for 

example, the contact size of the thermocouple, or AFM probe diameter [3]. A resolution of 

~50nm has been demonstrated for scanning AFM thermal probes [10], [11]. The benefit of 



2-2 

 

contact methods is the potential for high resolution (however, care must be taken in interpreting 

the results because of the loading effect of the measurement method as heat is always lost to 

the measurement probe, thereby reducing thermal spatial resolution). Further limitations 

include the surface of the DUT must be available for physical contacts and the temperature 

response relies on the thermal response of the contacting probe [3]. Some of the physical 

contacting methods for temperature measurement are described below: 

2.2.1.  Liquid crystals: 

Liquid crystals are identified as organic compounds with a known temperature 

dependent phase between two states, solid and an isotropic liquid. In this method, the transition 

temperature is used as temperature-sensing parameter [3]. The transition temperature is defined 

as the temperature point at which a phase transformation of liquid crystals occurs from an 

aligned state to a random state. The incident light scatters selectively by wavelength in liquid 

crystal, with the selectivity being temperature dependant [12].  

Although the technique offers a high accuracy with temperature resolutions  

approaching 0.1 °C [13], the disadvantage include, with each type of liquid crystal only one 

transition temperature point can be established. Liquid crystals are available to measure the 

temperatures from 30 °C to 120 °C [3]. A spatial resolution of ~1µm has been demonstrated 

[3]. The liquid crystals technique has been used to make temperature measurements on light 

emitting diodes (LEDs) [14] and AlGaN/GaN heterojunction-field-effect-transistors (HFETs) 

[15]. 

2.2.2.  Thermocouples:    

The thermocouple is a simple and widely used electrical sensor for measuring 

temperature. It consists of two different metals combined together to form a point junction. A 

temperature dependant voltage will be generated at the junction when heated as a result of the 

thermoelectric effect, and the magnitude of this voltage can be calibrated against temperature 

[16]. Thermocouples can be used for measuring the temperature range between -270 °C to 

3000°C (dependent on junction metals) [17]. High temperature range, low cost, robustness, 

rapid thermal response and no self-heating within the thermocouple junction are some of the 

advantages of this type of sensor [18]. Although this technique is relatively simple for 

measuring temperature, the limitations include, poor spatial resolution (dependent on the 

physical size of the junction), susceptibility to corrosion and need of good physical contact 

between probe and DUT. They are mainly appropriate for measuring the temperature on large 

size (typically several mm) electronic devices, for example, high power MOSFETs [19].  

The selection of different thermocouple metal combinations is dependent on cost, 

availability, chemical stability, maximum and minimum working temperature and material 

compatibility. The most common general purpose thermocouple is the type-K (Chromel – 

Alumel) Nickel-alloy thermocouple [16], which can be used in an oxidizing atmosphere. These 

thermocouples are low cost and a wide variety of probes are available to cover –250 °C to 

+1100 °C temperature range, however above 800 °C, oxidation may cause drift in calibration 

[17], which can result in errors of several degrees during temperature measurement. They are 

readily commercially available but are limited to typically a spatial resolution of ~20µm with 
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an accuracy of ~0.1 °C [7], [20]. In recent years, a MEMS technique has been used to develop 

thin film thermocouples [21], [22] with very high spatial resolution (in nanoscale). They are 

relatively expensive to fabricate and not readily available for commercial applications.     

2.2.3.  Atomic force microscopy: 

Atomic force microscopy (AFM) uses micro-machined (MEMS) thermal sensors that 

are integrated in a force sensing cantilever with a nanoscale probe tip and can be used for the 

thermal analysis of semiconductor devices [23].  

 

Figure 2.1: Schematic of AFM and the experimental set-up for thermal measurements [24]. 

This method offers potentially high spatial resolution (<1µm) with the probe-tip 

manufactured using nano-tubes [8] and can be used to scan the thermal profile across the 

surface of electronic devices. In this method, it is possible to create a matrix of temperature 

measurements and develop a 2D thermal map but is not in real time. The spatial resolution, 

unlike optical techniques (will be discussed in section 2.3.2), is not limited by the diffraction 

factor. However, performance  limiting factors include the diameter of thermal probe, which 

determines the spatial resolution, and temperature errors due to the heat transfer between 

surface of the DUT and the probe [25]. This technique is available for temperature 

measurements on electronic devices with a claimed thermal resolution of the order of 0.1 °C 

[20].  The temperature measurements on AlGaN/GaN HEMTs devices [26] and ultra-thin nano-

sheets [27] has been made using this technique.    

2.2.4. Other physically contacting techniques: 

There are other physical contact techniques which are available for surface temperature 

measurements of semiconductor devices. For example, a thermographic phosphorous 

technique. This technique uses the thermal dependence of phosphor fluorescence as the 

temperature sensing parameter. To make the temperature measurement, the florescent material 

is usually deposited on a surface of DUT and the level of optical radiation emitted due to 

excitement from an external optical source (for example, LED or laser) as a function of 

temperature is measured. Advantages of this technique include a wide temperature 

measurement range up to 1800 °C with a temperature resolution of approximately 0.1 °C [28], 
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low cost and it can be used in harsh environments involving fast moving components such as 

jet turbine engines. However, the destructive nature of depositing the florescent material 

directly onto the DUT surface limits the use of this technique. Heat sensitive paints are another 

example of physically contacting techniques [29]. The use of non-reversible heat sensitive 

crystalline solid paints can be used [17] for a device which only requires an indication of the 

maximum operating temperatures. At a known temperature these paints melt, indicating the 

device surface temperature. Thermal paints are generally available for temperature 

measurements up to 400 °C with a temperature resolution of approximately 5 °C. The spatial 

resolution of this method is limited to ~ 40µm. These techniques have been used for estimating 

the temperatures on gas turbine blades [17].    

2.3. Non-contact thermal measurement techniques: 

In non-contact thermal measurement technique, no physical probe is in contact with the 

device surface being measured and thus avoids heat transfer which gives rise to the heat 

spreading problem. These techniques use either electrical or optical properties of the DUT as 

function of temperature. Non-contact thermal measurement techniques have been divided into 

the following two subcategories; (1) electrical thermal measurement techniques and (2) Optical 

thermal measurement techniques.   

2.3.1. Electrical thermal measurement techniques: 

Many electrical properties of electronic devices are a function of  temperature [2], [3]. 

This makes it possible to utilise the temperature sensitive parameters such as the forward 

voltage of a PN junction; or  threshold voltage [30], reverse leakage current or even device gain 

[3] of a transistor to monitor its average junction temperature. To make the electrical 

temperature measurement, the temperature sensitive parameter is initially calibrated against 

temperature. During calibration, the unbiased device is heated to known temperatures by a 

thermally controlled oven or hotplate and the temperature sensitive parameter is measured.  To 

make the temperature measurement, the device is biased and has to be momentarily switched 

back into the same electrical state used to calibrate the temperature sensitive parameter. The 

time of switching has to be sufficiently quick  to limit any reduction in the device operating 

temperature [7].     

The electrical thermal measurement technique requires no special sample preparation 

because all the necessary electrical connections are available as needed for normal device 

operation. Thus, electrical methods are considered as a non-contact temperature measurement 

technique as no additional instrument is required to make physical contact with the device, all 

the electrical contacts required are those already needed to bias for device operation. A further 

advantage of this thermal measurement technique; it can be used on fully packaged devices to 

determine the operating temperature of the die and therefore the thermal impedance (ф) of the 

chip and package combination at different bias settings. Thermal impedance (ф) is defined as 

the maximum temperature rise divided by power dissipated in watts. However, electrical 

thermal measurements can only provide an average junction temperature, and will be unable 

to identify hot areas in the structure or the junction temperature of individual die or identify a 

poor die in a package containing multiple die. As shown in Figure 2.2, the average temperature 
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is measured for a device, where inhomogeneous thermal distribution may exist if there are 

physical or electrical difference between the individual die. 

 

Figure 2.2: Multi-junction bipolar transistor structure looking like a single lumped element 

when measured using an electrical approach [19]. 

Some of the electrical parameters that have been used to measure the device average operating 

temperature are discussed below: 

2.3.1.1.  P-N Junction forward voltage: 

Forward voltage (𝑉𝑝𝑛) of a P-N junction is a strong function of a temperature, and 

therefore can be used as a temperature-sensitive-parameter (TSP). The 𝑉𝑝𝑛 decreases with an 

increase in temperature due to the enhancement of thermal generation of charge carriers [30]. 

Therefore, the 𝑉𝑝𝑛 is possibly the most common electrical parameter used to measure the 

temperature of an electronic device which utilises a P-N junction [2], [31]. The IDEAL diode 

equation [31] shows the relationship between the current flowing through a P-N junction and 

temperature of the junction.  

 
𝐼𝑝𝑛 =   𝐼𝑠 [exp (

𝑞𝑉𝑝𝑛

 𝑘𝐵𝑇
) − 1]   

(2.1) 

Where, 

𝐼𝑝𝑛 is the current through the PN junction, 𝑉𝑝𝑛 is the voltage across PN junction, 𝐼𝑠 is the reverse 

saturation current, 𝑘𝐵 is Boltzmann’s constant (1.381 x 10 -23 J/K), 𝑞 is charge of an electron 

(1.6 x 10-19C) and T is junction temperature measured in Kelvin. Equation (2.1) can be 

rearranged as shown in equation (2.2); 

 
𝑉𝑝𝑛 =

 𝑘𝐵𝑇

𝑞
[ln (

𝐼𝑝𝑛

 𝐼𝑠
) + 1]   

(2.2) 

The relationship shown in equation (2.2) can be used to determine the junction 

temperature of a semiconductor device in response to power dissipation in the junction region 

by utilising the forward voltage drop when a small magnitude of constant forward biased 

current 𝐼𝑝𝑛 is applied.  

Some examples where the temperature dependant forward Shockley junction voltage 

has been used as thermometer are; emitter-base junction of gallium arsenide hetero-junction 

bipolar transistors [32], [33], GaN HEMTs [34] and laser diodes [35].   
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2.3.1.2. Electrical resistivity: 

The resistivity 𝜌 of a semiconductor is a strong function of temperature and is given by 

equation (2.3).  

 
𝜌 =   

1

𝑛𝑞𝜇(𝑇)
   

(2.3) 

Where, 𝑛 is the carrier density, 𝑞 is the electronic charge of each particle and 𝜇 is the carrier 

mobility. The mobility of a semiconductor characterises how quickly the electrons or holes can 

move under the influence of an electric field. In a semiconductor device, the carrier mobility 

decreases due to phonon scattering with increase in temperature [36]. The carrier density is 

also temperature dependant but the change of mobility with temperature will dominate, and 

thus the resistivity of semiconductor devices increases with increasing temperature. 

Temperature of the AlGaN/GaN HEMT device has been measured using the temperature 

dependant mobility of carriers in GaN [37]. In another instance, the temperature of GaAs 

MESFETs [38] has been measured using the temperature dependence of the gate metal 

resistivity [39].  

2.3.1.3. Other electrical methods: 

There are number of other electrical parameters that have been used for the temperature 

measurements of semiconductor electronic devices. The threshold voltage (𝑉𝑡ℎ) has been used 

to evaluate the temperature of the MOSFET [2], [40]. The current gain (𝛽) of bipolar transistors 

is usually a strong function of temperature and this has been for the junction temperature 

measurements of GaAs based hetero-structures bipolar transistors (HBTs) [41] and silicon 

germanium (SiGe) hetero-structures [42]. The reverse saturation current increases 

exponentially with temperature of P-N junctions and possible to use as a TSP to measure the 

temperature of insulated gate bipolar transistors (IGBTs) [43].    

2.3.2. Optical thermal measurement techniques: 

In this technique, the optical characteristic which includes emitted (IR) or reflected 

radiation from a surface of DUT is used as temperature sensing parameter [19]. It is considered 

as a non-contact thermal measurement technique, as a probe is not required to be in physical 

contact with the device surface and thus avoids the heat transfer to a physical contacting probe. 

High spatial resolution, the ability to measure rapid variations in temperature, the ability to 

create quasi-real time 2D thermal maps across the surface of device are some of the potential 

advantages. Disadvantages include optical access to the DUT surface, which is not always 

practical if the device being measured is packaged, the measuring equipment required is 

expensive and mostly require expertise to use when compared to some physical contact 

methods.  

Some optical techniques, for example, Raman thermal spectroscopy (Raman 

thermography), requires an active optical source, for example a laser pointed onto the surface 

of the DUT at the point for the temperature measurement. The laser source can interfere with 

the electrical performance of a device as well as providing some local heating at the 

temperature measurement point. This can be minimised by the careful choice of incident 
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wavelength (wavelength that is smaller than the bandgap of semiconductor being measured) 

and by reducing the laser power. A spatial thermal resolution approaching ~500nm [44] is 

possible using Raman thermography. It is scanning method, and therefore for this optical 

technique, 2D real time thermal images are not possible. 

2.3.2.1. Infra-red (IR) thermal microscopy: 

Passive optical measurement techniques use specific wavelengths of the 

electromagnetic spectrum, which are a function of temperature to obtain the temperature of the 

DUT. For example, an IR measurement system normally operates in the 2-5µm waveband, 

whereas luminescence techniques use radiation in the visible region.  

The infra-red thermal measurement technique is possibly the most common non-

contact, non-destructive optical technique for measuring the temperature of an electronic 

device. IR thermal microscopy is completely passive and uses naturally emitted IR radiation 

from the surface of DUT to measure the temperature. It can also provide a 2D thermal map of 

the surface of the device. The method also allows relatively large device surface areas 

(depending upon the magnification of objective used) to be measured.  

 IR thermal microscopes are available commercially and instrumentation exists to 

identify hotspots for microelectronic failure analysis (as multi-array IR detectors are used to 

obtain an instantaneous matrix of temperature measurements) [45] over the surface of the DUT 

[46]. Commercial state-of-the-art IR microscopes typically offer a spatial resolution of ~2.5µm 

(in the 2.5 – 6µm wavelength bands) [47] and a range of  analysis options which include real 

time thermal mapping and thermal transient detection. Although, the IR measurement 

technique has many advantages it suffers from temperature errors when low emissivity and 

optically transparent materials are studied. However, the method  has been successfully used 

for the thermal analysis of GaAs FETs, MMICs [48], MEMS sensors [47] and RF amplifiers 

[49].  

To further improve the temperature measurement on optically transparent and highly 

reflective surfaces, a novel method has been developed at DMU that employs a carbon 

microparticle with a high surface emissivity [7] – known as an IR probe [50]. The principles 

of IR thermal measurement are explained in more detail in Chapter 3.  

2.3.2.2.  Thermo-reflectance:     

Reflection of light from a surface of a DUT can also be temperature dependant. In this 

technique, the intensity of the reflected photon from the surface of a DUT is used to determine 

the temperature profile. The thermo-reflectance method can be used to make sub-micron 

temperature mappings [51]. The main advantages of this technique are; non-contact and non-

destructive approach for measuring the steady state and transient surface temperature of 

submicron features of electronic devices. The technique can provide good spatial thermal 

resolution (<0.5µm) [52]. Very short thermal transient measurements are also possible using 

this measurement method, with a 10ns of thermal transient resolution being claimed [3], [53]. 

The schematic of a thermo-reflectance measurement arrangement is shown in Figure 2.3.  
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Figure 2.3: Schematic of thermo-reflectance measurement arrangement. 

A parameter characterising the thermo-reflectance phenomenon is the thermo-reflectance 

coefficient (𝐶𝑇𝑅), which is the relative change in the reflectance per unit change in the 

temperature and is given by the equation (2.4); 

 
𝐶𝑇𝑅 =   

1

𝑅
 
∆𝑅

∆𝑇
  

(2.4) 

Where, ∆𝑅 𝑅⁄  is the relative variation of reflectivity.  

The accuracy of this technique depends on the level of noise contribution from the 

detector, electronics and quantisation processes. This technique has been used for making the 

temperature measurements of interconnects, semiconductor devices and thin films [3], [54], 

[55]. Although it should be added, the technique is still in its development infancy and 

interpretation of DUT temperature results requires great deal of experience and expertise. 

2.3.2.3.  Micro – Raman spectroscopy: 

In recent years, laser Micro – Raman spectroscopy has become recognised as an optical 

method to explore the thermal characteristics of semiconductor devices [56]. In this 

measurement technique, a focused laser source is used to excite the DUT. A small portion of 

the incident laser photons are in-elastically scattered (known as Raman scattering) by the 

phonons causing a small shift in frequency of the photons. The phonon vibration is dependent 

on temperature. If the temperature dependence of the phonon shift is known, then the change 

in photon frequency with temperature can be used to characterise the thermal profile of the 

semiconductor device [57]. The Micro – Raman spectroscopy has been used to measure the 

temperature of Si MOSFETs, AlGaN/GaN HFETs [58] and GaAs HEMTs devices [59].  

One of the main advantages of using the Raman technique for temperature 

measurements is, a high spatial thermal resolution of <1µm is possible [60]. High temporal 

resolution (in nanoseconds) and the possibility to measure the temperature distribution through 

different layers of semiconductor are some of the advantages of this technique. However, using 

this technique, it is difficult to create a detailed thermal map over large surface area, as 

measurements can only be made at single point and require long periods of time to average a 

number of individual readings [46]. Additionally, this technique is not suitable for making the 
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temperature measurements on metallised surfaces (because the metal phonons cannot be 

detected due to very low in energy) [46], [61], for instance, on the gold contacts of an electronic 

device. In this technique, there is also a possibility of some temperature error due to laser 

induced heating and carrier generation within the semiconductor. 

2.3.2.4.  Luminescence: 

An external stimulation such as electric field or photo excitation will cause the emission 

of radiation which is known as luminescence [62]. On the basis of external stimulation, 

luminescence can be categorised into; electroluminescence or photoluminescence. Both of 

which have been used for measuring the temperature of compound semiconductor devices [3], 

[63]. The emitted radiation is monitored as a function of temperature to obtain the peak 

temperature of the device under test. The luminescence technique is useful for making the 

measurements on direct bandgap materials such as GaAs [3]. The spatial resolution of the 

photoluminescence method is ~1µm with temperature accuracy of 1 °C [3]. 

The potential of the above technique can be explored using nanotechnology and has 

been demonstrated [64]. In this method, the nano-sensors composed of Rhodamine B (RhB) 

fluorophores conjugated to a silica sol-gel, were spread over the surface of the CMOS MEMS 

micro-hotplate [64], and dried on the surface. The MEMS device was a miniature micro-heater 

with a high operating temperature and is small enough to be mounted beneath the microscope. 

The temperature dependent fluorescence intensity of the luminescent nano-sensors which were 

spread across the surface of miniature micro-heater can then be used for the thermal 

characterisation of nano/micro scale electronic devices.   

2.3.2.5.  Other optical temperature measurement techniques: 

There are other optical characteristics that can be used for measuring the temperature 

of devices. For example; thermo-optic effect (the change in temperature with the changes in 

the optical index of refraction of a material). This technique has been used to measure the 

temperature in waveguide modulators [65]. A multi-spectral technique is another example of 

an optical measurement technique. In this technique, the temperature dependence of spectral 

distribution of infra-red radiation emitted by the surface of device under test, without knowing 

the emissivity, is used to measure the temperature [7]. A temperature measurement using a 

multi-spectral technique has also been demonstrated [66]. This technique is more suitable to 

study the thermal characteristics of surfaces heated to more than 600 K [7]. 

2.4. Comparison of thermal measurement techniques: 

Thermal management of electronic devices has become increasingly important with the 

continuing commercial trends towards smaller, faster and low power electronic devices. The 

ultimate choice of the temperature measurement method depends on the device type to be 

tested, spatial resolution and measurement accuracy etc. The main advantages and 

disadvantages of different thermal measurement technique that are reviewed in this chapter are 

summarised in the Table 2.1.  
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Table 2.1: Comparison of thermal measurement techniques. 

Methods  Advantages Disadvantages 

Liquid crystals  Spatial resolution of ~1µm 

 Easy to use and high 

accuracy with temperature 

resolution of 0.1 °C 

 Heat spreading occurs 

 Only a single point 

temperature can be made 

with each type of liquid 

crystals 

Thermocouples  Easily available 

 Capable of measuring wide 

range of temperatures (up to 

~3000 °C, dependant on 

metal types) 

 Real-time measurements 

 Spatial resolution limited 

to the probe size (~20µm) 

 Only a single point 

temperature measurement 

can be made 

 

Atomic Force 

Microscopy 

(AFM) 

 High spatial resolution <1µm 

 Measurement can be made on 

almost any material 

 Heat spreading occurs due 

to physical contact 

 Small area measurements 

Electrical 

methods 

 Can measure the temperature 

on fully packaged devices 

 No physical contact probe for 

temperature measurement 

 No need of special sample 

preparation 

 Only gives an average 

temperature  

 Cannot be used to detect 

the hotspots or create the 

2D thermal maps 

IR thermal 

microscopy 

 Matrix of temperature 

measurement can be made to 

create 2D thermal map 

 Thermal maps can be made 

over large areas 

 Measurements can be made 

on metals 

 Spatial resolution limited 

to ~2.5µm (in the 2.5 - 

6µm wavelength bands) 

 Temperature errors when 

low emissivity and 

optically transparent 

materials are under study 

Thermo-

reflectance 

 Spatial resolution <0.5µm 

 Can be used to make the very 

short thermal transient 

measurements, with a 10ns 

resolution  

 Expensive technique 

 

Micro-Raman 

spectroscopy 

 High spatial resolution <1µm 

 Measurements can be made 

on semiconductor layers 

 Small area measurements 

 Measurements cannot be 

made on metals 

 Not a real time 

measurement 

 Expensive technique 

Luminescence  Potential spatial resolution of 

< 100nm 

 Single point measurement 

 Not real time 

 Manipulation of the nano-

sensors 
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2.5. Summary: 

There are a number of thermal characterisation techniques that can be used to thermally 

profile micro-scale electronic devices. Electrical techniques can be used to make the 

temperature measurements on packaged devices, however, they will only be able to provide 

average temperatures. Contact methods are required to make a physical contact and would 

damage delicate devices. Optical methods, such as IR microscopy, have been widely used to 

characterise the thermal behaviour of micro-scale electronic devices, and have a major benefit 

of being non-contact and non-invasive. In addition, these methods can be used to obtain a real 

time 2D thermal maps and enable to identify the hot areas within a structure which could lead 

to a possible failure sites.  

Reviewing the thermal measurement techniques, IR microscopy was well suited and 

one of the few techniques which can be used to perform the thermal characterisation across the 

very thin (~5 µm) heater membrane of the MEMS based IR emitters studied in this work. 

Hence, it was used in this research work which enabled the thermal characterisation of the IR 

emitters to temperatures of 700 °C. For short wave infra-red emission (1.4 µm – 2.5 µm), the 

operating temperature of the IR emitters is in excess of 800 °C. To enable thermal 

characterisation of the delicate heater membrane of the IR emitter at elevated temperatures 

(>700 °C), a new non-contact temperature measuring techniques will require development, and 

in this present research, a passive optical approach based on thermal-incandescence 

microscopy is proposed (which is fully described in Chapter 7).   
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Chapter 3  

Infra-Red thermal measurement: 

This chapter describes the basic infra-red (IR) thermal measurement technique along 

with a critical analysis of the different experimental stages encompassed in the measurement 

technique. The chapter also includes a description of the IR instrumentation and experimental 

setup used for the temperature measurement of the miniature micro-electro-mechanical 

systems (MEMS) micro-heater used in gas sensors.  

Infra-red thermal measurement is a powerful, widely accepted, non-contact technique 

that can be used to measure the temperature of active electronic devices, as introduced in 

Chapter 2. It utilises naturally emitted infra-red radiation from the surface of the device under 

test (DUT). The emission of natural IR radiation from the DUT means that optics can be used 

to capture the radiation and therefore the measurement apparatus is not in physical (isothermal) 

contact with the DUT. This is a great advantage over physical contact techniques, as discussed 

in Chapter 2. The method can be set-up to measure the temperature at points over the surface 

area of the DUT by using a matrix of IR detectors; effectively giving a 2D temperature map, 

enabling the identification of hotspots on the surface of the DUT. Infra-red temperature 

measurements will give a good estimate of the device surface temperature provided the surface 

emissivity of the DUT is known. This chapter includes the introduction to the IR thermal 

measurement technique, instrumentation and software that has been used for the thermal 

measurement of miniature micro-heaters. The IR microscope at De Montfort University 

(DMU) is a commercially available Infrascope-II manufactured by Quantum Focus 

Instruments (QFI). The experimental process of making the IR temperature measurements 

using the IR microscope will be described in detail in section (3.2.3).  

3.1. IR thermal microscopy: 

Infra-red thermal microscopy as discussed is an optical method which will provide a  

2D temperature profile of a biased micro-electronic circuit [1], [2]. In this technique the device 

temperature is calculated from the IR radiation emitted by the material of the device surface 

[3]. The Quantum Focus IR microscope offers a maximum spatial resolution of approximately 

2.5µm (in the mid IR spectrum of wavelengths, λ = 2.5 to 6µm) and can be equipped with both 

transient and continuous wave (CW) imaging detectors. The instruments come with a range of 

objective lenses, for example low magnification objectives (×1) are used to image thermal 

maps of large surface areas (10 × 10 mm) and high magnification objective lenses (×25) can 

be used to image smaller areas (0.464 × 0.464 mm). This is particularly useful, if a hot area has 

been identified using the low magnification objective, it can then be imaged in more detail 

using the higher magnification objective lens. The Figure 3.1 shows a schematic of an IR 

thermal microscopy arrangement.  
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Figure 3.1: Schematic arrangement of IR thermal microscopy [4]. 

As thermal IR microscopy is a passive technique it will not interfere with the DUT 

either electrically or thermally. IR microscopy can provide temperature sensitivity up to 0.1 K 

[5], [6] and hence can be used as a characterisation tool for helping in thermal management 

design of electronic devices and circuits. 

To understand the principle behind the IR thermal microscopy, it is necessary to 

understand the theory of thermal radiation. Thermal radiation can be defined as electromagnetic 

radiation produced by the thermal motion of charged particles in matter [7], [8]. All matter with 

a temperature greater than absolute zero (0 Kelvin) will emit radiation. However, most of the 

radiation emitted by an object at around room temperature is considered as infra-red radiation. 

IR radiation is part of the electromagnetic spectrum [9] and occupies the frequencies between 

the visible light and radio waves with wavelengths from 0.7µm to 1000µm as shown in the 

Figure 3.2. 

 

Figure 3.2: Electromagnetic spectrum [10]. 

 

 

 



3-3 

 

The maximum energy that is possible to be radiated by an object is called black body 

radiation. It is a hypothetical object that can absorb electromagnetic radiations of all possible 

frequencies incident on its surface without any reflection. Thus, to maintain the conservation 

of energy, a black body must also be considered as a perfect emitter. A perfect absorber or 

emitter of radiation does not physically exist [11]. Therefore, the concept of emissivity arises 

and this is explained more in section 3.1.2. 

3.1.1. Planck’s black body radiation law: 

In 1900 Max Planck combined electromagnetism with thermal analysis by considering 

each atom as an individual oscillator giving a quanta (ℎ𝑣) of energy and from this he derived 

the expression for the electromagnetic radiation emitted by a black body when it is in thermal 

equilibrium at a known temperature. This is known as Planck’s Law [8], [12]; 

 

 
𝑤 ( 𝜆 ) =  

2ℎ𝑐2

 𝜆5 {exp (
ℎ𝑐

 𝜆 𝑘𝐵𝑇
) − 1}

   
 (3.1) 

 

Where, 

𝑤 is the power emitted by a black body (per unit area) as a function of wavelength 𝜆 at a known 

source temperature 𝑇.   

𝑐 is speed of light in a vacuum = 2.997 × 108 m/s 

ℎ is Plank’s constant = 6.63 × 10-34 J/ s 

𝑘𝐵 is Boltzmann’s constant = 1.38 × 10-23 watts/K 

The spectral distribution of emitted radiation from a black body at different 

temperatures is shown in Figure 3.3 [13]. The plot shows the total power emitted by a black 

body increases as temperature increases. 
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Figure 3.3: Spectral distribution of emitted radiation from black body at different 

temperatures [13].  

The spectral distribution of thermally emitted radiation also shifts towards the shorter 

wavelengths as temperature increases (as described by Wein’s law [14], [15], and shown in 

Figure 3.3). At lower temperature range (300 – 500 K), the spectral emissive power is 

maximum in the 2μm–10μm wavelength band. This spectral wavelength band is used by most 

of commercial passive IR detectors (for example, Indium antimony (InSb) IR detectors) to 

operate.      

3.1.2. Emissivity concept and Stefan Boltzmann law:  

In the real-world a perfect black body does not exist. Therefore, a parameter known as 

emissivity is introduced for the characterisation of radiative efficiency of a material surface. 

Emissivity is defined as the radiation efficiency of surfaces of real-world objects as compared 

to that of a perfect black body [4]. The perfect black body is said to have an emissivity equal 

to 1 [16]. However, at the same temperature, the real-world surface will emit IR radiation at a 

fraction of the black body radiation. Hence, the definition of surface emissivity (ɛ) is the ratio 

of real-world emitted radiation compared to that of a perfect black body at the same temperature 

and operating over the same spectral bandwidth. Therefore, surface emissivity varies between 

the values 0 ˂ ɛ ˂ 1 [16].  
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ɛ =  

𝑅𝑠

𝑅𝑏
 

(3.2) 

Where, 𝑅𝑠 and 𝑅𝑏 are the level of emitted radiation (W/m2.str) from the device surface and a 

black body respectively, at the same temperature and over the same wavelength range 

(assuming no background radiation is present). 

The total amount of radiation emitted by a black body can be related to its temperature 

and is described by the Stefan Boltzmann law [17]. It states that the radiation power emitted 

per unit area of the surface of black body is directly proportional to the forth power of its 

absolute temperature and is given by equation [18], 

 𝑤 =  𝜎 . 𝑇4 (3.3) 

 

Where, 𝜎 = Stefan – Boltzmann constant and is given by 5.67 × 10-8 Wm-2K-4 and 𝑇 is absolute 

temperature.  

The measurement is complicated by the fact that the amount of energy emitted by the 

device under test is dependent not only on its temperature but also on the surface emissivity 

(ɛ). The surface emissivity is dependent on the material and its surface finish. The total radiated 

power (𝑤) from an object with an emissivity value ɛ is given by the equation,   

 𝑤 =  ɛ 𝜎 . 𝑇4 (3.4) 

By measuring the emitted radiation level from a surface with a known emissivity, its 

temperature can be determined. Knowing the magnitude of the surface emissivity is very 

important for accurate temperature measurement using IR thermal microscopy, as it will 

determine the radiation emitted by the surface. The surface emissivity across a semiconductor 

device will vary widely depending on the semiconductor and metal contact materials, as well 

as its surface finish (matt, polished etc). Surface emissivity values of less than 0.1 are often 

observed on metals like gold, which is normally used as the contact metal for electronic 

devices. 

 There are two methods which can be used for measuring the surface emissivity of a material 

and these are described below: 

3.1.2.1. One-temperature emissivity method: 

The one-temperature emissivity technique assumes that the IR thermal microscopy has 

been calibrated against a black body (ɛ=1) over the required operating temperature range. The 

DUT is placed on a heated base-plate (which enables its temperature to be controlled) under 

the microscope objective and the radiance emitted is measured for a known base-plate 

temperature (𝑇 °C). The radiation RT emitted (W/m2.str) by the surface of the device at 

temperature 𝑇 °C is given by the equation [19];  
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𝑅𝑇 =  ɛ 𝑅𝑏 +  𝑅0 (1 − ɛ)  (3.5) 

Where, 𝑅𝑏 is the radiation levels (W/m2.str) emitted by a black body at the same temperature 

(𝑇 °C) as the DUT surface and measured over the same wavelength range. 𝑅0 is the level of 

external background radiance (W/m2.str) at room temperature, and ɛ is the surface emissivity.  

Equation (3.5) can be rearranged as shown in (3.6), 

 
ɛ =

(𝑅𝑇 − 𝑅0) 

(𝑅𝑏 − 𝑅0)
 

(3.6) 

For a given temperature 𝑇 °C the emissivity (ɛ) of the surface can be calculated using equation 

(3.6) by assuming the room temperature remains constant. 

The use of this formula can be challenging, as the room temperature may vary after the 

manufacturers calibration and subsequent device measurements, leading to some variation in 

the surface emissivity. The method also requires the background radiance to be accurately 

measured, which is difficult as the background radiance (𝑅0) has a very small value (< 0.02 

W/m2.str) and depends on many factors, including convection currents, reflections and change 

in the background temperature etc. [20]. Therefore, the method is not very effective if the 

emissivity of the surface of the DUT is small leading to a small value of 𝑅𝑇, which could be a 

similar magnitude to the background radiation 𝑅0. The stability of the measuring system over 

time is also very important, for example if  𝑅𝑇 and 𝑅0 are both small and similar in magnitude 

then any change in the instrument hardware could lead to an erroneous difference between 

them resulting in a large measurement error [20]. 

3.1.2.2. Two-temperature emissivity method: 

The two-temperature emissivity method which was developed by P. Webb [19], is an 

improved emissivity measurement approach, and can be used to compensate for some of the 

short comings of the single temperature emissivity measurement. This approach involves 

measuring the change in emitted radiance level from the surface of the DUT at two known 

temperatures (T1 and T2).  By assuming  the external background radiation level (𝑅0) at room 

temperature remains constant during the measurement (this is a reasonable assumption 

provided T1 and T2 are not too dissimilar), the equation (3.5) can be rewritten to give the 

thermal radiation emitted by a surface of DUT at the two temperatures T1 and T2 respectively 

in equations (3.7) and (3.8). 

 

 

 

𝑅𝑇1 =  ɛ 𝑅𝑏1 +  𝑅0 (1 − ɛ)  (3.7) 

 𝑅𝑇2 =  ɛ 𝑅𝑏2 +  𝑅0 (1 − ɛ)  (3.8) 
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Where, 𝑅𝑇1 and 𝑅𝑇2  are the level of radiance emitted (W/m2.str) by the surface at known 

temperature T1 and T2 respectively. 𝑅𝑏1  and 𝑅𝑏2 are the corresponding black body radiation 

values (W/m2.str) at the two temperatures T1 and T2 respectively.  

Subtracting the equation (3.8) from equation (3.7), the surface emissivity is then given by the 

equation (3.9), eliminating the background radiation R0, 

 
ɛ =

 (𝑅𝑇1 − 𝑅𝑇2) 

(𝑅𝑏1 − 𝑅𝑏2)
 

(3.9) 

 

The IR microscope software (will be discussed in section 3.2.2) calculates the surface 

emissivity value for every pixel within the detector matrix (Figure 3.1) thereby creating an 

emissivity map across the surface of the DUT. Once the emissivity map has been calculated; 

the IR microscope can be used to map the thermal profile of the electrically biased DUT.  

The IR microscope software enables both automatic two-temperature emissivity and 

thermal mapping; using the built in black body calibration data (recalibrated on an annual 

basis). Unfortunately, the automatic emissivity correction does not account for any mechanical 

movement of the base-plate or DUT due to changes in operating temperature. If the movement 

happens at the time of the measurement process, the surface areas under study will become 

misaligned and provide incorrect emissivity values. Therefore, a manual two-temperature 

emissivity correction is recommended for correct emissivity values, in which the two radiance 

images can be manually realigned to overcome any mechanical movement.   

 The two-temperature emissivity method is an improvement over the one temperature 

emissivity calculation as it eliminates the background radiation 𝑅0. Although, it improves the 

accuracy of emissivity measurements, there is possibility of error if the background radiation 

level changes with variation in the temperature or mechanical configuration around the DUT. 

This would necessitate re-measuring the surface emissivity of the DUT [19]. A heated-stage is 

used to heat the DUT to the two temperatures T1 and T2 to carry out the two-temperature 

emissivity correction. The heater will also emit radiation which will add to the normal 

background radiation leading to small changes in the surface emissivity and therefore minor 

errors in the measured temperature [19]. This problem can be minimised by carefully designing 

the base-plate and in particular the attachment of the DUT to the base-plate. Further, the 

thermal expansion or contraction of the base-plate and metal jig holding the DUT can result in 

problems with alignment of the detector pixels between making the measurements at the two 

temperatures T1 and T2. This can lead to an error in the radiance measurement resulting in 

incorrect emissivity values [2]. Therefore, the radiance images should always be checked and 

correctly realign between T1 and T2 radiance measurements, before using the emissivity map. 
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3.1.3. IR thermal measurement potential pitfalls: 

The temperature accuracy of the IR thermal measurement technique is very dependent 

on the radiance property of the material under test. When a low emissivity/highly reflective 

metal or  an optically transparent semiconductor are being measured there can be a significant 

temperature error in the DUT [19], [21]. When the materials have a low surface emissivity (< 

0.1), the IR radiation emitted by the device surface will be similar in magnitude to the reflected 

background radiation and will give less reliable DUT temperature measurement compared to 

higher surface emissivity materials. Also, many materials, including semiconductors are 

transparent to IR radiation. Therefore, when making a surface emissivity measurements on 

transparent materials, the transparency could lead to anomalous surface emissivity values, as 

the detected IR radiation level will be the result from underlying layers as well as from the top 

surface of the semiconductor (Figure 3.4) [22], leading to errors in the measured surface 

temperature.  

 

Figure 3.4: IR radiation emitted from multi-layer transparent materials.  

If an accurate surface emissivity map of the DUT cannot be obtained, then neither can 

an accurate surface temperature. To overcome this problem, a high emissivity black coating 

can be applied on low emissivity and transparent materials in order to try to improve the 

temperature measurement accuracy. The coating used is normally a conventional black paint, 

which has a number of disadvantages. The black paint coating may cause heat spreading across 

the surface (thereby reducing the thermal spatial resolution) distorting the measured thermal 

profile, and it may also damage the electronic device. Further, the coating will be difficult to 

remove from the device surface, after measurement, without damaging the device. Therefore, 

this technique is normally used on sample devices, which can then be disposed of. Additionally, 

it will also obstruct the area where it is applied to the DUT making it difficult for any 

subsequent visual inspection.  

To avoid these issues, a novel technique was developed at De Montfort University that 

uses a high emissivity spherical carbon microparticle, which is called a microparticle infra-red 

sensor (MPIRS) [21]. These are placed in temporary isothermal contact with the surface of the 

DUT at the point for the temperature measurement. The MPIRS technique is very useful to 

make temperature measurements on semiconductors (for example; Si, Ge, GaN and GaAs) 

which are transparent to IR radiation, and also on materials with low surface emissivity (for 

example; gold contacts) eliminating the need for physically coating the surface with a 

conventional black paint [21].  
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To use the MPIRS technique, the surface emissivity of the MPIRS has first to be 

measured, this is normally undertaken using the two-temperature emissivity measurement 

method, as already described in section 3.1.2.2. The MPIRS will give an improved 

measurement over the black paint technique as little heat-spreading occurs. This is primarily 

due to the MPIRS having a low thermal mass and thermal time constant of the order of micro-

seconds. The IR thermal measurement technique using MPIRS will be fully discussed in 

Chapter 4.    

3.2. Methodology: 

There are a number of commercial IR thermal measurement instruments on the market 

which can be used for making temperature measurements on electronic devices. As already 

stated the instrument which was used for this research work was an InfraScope-II manufactured 

by QFI (Quantum Focus Instruments, USA) and is described below: 

3.2.1. QFI InfraScope-II: 

Quantum Focus Instruments (QFI) is established as one of the world’s leading 

manufacturer of IR thermal measurement equipment [23] and was an offshoot from the Barnes 

Company. Thermal measurement data is crucial for the design and characterisation of 

semiconductor devices (microwave, optical, MEMS etc.), and interfaces between the device 

and package [21]. The InfraScope-II primarily offers real time 2D IR temperature mapping 

with high thermal resolution (~3µm) and temperature sensitivity. Figure 3.5 shows a 

photograph of the QFI IR microscope system with supporting equipment and computers, which 

has been developed at De Montfort University. 

 

Figure 3.5: QFI InfrasScope-II available at De Montfort University. 
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The QFI InfraScope-II system at DMU offers 512 × 512 pixels, cooled (77 K) indium 

antimonide (InSb) imaging detector with three different objective lenses of magnification ×1, 

×5 and ×25. The spatial resolutions at ×1, ×5 and ×25 are ~50µm, ~5µm and ~3µm with field 

of views 10 × 10mm, 2.3 × 2.3mm and 464 × 464µm respectively. The system is also capable 

of measuring the temperature range from 30 °C to ~700 °C. The high temperature measurement 

facility was recently added to enable thermal characterisation of MEMS micro-heaters, which 

operate at high temperatures (>500 °C). 

QFI InfraScope-II has also been modified to make thermal transient measurements, 

with thermal response times close to 10 microseconds. The transient detector is a single element 

InSb detector cooled using liquid nitrogen (77 K). The transient detector can be used to measure 

the thermal response of switching power transistors, RF power transistors as well as a number 

of other devices including RFICs and ink jet devices when they operate in pulse mode [24].  

The supporting equipment making up the DMU IR thermal measurement system is 

listed below:  

 Anti-vibration table (which is used to reduce environmentally borne mechanical 

vibrations during the measurement). 

 Built in DC/RF probe table. 

 DC probes (Wentworth Laboratories PVX400) with magnetic base and these can hold 

both DC and RF probes. 

 Adjustable stage mount (provided with controls to adjust the X and Y-axes, as well as 

the 90° of stage rotation along this plane). A temperature-controlled Peltier heater (used 

to control the base-plate temperature) is attached to this stage mount. The base-plate 

temperature can be set between 25 °C and 130 °C and controlled to better than (± 1 °C) 

using the thermal stage controller. To measure the base-plate temperature more 

precisely (± 0.1 °C) a thermocouple (K-type) has been embedded into the aluminium 

base-plate and mounted on the Peltier heater. The DUT is mounted on the temperature-

controlled base-plate. 

 The master PC supplied by QFI, contains the software required for controlling 

InfraScope-II and making IR thermal measurements. 

 A dedicated Scientifica robotic arm [25], with micro-manipulator probe, which is used 

for placing and moving the MPIRS across the surface of DUT, and has been configured 

with Infrascope-II (this will be described further in Chapter 4)   

3.2.2. Thermal map software: 

The InfraScope-II comes with a dedicated software package (ThermalMap) for making 

thermal measurements. The software package has been continually updated as extra 

measurement facilities (transient detector, high temperature measurements etc.) have been 

added to the microscope.  

This software is configured with an auxiliary program called headmaster, which is used 

for controlling the optical head functions, such as switching the lenses. A program called stage-
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master is configured within the software to coordinate between the thermal stage controller and 

Peltier heater [26]. 

3.2.3. IR thermal measurement methodology/ DMU procedure: 

The thermal measurement of a DUT can be in the form of a quasi-real time 2D thermal 

image. To obtain the image, three stages of measurement are made.   

1) A radiance reference image is first taken, which measures the level of emitted 

radiation form the unbiased DUT at a known surface temperature. 

2) An emissivity map is computed; that compares the level of emitted radiation 

from the device surface to that of black body at the same temperature.  

3) The DUT is biased and a thermal map is computed using the already computed 

emissivity map.  All three images of a thermal measurement need to be made at 

a known and constant base-plate temperature and the pixels of all three images 

need to be perfectly mechanically aligned to obtain a ‘true’ thermal profile of 

the biased DUT.   

The DUT is first mounted on a thermally controlled base-plate. Care is taken to obtain 

a good thermal interface between the base-plate and Peltier heater-stage, which is often 

achieved by using thermal paste (e.g. RS Heat Sink Compound, RS 554-331). The liquid 

nitrogen (LN2) cooled IR detectors are first topped up and time (approximately 30 minutes) is 

given for them to stabilise at 77 K. A complete description of the developed IR thermal 

measurement procedure in a chronological order is given below:   

 The DUT is placed on the purpose built aluminium base-plate containing a calibrated 

K – type thermocouple (explained in Chapter 2), which monitors the base-plate 

temperature. This assembly is then mounted on a temperature controlled Peltier heater-

stage. The aluminium base-plate helps to provide a large uniform thermal mass to 

compensate for any heating irregularities, enabling the temperature of the sample to be 

controlled accurately.  

 Care is taken to obtain a good thermal interface between base-plate and the Peltier 

heater-stage as well as between the DUT and the aluminium base-plate, this is usually 

achieved by using a thermal paste. The DUT must be securely fixed to the thermally 

controlled base-plate because the InfraScope-II performs mathematical operations 

between sequential captured images and any DUT movement will reduce resolution 

and/or cause erroneous emissivity/temperature mapping results [23].  

 The DUT must be positioned on a vertical alignment with the optics of the microscope. 

 After mechanical mounting of the DUT on the base-plate/ Peltier heater; the electrical 

bias connection from the power supplies to the DUT are made using the available 

electrical connections (DC probes or dedicated connectors) and power suppliers.  

 Open the QFI’s ThermalMap software, installed in the master PC, and set the specific 

user defined base-plate temperature.   

 The required IR objective lens is then selected. (Note: The first thermal exploratory 

measurements are normally made using a low magnification objective lens (×1) and if 
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hot areas or hotspots are identified then a high magnification objective lens (×5 or ×25) 

can be used to look at the hot areas/hotspots in more detail).    

 To start the thermal measurements, the emissivity map is first produced. To make the 

thermal measurements using the two-temperature emissivity technique (benefits of this 

technique are explained in section 3.1.2.2), two reference radiance images are captured 

at two elevated temperatures (for example, 65 °C and 95 °C) and need to perfectly 

aligned.  

 After the computation of the 2D surface emissivity map; the DUT is biased and the 

radiance is re-measured. Using this radiance data and computed surface emissivity the 

temperature map can be obtained per pixel.  

 From this data the 2D thermal map of the DUT over the same area of the device as the 

emissivity map can be computed and displayed. The 2D thermal map of the biased DUT 

can be used to analyse the thermal operation of the device, for example identify hot 

areas.  

For a quick estimate of the surface temperature (or hotspots) of the biased DUT, IR thermal 

measurement can be made using one-temperature emissivity approach. In this technique, a 

background image is first captured to measure the level of background emitted radiation and 

then a radiance reference image of an unbiased DUT is captured only at a single known 

temperature to produce a single temperature emissivity map. After a surface emissivity map 

has been computed, the DUT is biased and then the emitted radiation is re-measured from the 

surface of biased DUT. Again a thermal map can be displayed which will highlight any regions 

of elevated temperature. 

3.3. Summary:  

The QFI Infrascope-II has been modified for high temperature measurement during this 

research work and has all the facilities to map temperature profiles of MEMS based micro-

heaters to temperatures 700 °C. Other techniques will need to be investigated for temperatures 

above 700 °C. Two-temperature emissivity mapping will be used to thermally map the surface 

of the MEMS micro-heater as it will give improved sensitivity.  

As already discussed, the MEMS micro-heater membrane is a thin semiconductor layer 

which will be transparent to IR radiation. Therefore, although thermal uniformity can be 

investigated using the two-temperature emissivity mapping and conventional IR microscopy 

the actual surface temperature of the micro-heater will be difficult to measure.  

The MPIRS technique will be used to obtain a more accurate spot temperature of the 

MEMS micro-heater. To date, the MPIRS technology has only been used to temperatures 

around 200 °C, and therefore the use and calibration of MPIRS towards operating temperature 

of 700 °C will be explored as a part of this research work. Furthermore, the heater membranes 

are very thin and delicate and could be easily damaged when using MPIRS technology. 

Therefore an effective and precise manipulation of the MPIRS sensor or other techniques of 

positioning on the heater membrane will need to be explored. 
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Chapter 4  

IR micro-sensors: 

This chapter provides a description of the microparticle infra-red sensor (MPIRS) 

method, using the carbon microparticle, which has a high and known emissivity. This helps to 

improve the accuracy of the temperature measurements made on the optically transparent thin 

semiconductor layer forming the micro-electro-mechanical systems (MEMS) micro-heater 

studied in this research work. 

4.1. Introduction: 

Chapter 3 discussed the experimental methodologies to thermally characterise MEMS 

based micro-heaters and electronic devices in general using conventional passive infra-red (IR) 

thermal microscopy. Conventional IR thermal measurements on highly reflective metallised 

surfaces (usually very low emissivity <0.1) and IR transparent semiconductor layers of 

electronic devices may lead to significant temperature errors (discussed in Chapter 3, section 

3.1.3). Although, Micro-Raman spectroscopy (as discussed in Chapter 2, section 2.3.2.3) could 

be used for the detailed thermal measurement (high thermal spatial resolution) on 

semiconductor devices, the technique is not possible to be used for making the temperature 

measurements on highly reflective metallised surfaces and contacts. Furthermore, this 

technique requires a laser source to excite the device under test (DUT). Therefore, the laser can 

affect the measurement, and so is not a passive technique. At De Montfort University, an IR 

thermal point measurement has been developed using a carbon based MPIRS technology that 

overcomes some of the problems of performing IR temperature measurements particularly on 

IR transparent semiconductor devices and high reflectivity metals [1].   

The effect of the background material on the emitted radiance measurement from the 

MPIRS, as a function of temperature, has also been investigated. This has enabled experiments 

to be reported in this thesis that calibrate the MPIRS emitted radiance as a function of 

temperature to high operating temperatures taking into account the effect of background 

radiation. In addition, the emissivity of the MPIRS was also measured, for the first time, to 

temperatures approaching 300 °C by eliminating the background radiance. 

4.2. Description of the microparticle measurement technique:  

In this technique, a high emissivity opaque spherical carbon microparticle is placed in 

temporary isothermal contact with the surface of the device (DUT) in which the temperature is 

to be measured. The spherical shape was chosen as it enabled a stable point contact with the 

surface of the DUT [2]. To make a temperature measurement using the MPIRS, the surface 

emissivity of the microparticle is first measured. This was done by measuring the radiance 

emitted by the MPIRS, using the Quantum Focus Instruments (QFI) IR microscope, at two 

known temperatures and then applying the standard two-temperature emissivity measurement 

approach (as already described in Chapter 3, section 3.1.2.2). The QFI IR microscope takes the 

black body radiation values from a stored black body calibration (which is recalibrated by user 

on an annual basis) to provide a value of the surface emissivity. The measured surface 

emissivity of the MPIRS can then be used to determine a more accurate indication of the 
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temperature of the surface with which the MPIRS is in isothermal contact. In this measurement 

technique, the surface emissivity of the MPIRS is independent of the radiative surface 

properties of the DUT. The MPIRS has a small thermal mass and an estimated thermal time-

constant of the order of micro-seconds which is very short compared with the image acquisition 

time of milliseconds [1] for QFI IR microscope. Therefore, a thermal equilibrium will be 

reached very quickly between the DUT surface and the MPIRS, enabling a more accurate 

temperature measurement to be made. The MPIRS can also be removed from a surface of the 

DUT without causing damage to the device. The schematic experimental arrangement of this 

technique is shown in Figure 4.1. 

 

Figure 4.1: Schematic arrangement for IR thermal measurement using microparticle sensor 

technique. 

The microparticle measurement technique offers the following advantages over conventional 

IR temperature measurements;  

 The technique is not dependent on the surface emissivity of the device being measured 

but only on the surface emissivity of the MPIRS, which has to be initially measured. 

Therefore, temperature measurement accuracy will be independent of the surface 

emissivity of the DUT.  

 A higher spatial resolution (limited to the spatial resolution of the IR microscope) is 

possible when compared to coating the DUT with a high emissivity paint, as an 

individual MPIRS (spherical) has a small area in contact isothermally with the surface 

of DUT, thus limiting lateral heat spreading [3]. Maximum spatial resolution can only 

be achieved using MPIRS with a diameter similar to the spatial resolution of the 

microscope. 

One potential problem using the MPIRS technique is that carbon is an electrically 

conductive material and may cause a problem when used in electrically biased semiconductor 

electronic devices [4]. However, most electronic semiconductor devices are electrically 

passivated using a non-conductive film [5], for example; silicon dioxide (SiO2) or silicon 

nitride (Si3N4), and therefore positioning the conducting carbon microparticle on a passivated 

DUT should not present any measurement problems. It is also interesting to note that some of 

these passivation films may well enhance the surface emissivity of the device [6].  
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The technique enables a point thermal measurement using a single carbon microparticle 

sensor [7], and hence, accurately knowing the surface emissivity of the microparticle is very 

important. To improve the thermal precision of the MPIRS it can be moved across the surface 

of the DUT more accurately using a micro-manipulator. Using this technique, precise thermal 

profiles can be obtained. However, the measurement will no-longer be in real time and so care 

needs to be taken to minimise any changes in the environment surrounding the DUT.  

4.2.1. Microparticle sensor manipulation:  

In this research work, spherical shape amorphous carbon MPIRS particles with a 

diameter between 2µm to 50µm were used. These were purchased from commercial suppliers 

(Sigma-Aldrich and Alfa Aesar). The MPIRS can be used in different ways to make the surface 

temperature measurement. An individual MPIRS can be placed on the area of interest (for 

example, at a hotspot location, which can be first identified using conventional IR thermal 

microscopy) using a pick and place method as shown in the schematic Figure 4.2, or a  

collection of microparticle sensors with an appropriate range of diameters can be scattered over 

the area of interest on the surface of the DUT, if exact positioning is not important [2]. 

However, for detailed thermal measurements at a specific location (for example, temperature 

profiling within the channel of planar Gunn diode) [8], the preferred method would be to use a 

calibrated single MPIRS placed in isothermal contact with the device surface.       

 

Figure 4.2: Schematic arrangement to pick and place the carbon MPIRS. 

To accurately pick and place, and to move a MPIRS across the surface of the DUT, a 

micro-manipulator can be used. The micro-manipulator used in De Montfort University 

measurement set-up was supplied by Scientifica. The unit has been mechanically configured 

with the QFI Insfrascope-II thermal microscope (shown in Figure 4.3). It was experimentally 

found that the MPIRS naturally adhered to the micro-manipulator probe (Hunter Scientific 

injection glass pipettes) by naturally occurring electrostatic and van-der-Waals forces. Hence, 

a single microparticle can be effectively transferred to the point on the surface of the DUT 

where the temperature is to be measured [9], [10]. The process of picking up and transferring 

the microparticle to another point on the surface of the DUT will require further development 

to improve repeatability.    
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Figure 4.3: Scientifica micro-manipulator with manipulation probe.  

To conduct a detailed thermal analysis using this method, the reliable and precise 

manipulation of a single microparticle is essential. Initially the microparticle has to be picked 

up by the manipulation probe. Therefore, to optimise the picking up process, tests were 

undertaken by scattering the microparticles onto different substrates (Al, Cu, Si, Ge and glass). 

Figure 4.4 shows a photograph of the carbon microparticles scattered on the surface of the glass 

substrate. 

 

Figure 4.4: Figure showing the carbon microparticles scattered on the surface of the glass 

substrate (a) SEM image (Non spherical white substances are foreign particles) (b) an 

optical image.   

 

(a) (b) 

20 µm 
100 µm 
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It was possible to pick a target carbon microparticle using the manipulation probe very 

easily from a number of distributed particles scattered on the surface of a glass substrate when 

compared to the surface of substrates made from other materials. This is an important 

observation when manipulating a single carbon microparticle using pick and place method (as 

shown in Figure 4.2). An optical image showing the MPIRS attached to a glass manipulation 

probe is shown in Figure 4.5 (a). The above observation could be due to the glass substrates 

and the manipulation probe both being electrically non-conductive. 

 It is more difficult to pick the microparticles if the substrate or the manipulation probe 

is manufactured from a material providing some electrical conductivity. Carbon microparticles 

will have an electric charge which will be discharged when touching them with a manipulation 

probe manufactured from a material which is electrically conductive making it difficult for the 

microparticle to adhere to the manipulation probe. 

  Additional research to control the electrostatic attractive force between microparticle 

and manipulation probe tip will be required and is outside the scope of the present research. 

This could be an area of future research work to develop a more precise and reliable micro-

manipulation process. 

 

Figure 4.5: Optical image showing (a) Microparticle attached to the tip of the manipulation 

probe (b) manipulation probe bend. 

In order to drop the MPIRS from the manipulation probe tip, it is required to touch at a 

desired location on the surface of the DUT and then pull the tip aside (as shown in Figure 4.6) 

so only a weak adhesive force acts on the particle enabling the particle to attach to the device 

surface [11]. The particle is retained on the DUT surface by the means of van-der-Waals force. 

Microparticle, once placed on the surface of DUT, can be manipulated, repositioned and 

removed as required without causing electrical or physical damage to the DUT. The 

manipulation probe was also inclined slightly (at ~ 30° angle to the vertical as shown in Figure 

4.5 (b)) so that it would bend easily without breaking and absorb force from any over 

displacement of the probe in the process of capturing and manipulating the MPIRS.  

(a) (b) 

200 µm 
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Figure 4.6: Figure showing the schematic of the MPIRS placed on the surface of DUT. (a) 

MPIRS touching on the surface of the DUT (b) figure showing the manipulation probe tip 

touching the side of the MPIRS. 

4.3. Theoretical background on radiance measurements of microparticle IR 

sensors:  

The emissivity measurement (the emissivity measurement method is fully described in 

Chapter 3, section 3.1.2) of the MPIRS depends on accuracy of the IR microscope and 

measurement method, and on the spurious radiation emitted by the material surface where the 

MPIRS is placed i.e. its background surroundings. In the emissivity calibration process, this 

spurious radiation must be considered, as there will be a difference between the magnitude of 

true emitted radiation from the surface of MPIRS and the measured radiation using the 

microscope as it will include radiation emitted from the background surface.   

The emissivity of the MPIRS is obtained by comparing the magnitude of the radiation 

emitted by its surface (𝑅𝑝) to that of the radiation emitted by a black body (𝑅𝑏) at the same 

temperature and same frequency bandwidth. Thus, the emissivity of the MPIRS can be 

expressed as; 

 
ɛ =  

𝑅𝑝

𝑅𝑏
 

(4.1) 

The application of this formula depends on a number of factors including the 

experimental equipment (QFI microscope IR detector) and the surrounding background 

radiation [12], [13].  

Assume that the MPIRS is placed on the surface of the DUT and the IR microscope is focused 

on the microparticle, where; 

Emissivity of the microparticle is ɛ1 

Emissivity of the background surface is ɛ2 

Surface area of the microparticle is A1 

Manipulation Probe 

Microparticle 

DUT  

(a) (b) 
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Area of the background surface is A2 

Defocused parameter is Q 

Microscope configuration factor (gain, solid angle etc.) is K, and assume it is constant for any 

particular objective lens of the IR microscope. 

Hence, the total measured radiation signal (𝑅𝑚) received by the IR detector can be written as; 

 𝑅𝑚 = 𝜎𝐾 [ 𝐴1ɛ1𝑇4 +  𝑄ɛ2 (𝐴2 − 𝐴1) 𝑇4] (4.2) 

Where, 𝜎 is Stefan constant and 𝑇 is the temperature. Therefore, at uniform temperature,  

 𝑅𝑚 = 𝜎𝐾𝑇4 [ 𝐴1ɛ1 +  𝑄ɛ2(𝐴2 − 𝐴1) ] (4.3) 

If it is assumed that the background material surface on which the MPIRS has been placed is a 

black body surface, then, for this particular set-up, 𝜎𝐾 can be found as it is a straight-line 

equation.  

 𝑅𝑏 = 𝜎𝐾𝑇4𝐴2 (4.4) 

Of the form, 

 𝑦 = 𝑚𝑥 (4.5) 

A plot of the black body radiance (𝑅𝑏) against 𝑇4𝐴2 will give the constant for 

microscope/objective (𝜎𝐾 = 𝑍) from the gradient. 

As, 

 𝑅𝑚 = 𝑍𝑇4 [𝐴1ɛ1 +  𝑄ɛ2(𝐴2 − 𝐴1)] (4.6) 

And knowing Z, 𝐴1 and 𝐴2, ɛ1 and ɛ2, it will be possible to calculate Q, 

Therefore, the equation (4.3) become, 

 𝑅𝑚 = 𝑅𝑏 [ 𝐴1ɛ1 +  𝑄ɛ2(𝐴2 − 𝐴1) ] (4.7) 

 𝑅𝑏𝐴1ɛ1 = 𝑅𝑚 − 𝑅𝑏 [ 𝑄ɛ2(𝐴2 − 𝐴1) ] (4.8) 

Assuming the temperature of the IR detector and the room temperature remain constant during 

the experiment, the external background surrounding radiation [𝑅0(𝜆)] reaching the IR detector 

remains constant and can be considered to be independent of temperature. Hence, the radiation 

emitted by the microparticle IR sensor (𝑅𝑝) will be;  

 𝑅𝑝 = 𝑅𝑚 − 𝑅𝑏 [ 𝑄ɛ2(𝐴2 − 𝐴1) ] +  𝑅0(𝜆) (4.9) 

The result show the radiation from the microparticle is dependent on the background surface 

material. 
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4.4. Experiments and discussion: 

4.4.1. Initial tests to assess the effect of background material on emissivity 

measurements:  

The QFI Infrascope-II thermal microscope (shown in Figure 3.5, in Chapter 3) was first 

calibrated using a black body source (shown in Figure 4.7 (a)). This was covered by a very low 

surface emissivity aluminium (ɛ ≈ 0.1) shield, and therefore the effect of the background 

radiation was minimised. The black body source covered with an aluminium shield was 

provided by QFI. The black body radiation was measured through the ~5mm diameter window 

cut in the top surface of the aluminium shield, see Figure 4.7 (b). 

 

Figure 4.7: Black body calibration kit provided by QFI (a) figure showing the surface of the 

black body source (b) figure showing the hole cut in the aluminium shield.    

A preliminary set of experiments was then carried out to determine the effect of 

surrounding background radiation on the measurement of a high emissivity material. Scotch 

brand 33+ vinyl electrical black tape was used as the material, as it has a known and high 

surface emissivity of 0.95 [14], [15]. The surface emissivity of the black tape was measured by 

placing it on the base-plate heater under the QFI IR microscopy (×25 objective) and measuring 

its emissivity at different base-plate temperatures (from approximately 70 ºC to 120 ºC). The 

tape was placed on both low emissivity background (aluminium base-plate, ɛ ≈ 0.1) [16] as 

well as a much higher emissivity background (black tape, ɛ ≈ 0.95). The two-temperature 

emissivity method (described in Chapter 3, section 3.1.2.2) was used to measure the emissivity 

where the two radiance images were taken with a temperature difference of 30 ºC. The surface 

emissivity measurement results are shown in Figure 4.8 (the results are also provided in a table 

in Appendix – 4A). 

(a) (b) 

Hole cut in the  

aluminium shield  
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Figure 4.8: Emissivity measurement results on a black tape when placed on two different 

background. Red line represents emissivity of a perfect black body (ɛ = 1). 

The results show the measured emissivity of the vinyl black tape is (average value, ɛ = 

0.952) almost identical to the published value (0.95) when placed on a very low surface 

emissivity background material. However, it was found that, the measured emissivity of a black 

tape is above 1 when measured by placing on very high emissivity background material, 

therefore showing some error in the measurement. This preliminary work indicates that the 

background surface radiation will have an influence on the value of the surface emissivity of 

the DUT being measured, suggesting the DUT should always be placed on a very low 

emissivity background material (for example, aluminium base-plate as shown in Figure 3.1, in 

Chapter 3) for the measurements using the IR microscopy to minimise error in the measured 

temperature.  

4.4.2. Effect of microparticle diameter size on radiance measurements: 

Before investigating the effect of background radiation on the value of the surface 

emissivity of the MPIRS, some preliminary work was undertaken to look at the effect of 

diameter of the MPIRS on radiance measurements. It has been observed the diameter of the 

MPIRS has an effect on the magnitude of the IR radiation emitted from its surface area, this 

could lead to an error in the measured temperature [2]. The reason for this can be argued as 

follows: the IR microscope system tries to average the received radiance level from 9 

neighbouring pixels rather than one, which will cover the surface area of ~81µm2 (the spatial 

resolution is 3µm when using ×25 lens objective therefore the smallest area resolved by the 

microscope is approximately 9µm2). The surface area of a 10µm diameter particle will be 

approximately 79µm2 assuming that the microscope has a depth of focussed field of 
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approximately 5µm. Therefore, when the MPIRS with a diameter of less than 10µm is used on 

a surface with a low emissivity background, the radiance recorded by the microscope will 

decrease. Hence the microscope will be recording a level of radiation from an area larger than 

the particle surface area and the low-level background surface radiance around the MPIRS will 

also contribute, thereby reducing the surface radiance. This effect becomes more dominant with 

the smaller diameters of the MPIRS. There is also a further argument, as the diameter of MPIRS 

decreases to less than 2µm, then the particle diameter is going to become comparable to the 

wavelength of the emitted IR radiation which may lead to a quantum exclusion effect (longer 

wavelengths no-longer emitted). Neither of the above effects would be seen in MPIRS particles 

which have diameters greater than 10µm [2]. 

An experiment was carried to ascertain how the radiance from a MPIRS decreases as 

the diameter of the particle is decreased. A number of particle with diameters between 4µm to 

50µm was deposited onto a uniformly heated aluminium plate (low background emissivity and 

therefore a low level of surface background radiation) which was held at a constant temperature 

of ~ 85 °C. The radiance emitted from each MPIRS was measured and plotted as a function of 

MPIRS diameter and shown in Figure 4.9. The results show the measured radiance from 

individual microparticles decreases substantially, if the diameter of the MPIRS is less than 

10µm. 
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Figure 4.9: Effect of MPIRS diameter size on emitted IR radiation measured at constant 

temperature of ~ 85 °C. 

To support the findings as shown in Figure 4.9, the experiment was repeated where the 

radiance emitted by two large size microparticles (20µm and 45µm in diameter) were measured 

at different operating temperatures. Figure 4.10 shows the radiance emitted from each 

microparticle as a function of temperature and shows larger size microparticles (with a diameter 

greater than 10µm) emit very similar radiance levels, for any given temperature. 
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Figure 4.10: Plot comparing the level of radiance emitted by different size MPIRS as a 

function of temperature.  

 

4.4.3. Effect of background surface on the radiance measurements of 

microparticle sensors: 

A set of experiments was carried out to look at the effect of background surface radiation 

on the radiance calibration of MPIRS. To experimentally determine the effect of the 

background material surface emissivity has on a MPIRS the following experiment was set-up. 

A single MPIRS (diameter size ~22µm) was placed using the micro-manipulation process (as 

described in section 4.2.1) onto each of the following; (i) a very low emissivity material (6mm 

thick polished aluminium block, ɛ=0.06, and a 2mm thick polished copper block, ɛ=0.07), and 

on a material (ii) with  a higher surface emissivity (270 µm thick Si wafer, ɛ=0.56), and finally 

on a material (iii) with a very high emissivity (1mm thick glass slide, ɛ=0.9) [16] respectively. 

An example of the deposited MPIRS on the surface of the polished aluminium base-plate, 

including its IR radiance image are shown in Figure 4.11 (a) and (b) respectively.  
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Figure 4.11: MPIRS deposited onto the surface of Al block (a) an optical image measured 

using ×25 lens (b) an IR radiance image measured at a temperature of 80 °C. 

In this experiment, the level of IR radiation emitted by the deposited carbon MPIRS 

was measured using QFI IR Infrascope at different Peltier base-plate temperatures (from 

approximately 40 °C to 130 °C). Figure 4.12 shows the level of emitted radiation from the 

surface of the MPIRS when placed on different background materials (Al, Cu, Si and glass) 

and then compared with black body radiance over the same temperature range and for the same 

spectrum of wavelengths.  
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Figure 4.12: Emitted radiance level at different operating temperatures from the surface of 

carbon microparticle (~22 µm in diameter) deposited on different emissivity background 

materials and compared with black body radiance measured.  

The radiance measurement results indicate the temperature of the MPIRS is   dependent 

on the temperature of the background, and also on the material surface emissivity of the 

22µm 

(a) (b) 
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background material. Materials with highest surface emissivity (for example, glass substrate) 

gave the highest levels of background radiance. This result suggests to obtain reasonable 

measurement accuracy, the MPIRS calibration would be best carried out on materials with very 

low emissivity (will be discussed in section 4.4.7). 

The effect of highly IR transparent semiconductor materials (eg, Si and GaAs) on the 

temperature measurement of the MPIRS will be further investigated and will be discussed later 

in the chapter.   

4.4.4. Emissivity measurements of a microparticle IR sensor: 

To fully confirm the background material surface emissivity has an effect on the MPIRS 

emissivity measurements, further emissivity measurements were made on a carbon 

microparticle sensor (40µm - 47µm in diameter) deposited again on substrates with different 

surface emissivity. For this experiment, the emissivity of the different substrates were first 

measured, and compared with published values [16], [17], [18], [19], [20], [21] (results are 

shown in Table 4.1). A single MPIRS was then deposited onto the surface of each of the 

different substrates using the Scientifica micro-manipulation probe (Figure 4.3). The surface 

emissivity measurement of both the substrate and the MPIRS were carried out using the two-

temperature approach (described in Chapter 3, section 3.1.2.2), where the radiance 

measurements were captured at two base-plate temperatures of 70 °C and 100 °C, respectively.  

Table 4.1: Table showing the effect of background surface emissivity has on the emissivity 

measurements of microparticle IR sensor. 

Background 

surface material  

Measured surface 

emissivity values 

of background 

material 

Published surface 

emissivity values of 

background 

material 

 Emissivity of 

deposited MPIRS 

on the background 

substrate 

Polished 

Aluminium (Al) 

0.07 0.09 [16], [17] 0.57 

Gold (Au) 0.11 < 0.1 [16], [17] 0.58 

Copper (Cu) 0.23 0.26 [17] 0.60 

Sapphire  0.33 0.2 - 0.4 [16], [18] 0.64 

Alumina (Al2O3) 0.3 0.2 - 0.3 [17] 0.63 

Germanium 

(Ge) 

0.28 0.26 [19] 0.63 

Silicon (Si) 0.56 0.39 [19] 0.79 

Gallium 

Arsenide (GaAs) 

0.74 0.1 - 0.3 [20], [21] 0.87 
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From the experiment it is seen that the microparticle’s surface emissivity depends on the 

background material surface emissivity. It is interesting to note that in Table 4.1, with low 

surface emissivity background materials (ɛ < 0.35), the measured emissivity of the MPIRS is 

0.605+/- 0.035 (the resulting error in the surface temperature will be very small, ±1.5 %). This 

is believed to represent the true value of the surface emissivity of the MPIRS (this will be 

further verified in section 4.4.7) as the background radiation and any subsequent reflections 

will contributed very little radiation to the camera lens. 

However, on semiconductor materials (Si & GaAs) which have an apparent high emissivity 

(ɛ > 0.55), the measured surface emissivity of the MPIRS is higher than its actual value. This 

highlights the need to calibrate the surface emissivity of the MPIRS on a low emissivity 

background (e.g., highly polished Al surface) rather than measuring its emissivity on the 

surface to be measured, for example, a semiconductor device which is highly transparent to IR 

radiation.  

After the emissivity of the MPIRS is calibrated by placing it onto a very low surface 

emissivity background, it can then be transferred onto any material surface of the DUT (using 

the micro-manipulation process described in section 4.2.1). The calibrated MPIRS is then used 

to obtain a thermal profile as the measured emissivity of the MPIRS is independent to the 

radiative surface properties of the DUT.    

4.4.5. Initial temperature measurements using microparticle IR sensor: 

A set of experiments was also carried out to check if the IR temperature measurements 

made on deposited MPIRS could be used to track the ambient temperature of the background 

surface. A single MPIRS (size ~22 µm in diameter) was placed onto the surface of polished 

aluminium base-plate (6mm thick). A K-type thermocouple was attached to aluminium base-

plate in order to provide an indication of the background surface temperature. The emissivity 

of the MPIRS was measured using the two-temperature emissivity technique, with two radiance 

images captured at 65 °C & 95 °C respectively. The Peltier heater was used to increase the 

surface temperature of an aluminium base-plate from temperatures ranging between 50 °C to 

130 °C. At each temperature point, the ×25 lens of an IR microscope was used to record the 

temperature of the MPIRS deposited onto the surface of the aluminium base-plate. A result 

showing a comparison between measured MPIRS temperatures using IR microscopy and 

recorded thermocouple temperatures are shown in Figure 4.13 (The results are also provided 

in a table in Appendix – 4B). 
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Figure 4.13: Comparison between temperature measurements using thermocouple and 

carbon microparticle IR sensor. 

The results show the temperature measurements made on the deposited MPIRS were in 

good agreement (within ± 0.5 °C) with the temperature results recorded using an attached 

thermocouple. These results indicate that the MPIRS technique is capable of providing an 

accurate surface temperature measurement on isothermally heated structures. The technique 

has been used to thermally characterise the CMOS based MEMS micro-heaters and the results 

will be discussed in Chapter 6. 

4.4.6. Radiance calibration of microparticle sensors at high temperatures: 

 An improved base-plate heater was developed to heat the MPIRS to higher temperatures 

(in excess of ~ 300 °C) to enable its radiance calibration (previously they have been only 

calibrated to a temperature approaching 130 °C) as a function of temperature. The revised base-

plate heater used a temperature controlled element of a soldering iron. A circular hole (7mm in 

diameter) was cut through the aluminium base-plate block and the tip of the soldering iron was 

inserted through that hole to heat the aluminium block and to provide the uniform temperature. 

A calibrated K-type thermocouple was attached to the aluminium block to monitor the 

temperature of the base-plate heater. A photograph of the base-plate heater assembly is shown 

in Figure 4.14. 
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Figure 4.14: Figure showing the base-plate heater assembly positioned underneath the IR 

microscope.  

Experiments were carried out, for the first time, to calibrate the MPIRS radiance to 

higher temperatures approaching 310 °C. The top surface of the base-plate heater (shown in 

Figure 4.14) was highly polished to reduce the error due to background surface radiance. A 

MPIRS was placed onto the highly polished aluminium base-plate heater using the micro-

manipulation process as described in section 4.2.1. The temperature of the base-plate heater 

was increased from approximately 140 °C to 310 °C and the emitted radiance level from the 

surface of the MPIRS was measured using the QFI thermal microscope. The radiance 

measurements at high temperatures were made on four MPIRS samples (one at a time). The 

×25 lens was used for imaging and measuring the emitted radiance from the MPIRS as a 

function of temperature. The results are shown in Figure 4.15 (The results are also provided in 

a table in Appendix – 4C). The experiment showed that the level of emitted radiance as a 

function of temperature from all four MPIRS was very similar. As the base-plate heater 

temperature is increased from 140 °C to 310 °C, the average emitted radiation level from the 

surface of MPIRS rises from 2.023 to 37.33 mW/cm2.str.  
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Figure 4.15: Emitted radiance level from the surface of MPIRS deposited on highly polished 

Al surface and calibrated as a function of temperature.  

4.4.7. Microparticle IR sensor emissivity calibration: 

A further experiment was carried out and for the first time to determine the surface 

emissivity of the MPIRS taking into account the emitted surface background radiance, to 

temperatures approaching 300 °C. To minimise background radiance the MPIRS was placed 

on a low emissivity surface. For this experiment, the MPIRS (~ 45µm in diameter) was 

manipulated onto the surface of a highly polished aluminium heated base-plate. Initially, the 

radiance emitted from the surface of MPIRS was measured at different base-plate temperatures 

(from 50 °C to 300 °C) using the ×25 lens objective. To measure the level of background 

surface radiance at the same temperatures, the IR Infrascope head was moved along the X-Y 

plane (keeping the same focal length with reference to the surface of MPIRS), until the MPIRS 

was out of the field of view. Therefore, the measured emitted radiance will only be as a result 

of the background material. Figure 4.16 shows the level of background surface radiance was 

low compared to the MPIRS radiance. However, it does show that the background radiance 

increases at elevated temperatures.        
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Figure 4.16: Figure showing the effect of background material surface radiance has on the 

microparticle sensor radiance at different operating temperatures. 

To obtain a more accurate emissivity of the MPIRS particle, the emitted radiance of the 

MPIRS particle is required to be calibrated against the radiance emitted by a black body at the 

same temperature and over the same range of wavelengths. 

  The top surface of the highly polished aluminium base-plate heater was evenly painted 

with matt black paint. It was initially believed that the emissivity of the matt black paint was 

close to a black body source. To fully confirm this, the level of radiance emitted from black 

painted surface of the aluminium base-plate heater was compared with level of radiance emitted 

from the black body calibration kit (provided by QFI) at different temperatures (from 40 °C to 

130 °C) and the results are shown in Figure 4.17. As can be seen from the results, the emitted 

radiation level from both the surfaces is almost identical over the measured temperature range. 

Hence, the matt black paint on the aluminium base-plate heater was used as black body source 

for the radiance calibration at higher temperatures (>130 °C).  
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Figure 4.17: Figure showing the comparison between the emitted radiation level from the 

surface of matt black paint (painted on Al base-plate heater) and black body calibration kit.  

To minimise the error due to the influence of spurious background radiance, a highly 

polished aluminium shutter was designed (shown in Figure 4.18). The black body source was 

covered with aluminium shutter and the whole assembly was positioned in a vertical alignment 

with the objective of the IR microscope, as shown in Figure 4.18.  

 

Figure 4.18: Black body source covered with highly polished aluminium shutter.  
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The level of emitted radiance by the black body source at elevated temperatures 

(>140°C) was measured (using a ×25 lens) through an approximately 5mm diameter window 

cut, made in the top surface of the aluminium shutter to the same dimensions as the hole in the 

aluminium shield provided by QFI (Figure 4.7 (b)) for consistency. To experimentally verify 

the effect of the spurious background radiance, the black body radiance measured using the 

aluminium shutter, was compared with the black body radiance measured without using the 

aluminium shutter and the difference in results as a function of temperature is shown in Figure 

4.19. 

To calculate an emissivity of the MPIRS at higher temperatures (>140 °C), taking into 

account the background surface radiance, the magnitude of the background material surface 

radiance (shown in Figure 4.16) was subtracted from the total detected radiance  emitted by the 

surface of MPIRS. The level of emitted MPIRS radiance calculated by eliminating the 

background surface radiance was compared with black body radiance at the same temperatures 

and shown in Figure 4.19. 
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Figure 4.19: MPIRS radiance (calculated by eliminating aluminium background surface 

radiance) compared with the radiance emitted by the black body source at different 

temperatures. 
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The emissivity of the MPIRS was calculated from the results shown in Figure 4.19, using the 

equation (4.10); 

 
ɛ =  

𝑅𝑝 −  𝑅𝐴𝑙  

𝑅𝑏0
 

(4.10) 

In equation (4.10), 𝑅𝑝 is the total detected radiance emitted by the surface of MPIRS, 𝑅𝐴𝑙 is 

the level of radiance emitted by the background aluminium surface, and 𝑅𝑏0 is the black body 

radiance measured using the aluminium shutter.  

The calculated (from the equation, 4.10) emissivity of the MPIRS as a function of 

temperature to 300 °C is shown in Figure 4.20. The results indicate the emissivity of the MPIRS 

is around 0.6, which agrees well with the measured and stated value in section 4.4.4 of this 

chapter. By eliminating the background radiance the surface emissivity of the MPIRS is almost 

invariant with temperature up to 300 °C.  

120 140 160 180 200 220 240 260 280 300

0.0

0.2

0.4

0.6

0.8

1.0

E
m

is
s
iv

it
y
 (
)

Temperature (C)

 Microparticle emissivity eliminating Al background

 

Figure 4.20: MPIRS emissivity measured by eliminating the background material surface 

radiance.  
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4.5. Conclusion: 

In this chapter, the IR thermal measurement using a single MPIRS to improve the IR 

surface temperature measurement on transparent semiconductor and low surface emissivity 

materials has been discussed. To use a single MPIRS, glass substrates were shown to be a 

convenient surface to pick an individual microparticle with a help of manipulation probe and 

to place onto the surface of DUT. It has been shown that a MPIRS with less than 10µm in 

diameter may lead to an error in the measured temperature. This was further verified by 

measuring the temperature of the MEMS micro-heater using different diameter size MPIRS 

particles including sub-10µm diameter size, and the comparison of the temperature results will 

be discussed in Chapter 6.   

The effect of the background surface on the emissivity measurement of the MPIRS was 

discussed, and for the first time, the MPIRS radiance has been calibrated to higher temperatures 

approaching 300 °C. In the calibration process there are advantages in placing the MPIRS on 

a low emissivity polished surface which can be taken into account. The measured surface 

emissivity of the MPIRS was found to be of the order of 0.6 and was almost invariant with 

temperature to 300 °C. Initially it was thought the carbon based MPIRS will emit IR radiation 

close to that of a black body and therefore have a high surface emissivity (> 0.9) but this work 

suggests that the actual emissivity of the MPIRS is around 0.6. This value agrees with previous 

work carried out by R. H. Hopper [4]. The MPIRS technique was used for thermal 

characterisation of the CMOS based MEMS micro-heaters used in gas sensing technology (a 

review of different types of the gas sensors requiring a miniature micro-heater technology will 

be discussed in Chapter 5), and the results will be discussed in Chapter 6. 
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Chapter 5  

Gas sensors: 

This chapter provides an overview of different gas sensors using a micro-electro-

mechanical systems (MEMS) micro-heater technology including the gases which can be 

detected, the principle of operation and corresponding applications. Gas sensors require a 

micro-heater to raise the temperature of the gas sensing element and to initiate the gas chemical 

reactions which take place at high temperatures (typically >300 °C) [1]. There are a number of 

reports in the literature on the fabrication of the miniature micro-heaters using different heating 

materials (e.g., poly-silicon, tungsten etc.) and this will be discussed in this chapter. Most of 

the modern gas sensors are very important application of the MEMS micro-heater based on 

tungsten metallisation studied in this research work, and this will also be discussed further in 

this chapter.  

5.1. Introduction: 

Gas sensors are chemical sensors that are becoming an important part of our everyday 

lives. Historically, gas sensors were primarily used to detect the hazardous gases found in coal 

mines, which include nitrogen dioxide (NO2), carbon monoxide (CO), hydrogen (H2), sulphur 

dioxide (SO2), methane (CH4) and other hydrocarbons [2] as well as to detect low oxygen 

levels. The modern era of the gas sensor started in 1927 by Dr Oliver Johnson who developed 

a catalytic combustion sensor for detecting combustible gases using a platinum catalyst [3]. 

Modern gas sensor technologies are gaining significant interest because of the widespread 

applications in various fields which include;  (i) indoor air quality monitoring (e.g., monitoring 

CO levels from boilers), (ii) industrial safety application (e.g., detection of CH4 in mines), (iii) 

automobiles (e.g., detection of polluting gasses from vehicles), (iv) medical applications (for 

example the electronic nose (based on arrays of gas sensors), for testing the food smell and 

artificial fragrances [4], (v) environmental science (monitoring of greenhouse gases) and (vi) 

laboratory analysis (analysis of methanol and benzene) [5]. It is also very widely used in smoke 

detectors in private and public housing. 

Over the past few decades, the demand for low cost, low power, miniaturised and 

reliable gas sensors are increasing [6]. This demand along with advances in micro and 

nanofabrication technologies has led to significant improvement in sensor design with the use 

of different materials (e.g., metals and their alloys, semiconductors and other compound 

materials like titanium nitride) [7]. MEMS technology is crucial to the modern gas-sensor and 

has enabled the design and fabrication of miniaturised integrated sensors with excellent 

performance, including low power consumption, high sensitivity, accurate selectivity and fast 

response/recovery time [8], [9]. Recently, gas sensors based on MEMS micro-heater 

technology are drawing attentions for the applications in the IoT (Internet of Things) based gas 

sensors [10] and expected for the potential future market [6].  

Gas sensors normally consist of a chemically active layer (the detector) and a 

transducer, which converts a desired chemical reaction into a measurable electronic signal, 

such as a frequency shift, a change in resistance, a current or voltage signal, or the absorption 
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of light at certain frequencies [8]. Gas sensors are usually classified based on the process 

involved for a gas detection and the type of materials used in their fabrication. 

5.2. MEMS micro-heater technology for gas sensors: 

MEMS micro-heaters are becoming a crucial part for a number of micro-system 

applications which include wind sensors, humidity sensors and gas sensors [11]. Micro-heaters 

are a key element for most of the gas sensors to detect the individual gas concentrations, which 

are present in the mixture of gases, when it is integrated with gas sensing materials like metal 

oxides (e.g., ZnO, TiO2) and polymers. The use of a micro-heater is necessary due to the gas 

chemical reaction which happens in the sensing layer and normally takes place at high 

temperatures (for example; a resistive gas sensor has an operating temperature of ~ 400 °C). In 

addition, MEMS micro-heaters can also be used as an IR source in a non-dispersive (NDIR) 

gas sensors [12], [13].  

The MEMS micro-heaters consist of a substrate and a heating element, which is used 

to heat the sensing material for better sensitivity and short thermal response time. MEMS 

micro-heaters are mainly fabricated on silicon making them compatible with microelectronics 

integrated circuit fabrication processes including complementary-metal-oxide-semiconductor 

(CMOS). Micro-heaters produce heat by applying an electrical current to a thin conducting 

path which is made of high resistive materials (e.g., poly-silicon).     

The silicon-based MEMS micro-heaters are also receiving an increasing attention in 

portable electronic applications because of the following potential advantages:  

 Low power consumption; this allows the micro-heaters to be used in portable and 

wireless applications.   

 Miniaturisation; small size helps in reducing the cost as small chip area enables 

more chips per wafer run. Additionally, small size is very important for portable 

devices.  

 CMOS compatibility; this helps to produce low cost and reproducible sensors, and 

allows integration with wide range of electronic circuitry. 

 Fast thermal response time; enables operation of the device in transient mode 

thereby reducing power consumption and temperature modulation for improved 

detection. 

 Uniform temperature; this helps to ensure a stable performance over the device 

lifetime, and improves accuracy of detection.  

Micro-heaters are fabricated on a membrane formed by bulk etching therefore the 

heater structure is thermally isolated from the rest of the circuit. In microelectronics 

technology, membranes are normally a very thin layer (of the order of µm) of semiconductor 

material (e.g., silicon, silicon dioxide, silicon nitride etc), which is formed by etching away a 

part of the substrate. Based on the membrane structures the micro-heaters are normally 

classified into two types;  (i) closed membrane type and (ii) suspended membrane type (also 

called spider type) [7], [14]. The first type of micro-heater is formed by anisotropic etching of 

substrate (typically silicon) from the backside using wet etchants like potassium hydroxide 
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(KOH). The second type of micro-heater is usually processed by bulk or sacrificial etching 

from the front side [15]. The different membrane types used in micro-heaters are schematically 

shown in Figure 5.1.    

 

Figure 5.1: Schematic view of the micro-heaters with different membrane configuration (a) 

closed type (b) suspended type (left: top surface view, right: side cross-section view). 

Micro-heaters based on suspended type membrane offer very low power consumption 

compared to the closed membrane type due to very low thermal mass of the substrate. In 

addition, the low thermal inertia of these type of heaters contribute to fast heat-up and cool- 

down times, enabling more reliable temperature modulation [8]. However, they are prone to  

mechanical instability, as they are supported by only 2 or 4 dielectric beams (as shown in Figure 

5.1) [16].  

5.2.1. The heating element materials for micro-heaters: 

The selection of appropriate material for the heating element plays a very important 

role in the long term reliability of the micro-heater based gas sensors [15]. Chemical and 

mechanical stability at high temperatures are the main concerns when selecting the material for 

the heating element. The choice of an ideal material for the heating element depends on its 

properties, which include high melting point, high electrical resistivity, large Young’s 

modulus, high thermal conductivity and also has to be compatible with standard 

microelectronics fabrication technologies [7].  

In integrated circuit (IC) technology aluminium (Al) is well known metallisation 

element, and in some cases it has been used as a heating element material [15], [17]. However, 

the use of aluminium in these heaters limits the maximum operating temperature, due to its low 

melting point (660 °C) and it also suffers from surface oxide formation and electromigration at 
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high temperatures. In addition, aluminium also has poor contact properties to the gas sensing 

materials and low resistivity. Gold is a further material which has been used as a heater element 

but suffers from similar problems, as well as low resistivity and poor adhesion [18] to other 

materials. Doped poly-silicon [19] is also a widely adopted material for micro-heaters due to it 

being fully CMOS compatible and has good adhesion to other materials. However, poly-silicon 

displays poor long term stability at temperatures above 300 °C and also suffers from drift in 

resistivity at high temperatures (>500 °C) [8], [20].   

Platinum is the most extensively used material for the heater element due to its high 

thermal conductivity, chemical inertness and good stability at high temperatures (~500 °C), but 

may suffer from drift in resistivity above (>650 °C) [7]. However, there are problems, as 

platinum is expensive and is not commonly used in the CMOS fabrication processes. Micro-

heaters based on molybdenum metallisation [21] have been reported for operating temperature 

above the stability point of platinum (~500 °C) and poly-silicon (~300 °C) [20]. The main 

advantages of the molybdenum include; high melting point (2623 °C), ease of deposition and 

subsequent patterning and chemical inertness towards silicon etchant potassium hydroxide 

(KOH) but it is not CMOS compatible, which would lead to high manufacturing costs.  

Recently, tungsten has served as an alternative heater element material for high 

temperature operating micro-heaters due to its very high melting point (3422 °C) and being 

resistant to electromigration induced failure, when compared with aluminium or poly-silicon 

[22], [23]. Furthermore, tungsten is CMOS compatible and enables the fabrication of micro-

heaters with long term stability, thereby having all the advantages of CMOS technology.   

Ali et al. [22] have fabricated a novel high-temperature tungsten micro-heater for use 

in gas sensors. The group have also been working to design and develop novel IR emitters in 

CMOS technology using micro-heaters based on tungsten metallisation, to enable high 

temperature operation [20], [24]. These emitters typically consist of a tungsten micro-heater 

embedded within a dielectric (SiO2) membrane to provide thermal isolation from the silicon 

substrate. The devices normally operate at temperatures around 500 °C therefore emitting 

thermal radiation in the mid-IR range (2.5µm – l5µm) for NDIR gas sensing and spectroscopy 

applications. A future requirement is to operate the IR emitters at elevated temperatures 

(>800 °C) for spectral sensing applications in the short-wave region of the IR spectrum (1.4µm 

– 2.5µm) [25]. Knowledge about the thermal uniformity and maximum operating temperature 

of the micro-heater is key to understanding the performance and reliability of these IR emitters. 

The thermal characterisation of the tungsten based micro-heater, is a part of this research and 

the work was published [24].   

 The high melting point and high resistivity of titanium nitride (TiN) has led to reports 

on micro-heaters based on CMOS compatible titanium nitride (TiN) [26] with operating 

temperature up to 700 °C. Presently the fabrication process leads to high stress in the TiN films, 

which may cause yield problems. Low cost materials, such as nickel (Ni) have been reported 

as  a promising alternatives for heater elements for operating temperatures below 300 °C [27] 

but the material may suffer from long term durability problems. Compound semiconductors  

like SiC [28] and doped tin dioxide [29] based micro-heaters have also been reported to be 
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effective heater materials for operating temperatures range of 650 °C – 1000 °C due to their 

robust performance at high temperatures.  

The Table 5.1 provides a summary of the properties of the most common materials used 

in the fabrication of MEMS micro-heaters and their CMOS compatibility    

Table 5.1: Comparison of material properties of different materials used in fabrication of 

micro-heaters [7]. 

Materials Electrical 

resistivity in 

Ω-m (×10-10) 

at 300 K 

Thermal 

conductivity 

(W.m-1K-1) 

at 300 K 

Melting 

point (°C) 

Young’s 

modulus (GPa) 

CMOS 

compatibility 

Al 282 237 660.3 70 Yes 

Au 221.4 318 1064 79 No 

Poly-silicon 322 16-34 1412 169 Yes 

Pt 1050 71.6 1768 168 No 

Mo 534 138 2623 329 No 

W 528 173 3422 411 Yes 

Ni 693 90.9 1455 200 No 

TiN 2000 19.2 2930 79-250 Yes 

 

5.3. Types of gas sensor technologies:      

A review of the different types of gas sensors including their principle of operations, 

applications in various disciplines and their respective advantages and weakness will be 

discussed in the following sections.   

5.3.1. Catalytic gas sensors:  

Over the past several decades the catalytic gas sensors, also known as catalytic Pellistor 

sensors are well known for detecting combustible gases and vapours present in the air [30] 

These type of sensors are very sensitive to most of the available combustible gases (e.g., 

methane) and used for the measurement of lower explosive limit percentage (LEL) of the gas 

mixtures. LEL of a particular combustible gas and/or vapour is defined as; a minimum 

concentration of the particular gas required for combustion in normal atmospheric air. 

Combustible gas mixtures will burn when they reach a particular ignition temperature, but with 

some specific chemical processes, the gas mixtures will begin to ignite or burn even at lower 

temperatures. This process is commonly referred as a catalytic combustion and the catalytic 

gas sensors are based on this principle [31].  
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A conventional catalytic gas sensor is comprised of two important operational 

elements; (i) a detector (sensitive to combustible gases) and (ii) a compensator which has to be 

inert. The detector element composed of a catalytic surface which is constructed around a 

heater (usually platinum coil) that heats the catalyst, usually palladium, to a sufficiently high 

temperature to ensure any flammable gas molecules present can burn and release heat. The 

heater also acts as a thermal sensor and is used to determine the gas concentration by 

monitoring its temperature by an induced resistance change when combustion reaction takes 

place in the catalyst. Figure 5.2 shows a schematic of measuring circuit operation of the 

conventional catalyst gas sensor. 

 

Figure 5.2: Schematic diagram of catalytic gas sensor.  

Catalytic gas sensors are simple to operate, relatively less sensitive to temperature and 

humidity effects, fairly stable and offers long life span. However, the susceptibility to a variety 

of contaminating compounds such as silicones, compounds containing lead and sulphur may 

deteriorate the long-term stability of these sensors. Initially, these sensors were used to detect 

methane in coal mines, but nowadays they have been widely adopted in other industrial 

applications, for example, monitoring kerosene spillages in petrochemical industry.  However, 

they require the presence of oxygen in the atmosphere to function correctly and the catalytic 

nature of the  reaction restrict the applications  to flammable gases such as hydrogen, methane, 

propane and butane [8].  

There is a commercial drive for the low power gas sensors with the development of 

wireless sensor networks. Nowadays, micro-heaters have been widely used in catalytic gas 

sensors in preference to using a conventional platinum coil which typically has a high power 

consumption. There are many reports in a literature where micro-heater based catalytic gas 

sensors have been fabricated using MEMS technology [28], [30], [32].    

5.3.2. Electrochemical gas sensors: 

Electrochemical gas sensors are based on the change in electrical properties when a 

target gas diffuses and reacts with the sensing material. A conventional electrochemical gas 

sensor comprise of three important elements; a reference electrode, a sensing electrode, and a 

counter electrode deployed in electrolyte. These type of gas sensors allow the target gases to 

diffuse through a porous membrane (as shown in Figure 5.3) to a sensing electrode where they 

are either chemically oxidized or reduced. The oxidation or reducing reaction between the 

sensing material and the gas molecules gives rise to an electrical signal (current, voltage) that 

In clean air In combustible gases 

Platinum heaters Platinum heaters 

Compensator  

Detector with catalyst  Increased resistance     

RC 

R
D
 

R
C
 

R
D + ∆R 

Resistance unchanged     



5-7 

 

is proportional to the gas concentration. It is possible to improve the sensor’s selectivity to a 

specific gas by varying the electrode material and the electrolyte [33]. Electrochemical sensors 

have been widely used in a variety of environments such as, refineries, gas turbines and 

chemical plants for the detection of the level of oxygen and toxic gases (e.g., ammonia, carbon 

monoxide etc.). They are attractive because of  low cost, low power, high sensitivity and high 

selectivity [33]. However, they suffer from limited life-time due to evaporation of the 

supporting liquid electrolytes. In recent years, room temperature ionic liquids (RTILs) have 

been utilised as electrolytes to overcome this limitation [34].  

 

Figure 5.3: A schematic design of a basic electrochemical gas sensor. 

The miniaturisation of these electrochemical gas sensors are comparatively easy (compared to 

optical gas sensors which will be introduced in section 5.3.3) and can be manufactured using 

microfabrication (MEMS) technologies. Examples of the successful miniaturisations include 

metal-oxide-semiconductor (MOS) and chemical field effect transistor (chemFET) based gas 

sensors. 

5.3.2.1. Metal oxide semiconductor gas sensors:  

In the past decade, MOS based gas sensors have received significant academic and 

commercial attention due to their compatibility with CMOS fabrication processes and 

increased demand in applications including environmental, automotive emission and food 

safety monitoring [35]. The MOS gas sensor was first introduced by Seiyama et. al. as a result 

of studies on gas sensing properties of semiconducting metal oxide (ZnO) thin films in 1962 

[36], which led to the first commercialised SnO2 based sensor (also known as Taguchi gas 

sensors) for the detection of inflammable gases  by N. Taguchi in 1968. 

A typical MOS gas sensor uses a specific sensing element normally consisting of a 

semiconducting material deposited on an insulating substrate between a set of metallic 

electrodes. A heater element is also required and is electrically isolated from the sensing 

element. The heater element is essential to initiate the chemical reactions in the sensing layer, 

which take place at high temperatures. MOS gas sensors fabricated using advanced MEMS 

micro-heater technology play a dominant role in consumer markets due to their advantages of  
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short response time, high thermal efficiency, long lifetime and low fabrication cost [8]. Figure 

5.4 illustrates the schematic of a MEMS micro-heater based MOS gas senor. 

 

Figure 5.4: Cross sectional view of a MOS gas sensor fabricated using MEMS micro-heater 

technology. 

A MOS gas sensor is based on change in the electrical conductivity of the sensing 

material (metal oxides) within the device in the presence of reducing or oxidizing gases. The 

sensing material is directly exposed to the target gas. Therefore, a chemical reaction is expected 

to take place when the sensing material is in contact with the target gas resulting in changes to 

the  chemical and physical properties of the heated sensing material [9], leading to a change in 

the electrical conductivity. The change in electrical conductance of the metal oxide sensing 

layer is proportional to the concentration of the target gas. In general, MOS based sensors are 

classified into two main types; (i) n-type MOS [e.g., Tin dioxide (SnO2), Titanium dioxide 

(TiO2), Zinc oxide (ZnO), and tungsten oxide (WO3)] based sensors and, (ii) p-type MOS [e.g, 

Nickel oxide (NiO), Manganese oxide (Mn3O4) and Chromium oxide (Cr2O3)] based sensors 

[37]. When n-type MOS sensors are exposed to reducing gases (e.g., carbon monoxide (CO), 

ammonia (NH3) or other hydrocarbons etc.), there will be an increase in electrical conductivity 

and if it is exposed to an oxidizing gas (e.g., NO2) then depletion of charge carriers occur, 

leading to a decrease in electrical conductivity. Conversely, when the p-type MOS sensor 

interact with reducing or oxidizing gases, then it shows a vice versa behaviour.  

MOS gas sensors are commonly used in applications requiring to detect low 

concentration of volatile organic compounds (VOCs) such as benzene and formaldehyde. The 

advantages of these sensors include user simplicity, durability, high sensitivity, high stability, 

detection of a wide variety of gases and resistant to many common sensor contaminations such 

as silicones and compounds containing lead [38]. However, they suffer from poor gas 

selectivity. It has been reported that the better selectivity can be achieved by adding small 

amount of a noble metal like palladium. For example; tin oxide can be made more selective to 

carbon monoxide gas with a doping of 0.5% of palladium [16] [37].    

5.3.2.2. Chem FET gas sensors: 

These are field effect transistors (FET) with the gate fabricated with a conducting gas 

sensing material, typically a catalytic metal, such as platinum. The selectivity for the target gas 

is highly dependent on the electrical characteristics of the catalytic metal [33]. FET sensors use 

the shift in the transistor threshold voltage to determine the gas concentration, when the gas 
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molecules interact with the gate material. The technology is fully compatible with CMOS 

processes and can operate at room temperatures, and thus has a very low level of power 

consumption. However, their performance is strongly influenced by change in temperature, and 

FET gas sensors with platinum or palladium gates are only sensitive to hydrogen. Recently, 

nanomaterials such as graphene, nanowires (NWs) and carbon nanotubes (CNTs) have been 

used as the gas sensing element to improve selectivity and performance of FET gas sensors 

[39], [40]. These improved FET sensors have been used to detect volatile organic compounds 

(VOCs) including NO2, CO2, CO, NH3 and toxic gases. These sensors show great potential in 

various fields including of fire detection, food storage, environmental monitoring, medical 

applications and smart health care industries [41]. A schematic diagram of the FET gas sensor 

is shown in Figure 5.5. 

 

Figure 5.5: Schematic of a typical FET gas sensor. 

5.3.3. Optical gas sensors 

Optical emission/absorption or scattering of gas molecules at defined optical 

wavelengths is monitored by the optical gas sensors to detect and measure the gas 

concentration. The key parts are; a light source (light-emitting diode  (LED), quantum cascade 

lasers, MEMS thermal emitters etc.) with optical emission in the range of interest, a photo-

detector, a filter and a gas sensing element responding to the optical emission [12]. The 

advantages of this type of gas sensor include; high sensitivity, long term stability, high 

selectivity and the performance is invariant to a changing environment. In addition, they offer 

real-time and in situ detection. Optical gas sensors have been used in  indoor air quality 

management, medical applications (e.g., breath analysis) [42], food quality control and in 

atmospheric science where they are used to detect the greenhouse gases [12], [43]. Their cost 

is high and difficult to miniaturise for system integration which will restrict their use in portable 

equipment. 

One of the most common optical gas sensors is the non-dispersive infra-red (NDIR) gas 

sensor, which will be discussed in the following section.  

5.3.3.1. Non-dispersive infra-red gas sensors:       

Many chemicals exhibit strong absorption lines caused by molecular vibrations in the 

UV/visible, near-IR or mid-IR regions of the electromagnetic spectrum. NDIR gas sensing 
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relies on the specific radiation bandwidth (typically in wavelengths between 2µm to 14µm 

spectral region) and the absorption properties of  target gas molecules [12]. The mid-IR spectral 

region is of particular interest because it supports stronger molecular absorption compared with 

the  near IR region, and also the spectra lines are less congested, allowing greater selectivity 

[12]. The characteristic absorption lines of some important gas molecules with their relative 

intensities in the mid-IR spectral region is shown in Figure 5.6 [12], [44]. NDIR spectroscopy 

provides excellent stability, high sensitivity and selectivity. Therefore, it is one of the highly 

preferred technique for chemical analysis in industrial process control, environmental 

monitoring, and medical diagnosis (e.g., asthma monitoring device) [45].   

 

Figure 5.6: Absorption spectra of selected gas molecules in the mid-IR region of the 

electromagnetic spectrum [12]. 

The working principle of the NDIR gas sensors is based on the Beer-Lambert’s law [46], where 

a gas is detected according to equation (5.1) [12]. 

 𝐼(𝜆) = [𝐼0(𝜆)  × 𝑒−𝛼(𝜆)𝑐.𝑙] (5.1) 

Where, 𝐼(𝜆) and 𝐼0(𝜆) (typically with units of [W/m2]) are the respective detected and emitted 

optical intensities at the spectral wavelength λ. Similarly,  𝑙 is the optical path-length, which 

governs the sensor sensitivity, 𝑐 is the gas concentration, and 𝛼(𝜆) is the gas absorption 

coefficient.  

A typical NDIR gas sensor will consist of an IR source, a gas chamber which enables 

the light to interact with the gas, an optical filter to select the range of wavelengths 

characteristic to the target gas and a detector.  Figure 5.7 shows a schematic diagram of a typical 

NDIR gas sensor.    
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Figure 5.7: A schematic diagram of a typical NDIR gas sensing system. 

One of the main components of NDIR spectroscopy is the IR source. NDIR gas sensors 

traditionally use a glass micro-bulb as the IR source. Although, these bulbs can be 

manufactured at low cost, they suffer from high power consumption, they are large in 

comparison with silicon based IR sources, have slow transient response time, the output is 

limited to a wavelength of around 5µm and poor life-time. In recent years, CMOS compatible 

miniature IR sources based on MEMS processing technology have become available [13], [24], 

[47], [48]. The development of these low power, low cost miniaturised IR sources with fast 

thermal transient times, have increased the popularity of NDIR gas sensors particularly for 

detecting gases with absorbance peak in the longer wavelength part of the mid-IR spectrum 

(>5µm). The technology is also compatible with wireless gas sensor networks such as indoor 

air quality monitoring system (heating, ventilation and air conditioning), toxic gas sensing in 

military battlefield operations [49], [50] and capnography applications [43]. With the emerging 

trend in miniaturisation, the potential applications of NDIR gas sensors such as integration with 

medical devices to identify the impurities or counterfeits in medicines [51] and also integration 

with consumer electronics (e.g., smartphones, tablets and other wearable digital devices) are 

expected.   

 NDIR gas sensors have been mainly used to detect CO2, as this gas has a pronounced 

absorption peak around 4.26µm wavelength and is difficult to be detected by electrochemical 

or other inexpensive gas sensors. However, the technology has been successfully implemented 

to detect other gases including carbon monoxide, ammonia, methane, ethanol, and other 

volatile organic compounds (VOCs) [13], [52]. The major advantages of NDIR gas sensor 

include the ability to detect target gases in inert atmospheres, immunity to contamination and 

poisoning, and stable long-term operation. The main disadvantage of the NDIR gas sensor is, 

they require the target gas to be IR active. Additionally, they are susceptible to high humidity 

and dust environments which may increase maintenance costs, to increase sensitivity long 

optical interaction path-length are required, interference may also occur from highly absorbing 

compounds like water vapour and not suitable for multiple gas detection. 

A major part of my research work has been to look at the temperature uniformity and 

maximum operating temperature of the MEMS micro-heater which can be used as the mid and 
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near field IR sources. It is important to assess the thermal uniformity and accurate maximum 

operating temperature of these IR sources to ensure consistent IR emission for better gas 

selectivity detection as well as optimum performance and reliability. The MEMS micro-heater 

is also used in other types of gas sensor including MOS gas sensor [53], [54] and catalytic gas 

sensor [55].  

5.3.3.2. Other optical gas sensing technology: 

Photoionization gas sensors are a commonly used optical technique for the detection of 

VOCs such as vinyl chloride, benzene, toluene and other hydrocarbons [56]. These sensors use 

high energy ultraviolet (UV) photons to excite and ionize the gas molecules. The generated 

charged ions produce an electrical current which is proportional to the concentration of the 

target gas. The main advantages of these sensors include, low cost and simplicity of use, 

portability, non-destructive, high sensitivity and fast response time. The limitations include 

humidity effects, non-specific response to gas type and not suitable to detect chemicals with 

high ionization potentials such as methane.    

The photonic crystal gas sensor is another example of an optical gas sensing 

technology. These sensors are refractive index based that commonly employ highly periodic 

micro or nano structural arrangements of dielectric materials with different refractive index for 

gas detection [9], [57]. The advantages of these gas sensors include, high sensitivity, high 

detection accuracy and fast response time. The operating principle is based on refractive index 

changes, and therefore, detecting different gases with same refractive index is very challenging. 

This technique has been used for the detection of VOCs including ethanol and carbon 

disulphide [9], [58].  

5.3.4. Acoustic wave gas sensors: 

The idea of the acoustic gas sensor began with quartz crystal microbalance (QCM) and 

was first implemented to sense organic vapour by King in 1964 [59]. Acoustic gas sensors 

measure the frequency shift of the acoustic wave when the target gas molecules are absorbed 

on the surface of an oscillating structure (which is usually a quartz crystals transducer). The 

sensor device is usually coated with the sensing material which absorbs the target gas. The 

process of absorption adds mass to the sensing layer resulting in change in the acoustic wave 

oscillation frequency (Figure 5.8) [60]. Acoustic wave based sensors can offer low power 

consumption at a low unit cost, high sensitivity and short response time [61], [62]. However, 

the acoustic wave properties are highly dependent on temperature, thus, giving rise to 

environment issues. Gas sensors based on this method have been successfully used for the 

detection of VOCs such as alcohols, halocarbons, and toxic gases [9], [63].  
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Figure 5.8: A schematic diagram of an acoustic wave gas sensing device [9]. 

5.4. Gas sensing materials: 

Gas sensing material is the core part of most gas sensors which involve chemical 

reactions for gas sensing.  Thus, the performance, reliability and sensitivity of these chemically 

active gas sensors are highly dependent on the sensing materials. In the past conducting 

polymers and carbon nano-tubes (CNTs) have been extensively investigated as sensor 

materials.   

5.4.1. Polymers: 

Conducting polymers, such as polyaniline (PANI), polypyrrole (PPy), polythiophene 

(PTs) and their derivatives have been widely used as a gas sensing materials [33]. Gas sensors 

fabricated using conducting polymers are of interest due to their important features, which 

include short response time with high sensitivity, ease in fabrication and modifications to 

improve the selectivity, good mechanical properties and ability to operate at lower temperatures 

[64] compared to metal oxide based gas sensors. In addition, sensor arrays can also be formed 

with MEMS fabrication techniques, which enable for miniaturisation and mass production of 

gas sensors at low-cost. However, the main disadvantages of polymer-based gas sensors 

include temperature dependence, short lifetime, the sensitivity can be influenced by humidity 

and prone to contamination.  

5.4.2. Carbon nano-tubes (CNTs): 

The electronic properties of the CNTs are highly sensitive to the absorbed molecules 

on their surface, which make the CNTs a popular material in gas sensing research/applications. 

CNTs are formed from graphene sheets rolled up into a tube shape, and are generally 

categorized into two types; (i) single-walled carbon nano-tube (SWCNT), and (ii) multi-walled 

carbon nano-tube (MWCNT). Single-walled CNT comprises of single layer of CNT while 

multi-walled CNT consist of a multiple layers of CNTs inside each other, sharing the same 

central axis as shown in Figure 5.9. In RFID tag antennas SWCNTs have been used for 

detecting the toxic gases and MWCNTs for remote detection of gases like CO2 and ammonia 

[5].  
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Figure 5.9: Schematic configuration of CNTs (a) SWCNTs (b) MWCNTs [65]. 

The electrical properties of CNTs rely upon the twist of the nanotubes (graphene), and 

can either be metallic or semiconducting in nature depending upon the direction rolled to form 

a tubular construction. Semi-conducting CNTs are generally used in gas sensing [66]. CNTs 

have proved to be promising gas sensing materials particularly because of their high surface-

to-volume ratio with very strong intermolecular bond capability. This means they require a 

relatively small area for gas detection, enabling the miniaturisation of gas sensors. In addition, 

CNTs based gas sensors offer fast response time, resistance to corrosion, ability to operate at 

room temperatures, and the ability to detect wide variety of gases including NO2, NH3, CH4, 

H2S, H2O2, CO, CO2 and alcohol hydrocarbons [67]. However, some of the challenges related 

to CNTs for gas sensing applications include; CNT synthesis is expensive, precise control over 

the growth of CNTs on the surface of gas sensors is difficult and sensitive to high humidity 

effects.       
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5.5. Comparison of different gas sensing methods: 

Table 5.2 gives an overview of advantages, disadvantages and application of different 

gas sensing techniques. The table also provides information regarding the MEMS micro-heater 

technology (discussed in section 5.2) required for different gas sensing techniques for their 

operation.   

Table 5.2: Comparison of different gas sensing technology.  

Gas sensing 

methods 

Advantages Disadvantages Requiring 

miniature 

hotplate 

technology 

Catalytic   Low cost, simple to 

operate 

 Low effect by 

temperature and 

humidity 

 Widely used in coal 

mines and 

petrochemical 

industries 

 Suitable for 

detection of 

hydrogen and 

methane  

 Require oxygen to 

operate  

 Risk of catalyst 

contamination by 

lead, silicones etc. 

 Risk of explosion  

Yes 

Electrochemical  Low cost 

 Can detect wide 

range of target gases 

 Can measure toxic 

gases in low 

concentration 

 Widely used in 

refineries to detect 

oxygen levels 

 Generally require 

high operating 

temperature 

 Difficult to 

identify the failure 

modes 

Yes 

Non-dispersive 

infra-red 

 Ability to operate in 

inert atmospheres  

 Immune to 

contamination  

 Often used to detect 

CO2 

 Stable long term 

operation 

 High cost and 

difficulty in 

miniaturisation  

 Target gas must 

be an IR active 

 Not suitable for 

detecting low 

concentration of 

gas  

Yes 
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Surface 

acoustic wave  

 Small size and can 

be used in wireless 

applications 

 Long lifetime 

 Able to operate at 

high resonant 

frequency   

 Suffer from 

physical and/ or 

chemical 

interference  

No 

CNT based gas 

sensors 

 Highly sensitive and 

fast response time 

 Large surface-to-

volume ratio 

 High adsorption 

capacity  

 Ability to operate at 

room temperatures 

 High cost  

 Difficulties in 

fabrication and 

repeatability of 

CNTs growth 

No 

 

5.6. Conclusion: 

The chapter has reviewed the different gas-sensor technologies, which are in a 

continuous demand for miniaturisation and high-performance gas sensors. Gas sensor 

technology based on MEMS micro-heater technology is being used in a number of sensing 

technologies which have been identified. The major part of this research work is to look at the 

temperature uniformity and maximum operating temperature of the tungsten based MEMS 

micro-heater which can also be used as a mid and near field IR emitter source in gas sensing 

technology. The thermal uniformity across the surface of the micro-heater is very important for 

gas sensing applications as any localised hotspots will cause thermally induced stress leading 

to reliability issues. Uniformity of the heater surface is also required for good gas selectivity 

detection.  

As described, the MEMS micro-heater was designed to operate at very high operating 

temperatures, in excess of 800 °C. The high temperature thermal characterisation of the MEMS 

micro-heater will be carried out using the non-contact optical approaches based on IR and a 

novel thermal-incandescence microscopy technique (fully described in Chapter 7). The 

experimental thermal profiling results of tungsten MEMS micro-heaters will be discussed in 

Chapter 6 (using IR microscopy) and Chapter 7 (using thermal-incandescence microscopy).  
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Chapter 6  

IR thermal measurements on MEMS micro-heaters 

6.1. Introduction:  

This chapter describes the thermal characterisation of novel tungsten micro-heaters 

used in infra-red (IR) micro-emitter chips, based on CMOS technology. The temperature 

characterisation of the micro-heater is described using both electrical and the IR thermal 

microscopy (discussed in Chapter 3). The radiance emission performance and reliability of the 

thermal IR micro-emitter chip (described in section 6.2) is very dependent on the operating 

temperature and its uniformity across the micro-heater, which is embedded within a silicon 

dioxide membrane [1]. Therefore it is necessary to make accurate temperature measurements. 

As fully discussed the accuracy of the IR thermal measurement is limited by the optical 

transparency of the semiconductor layers forming the membrane heater (Chapter 3, section 

3.1.3), which has poor emissivity when compared to a black body source. Therefore, a high 

emissivity carbon microparticle infra-red sensor (MPIRS) (described in Chapter 4) was used 

to improve the accuracy of the IR temperature measurements. IR thermal microscopy is capable 

of producing a two-dimensional (2D) real-time thermal maps (described in Chapter 3) across 

the surface of the miniature micro-heater which is an integral part of the IR micro-emitter. The 

thermal map can then be used to analyse the temperature uniformity across the surface of the 

micro-electro-mechanical systems (MEMS) micro-heater and to identify any hotspots, which 

may lead to early failure of the device.     

During IR temperature measurements on the IR micro-emitter chips, it was observed at 

high DC input power the device operating voltage decreased as the current was increased. This 

suggested the device electrical parameters were initially changing with increasing DC input 

power due to the rising temperature of the micro-heater structure. This effect was noted on a 

number of chips and to stabilise the effect, electrical burn-in tests were conducted and analysed. 

6.2. Device design details:  

The micro-heaters, an integral part of the IR emitter chip (supplied by ams sensors Ltd, 

Cambridge), are based on tungsten metallisation technology, which can be heated to high 

operating temperatures [2]. The device typically operates at temperatures around 500 °C [2] to 

thermally generate optical emission for mid-IR spectroscopy applications, including optical 

gas sensing (discussed in section 5.3.3 of Chapter 5) [3]. The chip-scale source has the 

advantage of having a smaller physical envelope, compared to the micro-bulb based IR source, 

and can be assembled in a surface mount package. 

The IR emitter (die size 1.76mm × 1.76mm) was fabricated using a 1.0µm CMOS process 

at a commercial foundry [4]. The CMOS based IR emitter chip has a miniature tungsten heater, 

consisting of a circular multi-ring structure (800µm diameter), embedded within a 5µm thick, 

1200µm diameter circular silicon dioxide (SiO2) dielectric membrane, passivated with silicon 

nitride (Si3N4). The circular design of the membrane allows for uniform intrinsic stress 

distribution at the membrane’s edge [5] by reducing the mechanical stresses. Silicon  
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Figure 6.1: Schematic cross-section of the IR micro-emitter (not to scale).    

 

Figure 6.2: An optical image showing the top surface topology of the fabricated IR emitter 

chip. 

oxide layers are used as inter-layer dielectrics. The membrane was formed as a post-CMOS 

process by the same external foundry, using Deep Reactive Ion Etching (DRIE) of the silicon 

substrate with the first buried silicon dioxide layer acting as an effective etch stop. The 

membrane thermally isolates the micro-heater from the substrate, ensuring efficient heating, 

fast thermal transient response and low power consumption. The emitter utilises a plasmonic 
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structure to enhance IR emission, which is formed by a geometric arrangement of metallic dots 

in a metal layer. Two metal layers were used, one to form the plasmonic structure and the other 

one for the heating element. In operation, electrical power is applied to the micro-heater 

element which increases its temperature to over 500 °C. The heater element emits IR radiation 

over a broad spectrum of the mid-IR waveband (2.5µm – 15µm) [3]. Figure 6.1 shows a 

schematic cross-section of the device and its layered structures and Figure 6.2  shows an optical 

micrograph and top surface topology of the fabricated chip. 

6.3. Electrical burn-in experiment and IV characterisation of IR micro-

emitters: 

During the initial conventional IR temperature measurement tests on the micro-heaters, 

it was observed at high DC input power (in excess of 500mW) the operating voltage decreased 

as current was increased. This suggests the device electrical parameters were changing with 

temperature as the DC input power was increased. To assess this observation and to stabilise 

the effect, some electrical burn-in tests were conducted and the IV characteristics of the IR 

micro-emitters were analysed.   

6.3.1. IV Measurement system: 

    The IV characteristics of the IR micro-emitters were measured using 4-point DC 

probe (Wentworth Laboratories PVX400) measurement set-up. The probes had a magnetic 

base to attach them to the anti-vibration table, which is a part of the IR and optical measurement 

set up (as described in Chapter 3, section 3.2.1 in Figure 3.5). The IV measurement system 

utilised a DC power supply (PL303QMD-P Quad-mode) from Aim-TTi to supply the voltage 

across the DUT (the IR micro-emitter). To measure the input voltage more accurately 

additional voltage sense probes (Wentworth Laboratories PVX400) and a 34005A multi-meter 

from Agilent was used.  To measure the resulting current a DM200 digital multi-meter from 

Digimess was used. The schematic arrangement of the basic 4-probe IV measurement setup is 

shown in Figure 6.3.  

 

Figure 6.3: Schematic arrangement of basic 4- probe I-V measurement setup.  
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6.3.2. Electrical burn-in and IV characterisation results: 

Initial electrical burn-in tests were undertaken on an untested IR micro-emitter of 

fabrication batch (device CCS113C-Chip-C7). The device was DC biased to high power, input 

DC power of ~514.2mW (I= 120mA and the initial voltage was noted as 4.285V). The changes 

to the IV characteristics with respect to time were monitored and recorded and are shown in 

Figure 6.4 (the results are also provided in a table in Appendix – 6A). The IV measurements 

were made at a base-plate temperature of 80 °C. 
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Figure 6.4: Initial IV characteristics of an untested IR micro-emitter (device CCS113C-Chip-

C7). 

The results indicate the electrical parameters of an IR micro-emitter become more constant 

with time after 15-20 minutes of electrical burn-in at high DC input power (~514mW). To 

verify this observation, the device was continuously powered ‘ON’ at high power (at ~514mW) 

for ~35 min and the IV characteristics were measured and recorded. The device was then 

switched ‘OFF’ for ~30 min and the IV measurements repeated for a second time. The 

comparison between the IV characteristics of an IR micro-emitter chip which were measured 

after the electrical burn-in at high DC input power is shown in Figure 6.5, and the result showed 

almost identical IV characteristics between the two sets of measurements.  
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Figure 6.5: Comparison between the IV characteristics after electrical burn-in the device 

(CCS113C-Chip-C7) at high DC input power (~514mW). 

To further verify this observation and to validate the consistency of results, the high 

power burn-in measurements were repeated on another device (device CCS113C-Chip-C8 

from the same fabrication batch as CCS113C-Chip-C7). Initially, the IV measurements were 

made without an electrical burn-in. Then the device was burnt-in by continuously applying a 

DC bias at a high DC input power (~539.8mW) for time period of ~35min. The IV 

measurement was then re-measured before switching the device ‘OFF’. The input DC power 

to the device remained switched ‘OFF’ for ~30min. The IV characteristics were then again 

measured for a third time. All three IV plots are compared in Figure 6.6. As can be seen from 

the graph, the results indicate that to obtain a stable IV characteristic with time the devices 

should be DC burnt-in at a high DC input power and over time period of at least ~30 minutes.   
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Figure 6.6: Comparison between the IV characteristics of an IR micro-emitter (device 

CCS113C-Chip-C8) before and after electrical burn-in. 

The results show the resistance of these IR emitter devices become more consistent 

with increased temperature over time. The annealing process at high temperatures on these 

devices will stabilise the surface chemical composition and the metal contact layers. 

6.4. IR thermal measurement procedure:  

The IR thermal measurement technique was used to study the temperature distribution 

across the micro-heater membrane of these low power low cost novel IR micro-emitter chip 

devices. Initially, the conventional IR thermal microscopy was utilised to obtain the peak 

operating temperature of the IR micro-emitter. These measured temperature results were then 

compared to the calculated temperature results obtained using an electrical approach, in which 

the coefficients of resistance as a function of temperature of the micro-heater are used (will be 

described in section 6.4.1). The conventional IR temperature measurements were also 

compared with the temperature results obtained using the MPIRS technology (a detailed 

description of this measurement method was described in Chapter 4).  
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To make the measurements, the IR emitter chip after electrical burn-in was mounted on 

an aluminium base-plate, which in turn was mounted on a Peltier heater to control the base-

plate temperature (ambient temperature). A calibrated K-type thermocouple was embedded in 

the base-plate to monitor its temperature. The base-plate with the mounted IR emitter chip was 

positioned underneath in a vertical alignment with the objective lens of the Quantum Focus 

Instruments (QFI) infra-red microscope (Infrascope II). A schematic of this experimental 

arrangement is also shown in Figure 3.1, in Chapter 3. The QFI instrument has been modified 

during this research work, for high temperature detection (>500 °C), with a maximum thermal 

spatial resolution of ~3µm (using a ×25 lens objective) [6]. A detailed description of the IR 

thermal microscopy measurement system was described in Chapter 3 (section 3.2).   

As described in Chapter 3, the surface emissivity (𝜀) characterises the radiative 

efficiency of a material compared to that emitted by a black body at the same temperature and 

spectral bandwidth. The surface emissivity mapping of the IR emitter chip, taking into account 

the background radiation (including reflected radiation from the topology), was measured using 

the two-temperature emissivity approach which is fully described in Chapter 3 (section 

3.1.2.2). 

 𝜀 = [𝑅𝑇1(𝜆) − 𝑅𝑇2(𝜆)]/[𝑅𝑏1(𝜆) −  𝑅𝑏2(𝜆)] (6.1) 

 

Where, 𝑅𝑇1(𝜆) and 𝑅𝑇2(𝜆) are the IR emission levels (W/m2.str) from the surface of an IR 

micro-emitter at two known temperatures 𝑇1   and 𝑇2 ,  and 𝑅𝑏1 (𝜆)and 𝑅𝑏2(𝜆) are the respective 

equivalent black body emission levels (W/m2.str)  at temperatures 𝑇1   and 𝑇2. 

The radiance data was then used by the IR system software to calculate the surface 

emissivity map (at every pixel) across the surface of the micro-heater. During the process of 

emissivity measurement, there was some sample movement noticed as a result of the thermal 

expansion of the base-plate. If left uncorrected, the shift in sample location will cause errors in 

the pixel alignment between the two sets of radiance data taken from the two radiance images 

captured at two temperatures. This will result in errors in the surface emissivity. This sample 

movement was corrected by mechanically realigning the objective lens of the IR microscope 

between the lower and higher temperatures using an alignment mark on the micro-heater. After 

emissivity mapping, IR temperature measurements were made on the surface of the IR micro-

heaters. 

To make the temperature measurements on the micro-heater samples, DC probes (using 

4-point probe measurement system which is described in section 6.3.1, to eliminate the effect 

of contact resistance) were used to make electrical contact to the chip, which was biased with 

the DC power supply (TTI PL303QMD-P Quad-mode). All of the devices were DC burnt-in 

at a high DC input power for ~ 30min (as discussed in section 6.3.2) before making the IR 

thermal measurements. The electrical burn-in is required on these devices to stabilise the metal 

contact layers and they become more consistent at increased temperatures over time. All 

thermal measurements were made at a base-plate temperature of 80 (±0.5) ⁰C. This temperature 

was chosen to give an adequate IR detector signal-to-noise ratio.   
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6.4.1. Conventional IR temperature measurement results and compared 

with electrical temperature measurement results: 

Conventional IR thermal measurements were first made on the micro-heater of the IR 

emitter chip (device CCS113C-Chip-J1).  The IR emitter chip was DC biased over a range of 

input powers (0 to 240mW) and for each input power, a 2D thermal map of the emitter chip 

was recorded and the peak temperature was identified, using conventional IR microscopy. The 

×5 objective lens which has a field of view 2.3mm × 2.3mm and a thermal spatial resolution of 

~5µm [7] was initially used for thermal imaging. The measured temperature profile is plotted 

as a function of the DC input power and shown in Figure 6.7.  

As a direct comparison, the temperature of the heater element of the same IR emitter 

chip (CCS113C-Chip-J1) was also calculated using an electrical method [2], [8], which will 

provide the average temperature of the heater membrane. For this method, the temperature 

dependant resistance of the heater was measured for each input power, taking into account the 

chip input feed resistance. Knowing the temperature coefficients of the heater resistance, the 

average temperature of the heater can be calculated using the expression shown in (6.2). 

 

 𝑅 =  𝑅0 [1 + 𝑇𝐶𝑅1 (𝑇 −  𝑇0) + 𝑇𝐶𝑅2 (𝑇 −  𝑇0)2 ] (6.2) 

 

Where, 𝑇0 = ambient temperature, 

 𝑇 = heater temperature, 

 𝑅 = resistance at temperature 𝑇  

𝑅0  = resistance at ambient temperature 𝑇0 and  

𝑇𝐶𝑅1 = Linear temperature coefficient of resistance (9.66 × 10-4 for CCS113C-PVD devices) 

𝑇𝐶𝑅2 = Quadratic temperature coefficient of resistance (1.0 × 10-12 for CCS113C-PVD 

devices) 

The two temperature coefficients of resistance for the batch of devices measured were 

provided by ams Sensors, UK Ltd (DMU was not able to make these measurements as a high 

temperature (to temperatures approaching 700 °C) chuck was not available).  
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The calculated average temperature profile as a function of DC input power of the 

micro-heater using the electrical method, was compared with the peak temperature obtained by 

the conventional IR measurement method. The comparison of the results is shown in Figure 

6.7.  
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Figure 6.7: The comparison between conventional IR and electrical temperature 

measurement results measured on IR micro-heater. 

As seen in Figure 6.7, both temperature profiles for the IR measurement and electrical 

method were comparable, showing good agreement over the temperature range. The results 

indicate the peak temperature obtained from the IR method is very similar in magnitude to the 

average temperature obtained from the electrical method suggesting that the temperature is 

uniform across the heater surface. 

6.4.2. Temperature uniformity measurement results: 

Conventional IR thermal measurements were also utilised to perform quick thermal 

profiles to show the thermal distribution across the heater structure of the IR emitter chips as 

well as to identify the location of any hotspots. To measure the temperature uniformity across 

the whole heater membrane (800µm in diameter size), a ×5 objective lens was used for thermal 

imaging. To investigate the consistency of the temperature uniformity of the heater, thermal 

maps of five IR micro-emitter chips from the same fabrication batch (CCS113C-Chips) were 

measured.   

 



6-10 

 

All of the five thermal maps showed reasonably good thermal uniformity across the 

heater of the IR micro-emitter chip (an example is shown in Figure 6.8 (a)), with a maximum 

temperature variation across the heater structure of ~3% (at high DC input power level 

~240mW). The measurements therefore indicate reasonable uniformity and consistent 

temperature distribution across the heater membrane on all the emitter chips. These results 

suggest the average operating temperature obtained using electrical measurement technique 

will give a good approximation of the device actual operating temperature (i.e. the surface of 

the device contains very little temperature variation).  

 

 

Figure 6.8: Infra-red thermal images of the IR emitter chip measured using ×5 objective lens 

(a) Figure showing the thermal uniformity, (b) Figure showing the hotspots in the central 

ring of the heater structure. 

 

A small (~20 °C) elevation in temperature in the central ring of the heater structure was 

observed (Figure 6.8 (b)), which is more efficiently thermally insulated from the substrate. The 

uniformity of the observed temperature elevations (hotspots) from device to device of same 

fabrication batch (CCS113C-Chips) was also analysed and shown in Figure 6.9. The 

measurement results show that the localised hotspots are broadly similar in location and 

uniform for the different IR emitter chips of same fabrication process batch.   

 

 

 

 

 

 

(a) (b) 
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Figure 6.9: Figure showing the uniformity of hotspots on different IR emitter chips.  
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6.4.3. Consistency of IR peak operating temperature measurement results: 

To investigate the slightly hotter areas in the central ring of the heater in more detail, 

the IR temperature measurements were repeated on the 5 micro-heaters (IR micro-emitter chips 

from the same fabrication batch CCS113C-Chips). The measurements were made using the 

×25 objective lens (giving a field of view 464µm × 464µm and a spatial resolution of ~3µm) 

which covers the central part of the micro-heater where the temperatures are elevated. 

The IR emitter chip was biased under DC operating conditions over a range of input 

powers (0 to ~260mW) and the peak temperature of the heater membrane was recorded for 

each bias point. The measured temperatures were plotted as a function of the DC input power. 

A comparison of the peak temperature profiles of the heater membrane of the 5 micro-emitter 

chips are shown in Figure 6.10.  
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Figure 6.10: IR temperature measurement results measured as a function of the DC input 

power, and compared in 5 different IR micro-emitters. 

As expected, the temperature increases linearly with increased DC power and all 5 chips 

gave a very similar peak temperature profile over the same range of DC input powers. The 

consistency of the peak temperature measurement results indicate the fabrication process of the 

micro-heaters (IR micro-emitter chips) must be reasonably consistent for different chips from 

the same process batch.  
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6.5. IR temperature measurements using a microparticle IR sensor: 

The accuracy of the temperature measurements made using IR thermal microscopy is 

dependent on the radiative properties of the device under test (DUT). As discussed (in Chapter 

3, section 3.1.3), if the device has a low surface emissivity or is optically transparent to IR 

radiation then it will suffer from temperature errors [9]. To overcome these limitations of IR 

thermal measurement and to improve the temperature accuracy on the thin semiconductor layer 

of the micro-heater, the MPIRS (discussed in Chapter 4) was used. In this temperature 

measurement method, the results are not dependent on the surface emissivity of the device 

being measured, but only on the surface emissivity of the MPIRS, which was calibrated directly 

against a black body before the thermal measurement. 

6.5.1. Temperature measurement results: 

A high emissivity MPIRS (amorphous carbon sphere) [10], was used for the first time 

to make high temperature measurements (approx. 650 °C) on the micro-heaters. In this 

experiment, a single MPIRS, having a diameter of ~15µm was placed using a Scientifica micro-

manipulation probe (the micro-manipulation process was fully described in Chapter 4) in 

isothermal contact on the surface of the IR micro-emitter. 

The measurement was carried out on the same IR emitter chip (CCS113C-Chip-J1), as 

used for the conventional IR measurement described in section 6.4.1. The MPIRS was placed 

at the hotspot identified on the inner ring of the heater membrane by the conventional IR 

measurement. An optical micrograph showing the MPIRS placed on the surface of the heater 

membrane at the hotspot is shown in Figure 6.11.   

 

Figure 6.11: IR reference image showing the microparticle sensor placed on the heater of the 

IR emitter chip.  
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To make a more accurate temperature measurement at the hot-area of the heater 

membrane, the surface emissivity of the MPIRS was measured using the two-temperature 

emissivity approach [9]. The radiance images were taken at two elevated temperatures of 𝑇1 =

65 °𝐶 and 𝑇2 = 95 °𝐶 respectively. The measured surface emissivity of the MPIRS was found 

to be ~ 0.7 (note this value was used before the improved MPIRS calibration which includes 

taking into account background radiation as discussed in Chapter 4, section 4.4.7) and is shown 

in Figure 6.12. The measured surface emissivity of the semiconductor layers forming the 

membrane heater was low (~0.3) due to the transparency of the semiconductor layers to IR 

radiation and high reflectivity of the under-laying metal track. 

 

Figure 6.12: An emissivity map of the MPIRS (size ~15 µm in diameter) placed on the 

surface of the IR micro-emitter. 

The DC bias was applied to the micro-heater and the temperature (using the ×25 

objective lens of the IR microscope) of the MPIRS was recorded for each bias point. Figure 

6.13 shows the temperature of the hotspot measured using the MPIRS and compared with the 

peak temperature measured using conventional IR at the same 𝑥 and 𝑦 coordinate position on 

the chip. The range of the DC input operating power for both measurements was (0 to 240mW).  

The temperature difference between the MPIRS and the conventional IR measurement was 

approximately 15 °C. Conventional IR thermal measurements tend to underestimate the device 

operating temperatures due to the uncertainty in the surface emissivity as already discussed in 

Chapter 3 (section 3.1.3). The MPIRS technique reduces some of the uncertainty in the surface 

emissivity, providing a more exact measurement of surface temperature of the micro-heater. 
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Figure 6.13: Comparison between conventional IR temperature results and measurements 

made using the MPIRS on the emitter chip.   

Figure 6.14 (a) and (b) show IR thermal images of the MPIRS placed on the electrically biased 

micro-heater (device CCS113C-Chip-J1) membrane and is hotter than the surrounding chip 

surface temperature which has been computed from the erroneous lower surface emissivity. 

 

Figure 6.14: Thermal map of the micro-heater (CCS113C-Chip-J1) using MPIRS (bias level; 

I= 45mA and V=1.26) (a) MPIRS placed on electrically biased heater (b) MPIRS showing 

the hotter temperature than device surface temperature.  

 

 

(a) (b) 
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To further show the improved temperature accuracy of the MPIRS technique, the 

measurement was repeated on the MEMS micro-heater of a non-plasmonic (thermal emitter 

without plasmonic surface crystal structure [11] and very low surface emissivity ~0.1) semi-

packaged (see Figure 6.15) thermal emitter chip (fabrication batch CCS-09-Chip). The author 

believes that, this is the first time the MPIRS techniques was used to make the temperature 

measurements on this type of packaged micro-electronic device. The micro-heaters of these 

thermal emitters have meander-shaped gold interdigitated electrodes and span a circular area 

of ~250µm in diameter with the gap between the interdigitated electrode fingers of ~10µm. 

The heating element which is made of tungsten is buried under the gold electrodes within the 

silicon dioxide membrane which has a diameter of ~640µm and a thickness of about 5µm [12], 

[13]. The device is ultra-low power and needs only ~33mW to reach 309 °C (See Figure 6.17). 

 

Figure 6.15: Optical photograph of fabricated devices (a) semi-packaged thermal emitter 

chip (CCS-09-Chip) and (b) previously measured bare die IR emitter chip (CCS113C-Chip).    

It is obvious that the high reflectance/low emissivity of the gold electrodes is a problem 

when performing conventional IR measurements. Therefore, a MPIRS with a diameter size 

~15µm was positioned on the surface of the micro-heater (CCS- 09-Chip) at the gold electrode 

using the micro-manipulator and the emissivity calibration was made using the two-

temperature method, where,  the two radiance images were captured at two elevated 

temperatures of 𝑇1 = 65 °𝐶 and 𝑇2 = 95 °𝐶 respectively. An emissivity map where the MPIRS 

shows the enhancement in emissivity (MPIRS emissivity is ~0.7) compared to gold electrodes 

(~0.1) is shown in Figure 6.16. The device was then DC biased, 1.47V, 22.6mA (equivalent 

input power is 33.2mW). An IR thermal image (measured using ×25 objective lens) showing 

the MPIRS on the gold interdigitated electrode of the electrically biased micro-heater is shown 

in Figure 6.17. The temperature measurement using the MPIRS gave a significantly higher 

temperature, ~59 °C greater than when the temperature of the gold electrode is directly 

measured using conventional IR microscopy.   

 

(a) (b)
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1 mm 
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Figure 6.16: Figure showing the emissivity of a MPIRS (size ~15µm) when measured on the 

surface of a micro-heater with gold electrode of a non-plasmonic thermal emitter chip (CCS-

09-Chip). 

 

Figure 6.17: Figure showing an improved temperature measurement using a high emissivity 

MPIRS (size ~15µm) when measured on a low emissivity/ highly reflective gold electrode 

present on a surface of a micro-heater (CCS-09-Chip). 
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6.5.2. Effect of the MPIRS diameter size on temperature measurements: 

As discussed in Chapter 4, the emitted radiance for sub- 10µm diameter particles is 

known to be lower than for larger particles (for example, 20µm in diameter) thereby leading to 

error in measured temperature. To verify the effect of MPIRS diameter on these specific IR 

temperature measurements, four different MPIRS of diameters ~3µm, ~15µm, ~21µm and 

~43µm were used.  

A single MPIRS of one of the above diameters was placed in isothermal contact on the 

surface of the micro-heater (IR micro-emitter device batch CCS113C-Chip-J3) at the hotspot 

location (discussed in section 6.4.2), using the Scientifica micro-manipulation probe. The IR 

microscopy system with the ×25 objective lens was then used to record the temperature of the 

MPIRS as a function of the DC input power to the micro-heater. The same experiment was 

then repeated for each of the other three diameters. The results are shown in Figure 6.18. 
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Figure 6.18: Graph showing the effect of MPIRS sizes on IR temperature measurements.  

The results show the measured peak surface temperatures using MPIRS of diameters 

(>10µm) were well behaved and showed a very similar thermal profiles over the range of DC 

input powers to the micro-heater. However, when making the IR temperature measurement 

using the MPIRS of diameter ~3µm, the peak surface temperature was under-estimated. The 

reasons for this have already been fully discussed in Chapter 4 (section 4.4.2). 
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6.6. IR thermal measurement results on improved design IR emitters: 

6.6.1. Device design details:  

An improved IR thermal emitter chip (also supplied by ams sensors Ltd, Cambridge) 

features an 800µm diameter circular multi-ring structure micro-heater embedded within a 

~4.9µm thick, 1200µm diameter circular dielectric membrane, passivated with silicon nitride. 

The devices were designed to have a higher surface emissivity (when compared with earlier 

design fabrication batch CCS113C-Chips) and should provide an improved temperature 

uniformity. The micro-heater and interconnects utilises a high temperature tungsten metal as 

the resistive material. The IR emitters (chip size 1.7mm × 1.7mm) were fabricated in SOI 

CMOS technology, in a commercial foundry. The circular membrane was obtained with a post-

CMOS DRIE of the silicon handling substrate, with the buried silicon dioxide layer acting as 

an effective etch stop [4]. Two tungsten metal layers were used; one to form the plasmonic 

structure to enhance the surface emissivity and the other one to form the high temperature 

heating element. The inter layer thicknesses of the dielectrics and the plasmonic layer design 

[4] were changed (compared with CCS113C-Chips), and the optical characteristics were 

optimised for enhanced IR emission. An optical image of this improved design IR emitter is 

shown in Figure 6.19. 

 

Figure 6.19: An optical image of an inproved design IR micro emitter chip (CCS-83-F-C4). 

 

 Substrate 
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6.6.2. Temperature measurement results: 

Conventional IR thermal microscopy was utilised to obtain the peak operating 

temperature and to show the thermal distribution across the heater membrane of the improved 

design IR micro-emitters (CCS-83-F). The surface emissivity of the IR emitter (device CCS-

83-F-C4)  was first measured using two-temperature emissivity approach, where, two radiance 

images were recorded at two ambient temperatures of 𝑇1 = 65 °𝐶 and 𝑇2 = 95 °𝐶. The surface 

emissivity map of the improved design IR micro-emitter chip is shown in Figure 6.20. The 

measurement result shows the surface emissivity of the redesigned IR micro-emitter is 

considerably higher (~0.6) when directly compared to the earlier fabrication batch (CCS113C-

Chips) IR micro emitters (low surface emissivity ~0.3, see Figure 6.12). The surface emissivity 

of these devices is comparable to that of the surface emissivity of MPIRS. Therefore, there will 

be little difference in measured surface temperature using MPIRS method and conventional IR 

microscopy.   

 

Figure 6.20: An emissivity map of the improved design IR micro-emitter (device CCS-83-F-

C4) measured using ×5 objective lens. 

The micro-heater was then DC biased over a range of input powers (0 to ~265mW) and 

for each input power the thermal map of the membrane heater was measured (using ×5 

objective lens). An example of a 2D thermal map measured on electrically powered (at DC 

input power ~203.7mW) micro-heater is shown in Figure 6.21. The IR measurement result 

suggests an excellent thermal uniformity across the heater membrane from the improved design 

IR micro-emitter with maximum temperature variation across the heater membrane of less than 

2% (at high input power level of ~265mW).  
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Figure 6.21: An example of conventional IR thermal image showing the temperature 

uniformity across the heater membrane of the improved design IR micro-emitter (CCS-83-F-

C4) biased to ~203.7mW (a) measured using ×5 objective lens (b) measured using ×25 

objective lens.  
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To further verify the temperature uniformity across the heater membrane of the 

improved design IR micro-emitters, the average temperature of the IR emitter chip (CCS-83-

F-C4) was also calculated using the electrical method, by using the equation (6.2) and knowing 

the temperature coefficients of resistance (𝑇𝐶𝑅1 = 2.05 × 10-3 K-1 and 𝑇𝐶𝑅2 = 3.0 × 10-7 K-2 

,provided by ams Sensors UK Ltd). The heater temperature obtained by IR measurement was 

compared to those obtained from calculated electrical measurement (as a function of input 

power) and the comparison is shown in Figure 6.22. 
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Figure 6.22: Conventional IR temperature results compared with calculated electrical results 

on improved design IR micro-emitter (CCS-83-F-C4). 

Figure 6.22 shows the temperature reading obtained by both methods are in very good 

agreement over the same range of DC operating input power level (0 – 265mW), substantiating 

that the temperature is very uniform across the heater surface.  

To investigate the consistency of the device operating temperature from device to 

device of the improved designed micro-heaters (IR emitters batch CCS-83-F), the experiment 

was repeated using the ×25 objective lens on 3 different samples. The measurement was made 

on an area of the heater membrane which appeared to be slightly hotter than in the surrounding 

area (the line ‘1’ in Figure 6.21 shows the measured profile location). A comparison of the 

peak IR temperature profile recorded as a function of the DC input power is shown in Figure 

6.23. The results indicate, there is a very good agreement between the peak temperature profiles 

of the three measured devices, over a range of DC input power (0-270mW); showing the 

excellent reproducibility from device to device from the same fabrication batch.  
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Figure 6.23: A comparison of the peak IR temperature profile measured (using ×25 objective 

lens) on 3 different chips of an improved design IR micro-emitters as a function of DC input 

powers. 

Preliminary thermal measurements on the micro-heater of the improved IR emitter 

design (batch CCS-83-F) were also made using a thermo-reflectance technique at the QFI 

Bristol, UK facility to compare with IR temperature results. The thermo-reflectance 

measurement technique is explained in Chapter 2, section 2.3.2.2 of this thesis. Thermo-

reflectance thermal imaging is dependent on the accurate measurement of the relative change 

in the device surface reflectivity as a function of the  surface temperature of the sample [14].   

The accuracy of the technique depends on the level of noise contribution from the detector, 

electronics and quantisation processes [15]. The thermo-reflectance measurement was not 

practical on these devices due to the multiple internal reflections from rough surface topology 

and the small fluctuation of heater membrane (the tension of the membrane changing with 

temperature). Therefore to-date no temperature profile results have been obtained for the heater 

membrane using the thermo-reflectance measurement technique. 
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6.7. Conclusion: 

IR thermal microscopy was used to thermally profile the micro-heater of novel MEMS 

IR micro-emitter chips based on tungsten CMOS technology. During the preliminary IR 

measurements, the IV characteristics of these emitters were found to change due to temperature 

hysteresis effects when the chips were biased with a high input DC power. To verify this 

observation, electrical burn-in experiments were carried out and the results show the devices 

will require burn-in (for at least 30 min). Subsequently all the micro-emitters were electrically 

burnt-in at high DC input power (>500mW for ~30mins) prior to the IR temperature 

measurements. 

 IR imaging results indicate that the micro-heater of the IR emitter chip has good thermal 

uniformity and the conventional IR measurements are in reasonable agreement with calculated 

electrical average temperature results. Conventional IR thermal measurements underestimate 

the surface temperature of semiconductor layers due to uncertainties in their surface emissivity. 

It was shown the use of MPIRS measurement approach can reduce the uncertainties in the 

surface emissivity leading to improved temperature determination. 

A high emissivity carbon based MPIRS was used to obtain an improved IR surface 

temperature measurement of the low surface emissivity micro-heaters. In the research 

presented in this chapter, the use of the MPIRS has been demonstrated, for the first time, to 

make an improved IR surface temperature measurements on high temperature micro heaters, 

to temperatures approaching 700 °C. The research work also demonstrated the first use of a 

single MPIRS for improved accuracy of temperature measurements on very low surface 

emissivity (<0.1) MEMS micro-heater in semi-packaging geometries. The results indicate that 

the conventional IR technique underestimates the device peak operating temperature and such 

underestimation can affect any predictions made on the device operating life-time.  

The effect of the MPIRS diameter size on IR temperature measurement has been 

investigated. The result showed the smaller size (<10µm diameter) MPIRS has an effect on the 

level of IR radiation emitted from its surface (fully discussed in Chapter 4), leading to errors 

in the measured surface temperature of the device under test. Therefore, the MPIRS of diameter 

size >10µm should be used to obtain a more accurate measurement of the IR peak surface 

temperatures on low emissivity micro-heater membranes. 

To obtain further improvements in the temperature uniformity across the heater 

membrane, the IR emitter chip was re-designed (by ams Sensors Ltd.), leading to a higher 

surface emissivity (~0.6). The emissivity of these IR micro-emitters is comparable to the 

emissivity of the MPIRS. Therefore, using the MPIRS technique will give little improvement 

to the conventional IR microscopy measurements. Conventional IR thermal microscopy was 

used to thermally characterise the heater membrane of the improved design IR micro-emitters. 

IR imaging results show the micro-heater of the chip has very good thermal uniformity with a 

maximum temperature variation across the heater structure of < 2% (at high input power 

~265mW) and IR temperature results are in very good agreement with calculated electrical 

results as a function of DC input power. These heaters show an improved temperature 

uniformity over the original micro-heaters discussed in section 6.2 of this chapter.    
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Chapter 7  

High temperature measurements on MEMS micro-heaters using thermal-

incandescence microscopy: 

Work will be presented in this chapter on a high temperature characterisation (to 

approximately 1200 °C) of the micro-electro-mechanical-systems (MEMS) micro heater used 

in IR thermal emitter chips, using a novel non-contact optical approach based on thermo-

incandescence microscopy 

7.1. Introduction: 

As discussed in Chapter 6, the miniature micro-heater is embedded within a very thin 

semiconductor membrane (typically <10µm), and therefore it is very difficult to make the 

temperature measurements using contact thermal measurement techniques. The operating 

temperature of the miniature micro-heaters was measured to approximately 700 °C using the 

Quantum Focus Instrument (QFI) infra-red (IR) thermal microscope. There is a requirement to 

operate the IR emitter at very high temperatures (>800 °C) for spectral sensing applications in 

the short wave (1.4µm - 2.5µm) region of the IR spectrum  where many gas molecules shows 

strong absorption properties [1], [2]. As part of this research work, a new temperature 

measurement technique was developed to enable thermal characterisation of the IR emitter chip 

at elevated temperatures (>700 °C) [3]. The new technique is a passive optical approach based 

on measuring the thermally emitted incandescent radiation as a function of operating 

temperature [3]. The thermal-optical calibration was achieved by utilising the known melting 

point (MP) of different metal microparticles. The technique potentially would enable spot 

measurements to be made and therefore could be used to identify hotspots. 

Incandescence is the emission of the light from a hot object as a result of its high 

temperature (exothermic process). At elevated temperatures, the spectral distribution of 

thermally emitted optical radiation shifts towards shorter wavelengths (as described by Wien’s 

law, which is explained in Chapter 3, Figure 3.3) [3], [4]. If the temperature of an object is 

sufficiently high, optical radiation can be visibly detected. This effect is noticeable when hot 

objects start to visibly glow at temperatures approaching 798 K (known as the Draper point) 

[5]. At lower temperatures, optical emission due to thermal-incandescence is too weak to be 

easily detected but thermally emitted radiation in the mid-IR waveband can be detected, for 

example, using IR microscopy [6]. Figure 7.1 shows the magnitude of the emitted incandescent 

radiance (optical wavelength of approximately 0.6 microns) of a black body significantly 

increases as the temperature is raised from 798 K (the Draper Point) to 1148 K.  
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Figure 7.1: Figure showing the spectral radiance emitted by a black body at Draper point in 

the visible spectrum [7].  

7.2. Thermo-optical measurement theory: 

 This section outlines the theory behind the thermo-optical measurement approach 

described in this research work. As discussed in Chapter 3, section 3.1.1, the spectral radiance 

emitted by a black body is given by Planck’s radiation law [8], which can be expressed as;  

 
 𝑅𝜆( 𝑇) =  

2ℎ𝑐2

 𝜆5
  [exp (

ℎ𝑐

 𝜆 𝑘𝐵𝑇
) − 1]

−1

𝑊𝑚−2. 𝑆𝑟−1. µ𝑚−1  
(7.1) 

Where, ℎ is Planck’s constant, 𝑐 is speed of light in a vacuum, 𝑘𝐵 is Boltzmann’s 

constant, 𝜆 is the wavelength, and 𝑇 is the absolute temperature of the radiating surface. The 

equation (7.1) can be simplified by introducing two constants 𝐾 and 𝐾′. 

If; 

𝐾 =  2ℎ𝑐2  𝑎𝑛𝑑 𝐾′ =  
ℎ𝑐

𝑘𝐵
 

Therefore,  

 
 𝑅𝜆( 𝑇) =  

𝐾

 𝜆5
  [exp (

𝐾′

 𝜆 𝑇
) − 1]

−1

 
 

(7.2) 
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The spectral radiance of a grey-body object will be dependent on its surface emissivity (𝜀)  

(fully described in Chapter 3). Therefore equation (7.2) becomes; 

 
 𝑅′𝜆(𝑇) =  𝜀(𝜆)

𝐾

 𝜆5
  [exp (

𝐾′

 𝜆 𝑇
) − 1]

−1

 
 

(7.3) 

From the equation (7.3) we can see that the emitted radiation is exponentially dependent on 

temperature T.  

To measure radiation emitted by thermal incandescence, the longer wave IR 

contribution needs to be minimised by including an IR rejection filter. The calculation assumes 

the spectral response of the IR filter is 𝐹𝐼𝑅(𝜆) and the spectral response of the microscope’s 

objective lens is, 𝐹𝑜𝑝𝑡𝑖𝑐𝑎𝑙(𝜆). 

To simplify the calculation, the following assumptions can be made, at temperatures 

above the Draper point, the IR contribution to the radiation intensity (in 0.4µm – 0.7µm 

waveband) will be significantly smaller than the intensity of the optical (incandescence) 

radiation [8],  and the surface emissivity is invariant with temperature [9].  

  The emitted incandescent radiation over a bandwidth (in the visible spectrum) as a 

function of temperature is therefore given by equation (7.4); 

 
𝑅 (𝑇, 𝜆) = ∫  𝑅′𝜆(𝑇) 𝐹𝐼𝑅(𝜆)

𝜆2

𝜆1

𝐹𝑜𝑝𝑡𝑖𝑐𝑎𝑙(𝜆) 𝑑𝜆 
(7.4) 

Where, 

𝜆2 −  𝜆1 is the bandwidth of the visible spectrum. 

Using equation (7.4), the spectral intensity for the blue, green and red parts of the visible 

spectrum (spectral response of the optical camera for different regions in the optical spectrum) 

can be normalised and then converted to grey scale intensity as a function with temperature 

[10].  

Assume that, the spectral response of the camera for the blue, green and red components are 

given as follows: 

𝑓𝐵(𝜆) = Spectral response of the camera for blue component. 

𝑓𝐺(𝜆) = Spectral response of the camera for green component. 

𝑓𝑅(𝜆) = Spectral response of the camera for red component. 
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Therefore, 

 
𝑅𝐵 (𝑇, 𝜆) = 𝜀 ∫ 𝑅′𝜆(𝑇) 𝐹𝐼𝑅(𝜆)

𝜆2

𝜆1

𝐹𝑜𝑝𝑡𝑖𝑐𝑎𝑙(𝜆) 𝑓𝐵(𝜆) 𝑑𝜆 
(7.5) 

 

 
𝑅𝐺  (𝑇, 𝜆) = 𝜀 ∫ 𝑅′𝜆(𝑇) 𝐹𝐼𝑅(𝜆)

𝜆2

𝜆1

𝐹𝑜𝑝𝑡𝑖𝑐𝑎𝑙(𝜆) 𝑓𝐺(𝜆) 𝑑𝜆 
(7.6) 

  

𝑅𝑅 (𝑇, 𝜆) = 𝜀 ∫ 𝑅′𝜆(𝑇) 𝐹𝐼𝑅(𝜆)
𝜆2

𝜆1

𝐹𝑜𝑝𝑡𝑖𝑐𝑎𝑙(𝜆) 𝑓𝑅(𝜆) 𝑑𝜆 

 

(7.7) 

 

Hence, the equations (7.5) to (7.7) can be rewritten as equations (7.8) to (7.10) respectively, 

 

 𝑅𝐵 (𝑇, 𝜆) = 𝜀 𝑅𝐵∆𝑓(𝑇)  (7.8) 

  

𝑅𝐺 (𝑇, 𝜆) = 𝜀 𝑅𝐺∆𝑓(𝑇)  

 

(7.9) 

  

𝑅𝑅 (𝑇, 𝜆) = 𝜀 𝑅𝑅∆𝑓(𝑇)  

 

(7.10) 

 

Each component is a function of temperature. Then, these expression can be normalised as 

follows; 

 
𝑅𝐵∆𝑓 (𝑇, 𝜆) =

𝑅𝐵∆𝑓 (𝑇)  

𝑅𝐵∆𝑓 (𝑇) + 𝑅𝐺∆𝑓 (𝑇) + 𝑅𝑅∆𝑓 (𝑇) 
 

(7.11) 

 

 
𝑅𝐺∆𝑓 (𝑇, 𝜆) =

𝑅𝐺∆𝑓 (𝑇)  

𝑅𝐵∆𝑓 (𝑇) +  𝑅𝐺∆𝑓 (𝑇) +  𝑅𝑅∆𝑓 (𝑇) 
 

(7.12) 

 

 
𝑅𝑅∆𝑓 (𝑇, 𝜆) =

𝑅𝑅∆𝑓 (𝑇)  

𝑅𝐵∆𝑓 (𝑇) +  𝑅𝐺∆𝑓 (𝑇) +  𝑅𝑅∆𝑓 (𝑇) 
 

(7.13) 
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The grey scale luminosity is given as, 𝐿(𝑇) [10]; 

 𝐿(𝑇) = 0.21 𝑅𝑅∆𝑓(𝑇) +  0.72 𝑅𝐺∆𝑓(𝑇) +  0.07 𝑅𝐵∆𝑓(𝑇)  (7.14) 

 

Hence, the grey scale intensity, 𝐿(𝑇) is a direct function of surface temperature 𝑇 

It is interesting to note the grey scale intensity is no longer a function of the surface 

emissivity, provided we assume the surface emissivity is independent of temperature. 

7.2.1. Thermal-incandescence microscopy measurement approach: 

To enable thermal-incandescence measurements in the visible spectrum the Quantum 

Focus Instrument (QFI) IR microscope (Infrascope-II) (introduced in Chapter 3, section 3.2.1) 

was modified to include an optical camera (Stingray-F146C from Allied Vision Technologies), 

and an IR rejection filter (Figure 7.2). A mirror system (part of the QFI assembly) was used to 

switch between the IR detector and the optical camera. An optical lens was included in the lens 

turret, enabling switching between IR and visible objectives.  

For this measurement the emitted incandescence radiation needs to be calibrated against 

known temperature points. To make these calibration measurements the micro-heater of the IR 

emitter chip (CCS113C-Chips, discussed in Chapter 6, section 6.2) was used as a high 

temperature thermal platform. As mentioned, the CMOS based MEMS micro-heater is based 

on the tungsten metallisation technology, and is capable of operating to very high temperatures 

(>800 °C). The IR thermal microscopy has been used to thermally characterise the temperature 

distribution on the MEMS micro-heater (the results are discussed in Chapter 6), which showed 

excellent thermal uniformity to temperatures approaching 700 °C [6].  To substantially extend 

the temperature measurement range of the thermal microscope and to obtain the thermal 

profiles at higher operating temperatures (>800 °C), optical incandescence radiation as a 

function of temperature was used.   

A schematic of the experimental arrangement to make the thermal-incandescence 

measurements on the micro-heater is shown in Figure 7.2. The IR emitter was first mounted on 

an aluminium base-plate (containing a calibrated K-type thermocouple), which in turn was 

mounted on a Peltier heater to control the base-plate temperature. The base-plate with the 

mounted sample was positioned underneath the objective of the IR microscope. All other 

supporting equipment used for incandescent temperature measurement was the same as for the 

IR thermal measurement technique, which was described in Chapter 3. The experimental setup 

enabled radiation from the IR emitter chip sample to be detected both in the IR and optical 

regions of the spectrum without any realignment of the IR emitter chip.  
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Figure 7.2: A schematic diagram showing the experimental setup used for the thermal-

incandescence measurements. 

To make electrical contact to the electrodes of the micro-heater, DC probes (Wentworth 

Laboratories PVX400) were used, which were connected to a DC power supply (TTI 

PL303QMD-P). The voltage applied across the micro-heater was measured using a second pair 

of DC micro-probes (Wentworth Laboratories PVX400). This is a 4-point probe system 

(discussed in Chapter 6, section 6.3.1) and enabled more accurate measurement of the applied 

voltage across the heater [11]. The micro-heater was biased to DC input powers in excess of 

350mW to provide heater temperatures greater than the Draper temperature. Figure 7.3 shows 

the incandescent radiation emitted by the micro-heater above the Draper temperature. 

 

Figure 7.3: An optical image of the experimental setup showing the micro-heater of the IR 

emitter chip incandescing at very high operating temperatures (>700 °C). 

IR emitter chip  

emitting light  

at high temperatures 
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The optical camera with an IR rejection filter was used to capture the incandescence image 

in the form of an 8-bit grey scale image, an example is shown in Figure 7.4. Image analysing 

software (known as ImageJ), which is an image processing program [12], was used to compute 

the intensity of optical incandescent radiation in the form of an 8-bit grey scale value in 

arbitrary units (a.u.). 

 

Figure 7.4: An image showing the optical incandescence radiation emitted (in the form of an 

8-bit grey-scale image) from the surface of the MEMS micro-heater (a) unpowered (b) 

powered at ~868mW).  

7.2.2. Thermal-incandescence calibration: 

Initially, the thermal measurements on the MEMS micro-heater (CCS113C–Chip–D8) 

were obtained using the conventional IR microscope. The micro-heater was biased over a range 

of DC electrical powers (0 – 362mW). The DC bias of ~362mW correspond to the micro-heater 

being at approximately the maximum temperature, the QFI IR microscope can measure. 

Standard IR measurements were made (using the ×25 lens objective), and for each DC input 

power, a 2D thermal map of the emitter chip was generated (an example is shown in Figure 

7.5). The peak temperature was identified and plotted as a function of the electrical power and 

shown in Figure 7.6. These measurements were made at a base-plate temperature of ~80 °C 

and the maximum temperature measured by the IR microscope was ~854 °C (774 °C + base-

plate temperature) corresponding to an input DC electrical power of 362mW. At this 

temperature, the low-level of incandescent radiation intensity emitted from the surface of the 

micro-heater was measured by the optical camera and recorded as a greyscale value (a.u.). To 

obtain further thermal-incandescence calibration points, the DC input power was kept constant 

at 362mW, and the base-plate temperature was increased from 80 °C to 130 °C in steps of 10°C 

and the intensity of the incandescent radiation emitted from the surface of micro-heater was 

measured.      

   

(a) (b) 
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Figure 7.5: The maximum IR temperature (measured at an ambient of 80 °C using ×25 lens) 

recorded on micro-heater (corresponding input power was ~362.3mW). The white line in the 

thermal image represents the measured temperature profile location. 

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

800

900

T
e
m

p
e

ra
tu

re
 (

C

)

Input power (mW)

 IR temperature results (C) Chip-D8

 

Figure 7.6: IR temperature measurement results for the micro-heater (CCS113C-Chip-D8) 

as a function of electrical power.  
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To make quantitative thermal-incandescence measurements, the optical radiation 

emitted from the surface of the micro-heater in the optical spectral range was calibrated as a 

function of temperature using different metal microparticles with known melting points. The 

microparticles diameters were in the range of 15µm – 20µm, and therefore small enough not 

to present any significant thermal loading. Table 7.1 shows a range of microparticles 

manufactured from different materials and their corresponding MP temperature. 

Table 7.1: Different metal microparticles used for thermal-incandescence calibration with 

their melting points. 

Microparticle  Diameter size  Melting-point 

temperature 

Aluminium [(Al) (Sigma Aldrich, 265497)] ~15µm 660.3 °C [13] 

Silver [(Ag) (Sigma Aldrich, 327107)] ~20µm 961.8 °C [14] 

Copper [(Cu) (Sigma Aldrich, 326453)] ~15µm 1083.4 °C [15] 

Manganese [(Mn) (Strategic Elements, 20160060)] ~15µm 1245.8 °C [13] 

The metal microparticles were placed in isothermal contact with the surface of the 

miniature micro-heater (as shown in Figure 7.7) using a Scientifica micro-manipulation probe 

(the process is fully described in Chapter 4, section 4.2.1). Naturally occurring electrostatic and 

Van-der-Waals forces help to adhere the metal microparticle to the micro-manipulation probe, 

enabling the single microparticle to be transferred to the measurement point on the surface of 

the micro-heater [6]. It is also possible to remove the microparticle from the surface of the 

device using the manipulator without causing damage to the delicate heater membrane.  

 

Figure 7.7: Image showing the metal microparticle placed in isothermal contact with the 

heater surface of the IR emitter chip. 

200 µm 

Heater  

Membrane  

Microparticle  
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The DC bias voltage applied to the micro-heater was slowly increased, thereby 

increasing the dissipated power and operating temperature, until the melting point of a metal 

microparticle was recorded by optically detecting the change in phase state from solid to liquid. 

An optical image showing the metal microparticle placed on the surface of the micro-heater 

membrane is shown in Figure 7.8 (a), and when the microparticle has reached the melting point 

is shown in Figure 7.8 (b). The intensity of optical radiation emitted from the surface of the 

heater due to incandescence was recorded at the melting point. This was repeated for the range 

of metal microparticles with different melting points to obtain a temperature calibration. 

 

Figure 7.8: An optical image of a Mn microparticle placed on the surface of micro-heater (a) 

before melting and (b) after melting. 

For temperatures above the Draper point the experimental points were found to be best 

described by an exponential curve which is shown in Figure 7.9. A summary of the 

experimentally measured intensity of optical emission as a function of higher temperatures is 

shown in Table 7.2.  

Table 7.2: Optical incandescence radiation measured at the melting point of known metal 

microparticles.  

Temperature (°C)  Optical intensity (a.u.) 

660.3 (Al melting point) 1.614 

854.33 (IR + base-plate temperature) 1.978 

864.33 1.991 

874.33 2.038 

884.33 2.061 

894.33 2.1 

904.33 2.237 

961.8 (Ag melting point) 6.683 

1083.4 (Cu melting Point) 18.257 

1245.8 (Mn melting point) 96.507 

 

30 µm (a) (b) 
30 µm 
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The exponential curve follows the intensity of incandescent radiation as a function of 

temperature, as described by Planck’s radiation curve, and discussed in section 7.2 of this 

chapter. The exponential curve provides, to a first order, a calibration of incandescent radiation 

intensity as a function of temperature and will enable an estimation of the surface temperature 

of a miniature micro-heater, by measuring the intensity of the emitted optical incandescent 

radiation. 
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Figure 7.9: Calibration curve showing the detected incandescent radiation intensity against 

temperature using the melting point of metal microparticles. 

7.3. Optical incandescence uniformity results: 

The consistency of the magnitude of the incandescent radiation emitted by the micro-heater 

at high bias voltages (i.e. at high input power) was also investigated. This was undertaken by 

measuring the optical incandescence intensity of three IR emitter chip samples from the same 

fabrication batch (CCS113C-Chips). The chips were biased over an identical range of DC input 

powers (0 to ~760mW) and at the same ambient base-plate temperature of 80 °C. The hottest 

area on the miniature micro-heater was identified by conventional IR measurement and the 

optical camera was focused on that point. Figure 7.10 shows the intensity of optical 

incandescent radiation measured (a.u.) as a function of DC bias for the three devices, which all 

showed very similar characteristics indicating good chip-to-chip reproducibility. Therefore, it 

is reasonable to assume the miniature micro-heater will provide a consistent thermal platform.  
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However, it is interesting to note that the incandescence radiation curve does start to deviate 

at the very high DC input power (>800mW) (see Figure 7.10), perhaps indicating hot areas 

were appearing on the micro-heater, which could be future sites for device failure. Therefore, 

at high DC input power levels the micro-heater temperature uniformity may no longer be as 

consistent. At the very high DC input power levels (in excess of 800mW), where device failures 

occurred, the scanning electron microscope (SEM) was used to image the failure modes which 

will be discussed later in the chapter (section 7.5).  
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Figure 7.10: Optical incandescence results measured (a.u.) as a function of DC bias on 

micro-heaters (CCS113C-Chips) and measured at an ambient of 80 °C.  

To further investigate the repeatability and consistency of the optical incandescent 

radiation emitted from the surface of different micro-heaters from the same fabrication batch 

(CCS113C-Chips) the experiment was repeated on a further three IR emitter chip samples but 

this time at different base-plate temperatures. The base-plate temperatures chosen were 25 °C 

and 115 °C. The incandescent radiation results which were measured as a function of input 

power (0 to ~560mW) and at the two base-plate temperatures are shown in Figure 7.11. 
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Figure 7.11: Optical incandescent radiation intensity (a.u.) measured as a function of micro-

heater electrical power at two different ambient temperatures (at 25 °C and 115 °C).  

The results show the optical incandescence radiation emitted from the surface of the 

different micro-heaters at any particular ambient base-plate temperature were very similar and 

consistent for different DC bias settings. This justifies the premise of using the micro-heater as 

a thermal platform to measure the intensity of incandescence radiation against points of 

calibrated temperature to give a continuous calibration curve of intensity of incandescence 

radiation as a function of temperature. 

7.4. High temperature measurement results using thermal-incandescence 

method and compared with electrical temperature results: 

The thermal-incandescence technique was used to estimate the surface temperature of 

two IR emitter chip samples (CVD-Chip-C4 and CVD-Chip-C6) biased at high DC input power 

levels (300mW to 727mW). These devices are similar to the micro-heater used to obtain the 

calibration curve (Figure 7.9) of incandescent radiation intensity as a function of temperature. 

For each DC input power, the optical incandescent radiation intensity was recorded, and the 

corresponding temperature interpolated using the calibration curve shown in Figure 7.9. The 

method enabled the surface temperature of the IR emitter chip to be characterised to very high 

temperatures, approaching 1245 °C. The experimental results are shown in Figure 7.12. 
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Figure 7.12: High temperature measurement results on the micro-heaters obtained from 

thermal-incandescence measurements and plotted as a function of incandescent radiation 

intensity. 

The average temperature of the IR emitter chip was also calculated using an electrical 

method (described in section 6.4.1, Chapter 6) [6], [16], knowing the temperature coefficients 

of resistance (𝑇𝐶𝑅1 = 1.88 × 10-3 K-1 and 𝑇𝐶𝑅2 = 4.6 × 10-7 K-2, provided by ams Sensors 

UK Ltd.). 

The IR emitter chip  average temperature determined using the electrical method (as a 

function of DC input power), was compared with temperature measurements obtained by 

conventional IR measurement for low DC input powers (up to 300mW) and with the 

temperatures obtained by the optical incandescence approach for high DC input powers 

(>300mW). The comparison is shown in Figure 7.13. A maximum surface temperature of 

~1245 °C was recorded at an input power of 735mW. There was reasonable agreement between 

the temperature results of the optical and electrical methods (within a ± 3.5 % margin of error), 

as a function of DC input power to the IR emitter chip.  The electrical method provides the 

lumped average surface temperature of the IR micro-heaters and as there was good agreement 

with the IR and optical incandescence spot measurements, it was concluded there was good 

uniformity of temperature across the surface of the micro-heater.  
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Figure 7.13: Comparison between conventional IR, incandescence and electrical 

temperature measurement results. 

7.5. High power electrical characterisation and failure analysis: 

The high power (>800mW) electrical characterisation (IV measurements) were made 

on two IR emitter chip samples from the same fabrication batch (CCS113C-Chips) to 

investigate the device failure point. This was done by using the 4-probe IV measurement 

system (as discussed in Chapter 6, section 6.3.1) to measure the IV characteristics to the point 

where the device failed or burnt-out (see Figure 7.14). The device burnt-out at a DC input 

power of approximately 1035mW. The occurrence of the burn-out always occurred after there 

was a noticeably glitch in the IV characteristics, see Figure 7.14. The IV measurement was 

made at a base-plate temperature of ~80 °C. 
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Figure 7.14: High power electrical characterisation on the IR emitter chips (CCS113C-

Chips) and failure analysis. 

 

The results in Figure 7.14 show the IV characteristics of the two devices were very 

similar where the operating voltage uniformly increased as the current was increased until the 

device reached a DC input power of ~800mW. At this point the IV curves started to deviate 

indicating the device failure, and the micro-heater membrane of the IR emitter chips burnt-out 

at DC input power level of ~1035mW. The high electrical DC input power to the micro-heater 

indicates the device maximum operating temperature has to be under 1300 °C to ensure the 

device is not burnt-out. 

Scanning electron microscope (SEM-Leica S430) was used for imaging the burnt-out 

devices and it was found for both devices the micro-heater membrane had failed. The SEM 

images of the failed IR emitter chips are shown in Figure 7.15 and Figure 7.16. 
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Figure 7.15: SEM images of the failed IR emitter chip (CCS113C-Chip-A6) showing the 

broken micro-heater membrane. 
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Figure 7.16: SEM images of the failed IR emitter chip (CCS113C-Chip-D6) showing the 

broken micro-heater membrane. 
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7.6. Conclusion: 

High temperature thermal characterisation of MEMS IR micro-emitter chips, fabricated on 

a SiO2 membrane using tungsten metallisation, has been undertaken for the first time using a 

combination of IR microscopy and thermal-incandescence microscopy. Conventional IR 

imaging was used to thermally characterise the micro-heater embedded in the IR emitter chip 

to temperatures ~700 °C and optical incandescence to elevated temperature in excess of 

1200°C. The known melting points of metal microparticles were used to calibrate the thermal-

incandescence radiation intensity as a function of temperature. 

The temperature results obtained from the thermo-optical measurements, were compared 

to those obtained using an electrical method. There was reasonable (max error ± 3.5 %) 

agreement between the optical and electrical temperature measurements suggesting uniformity 

of temperature across the micro-heater of the IR emitter chip to a maximum temperature of 

approximately 1245 °C (to the equivalent DC input power of 735mW).  

The thermal-incandescence microscopy measurement technique shows potential for 

increasing the temperature range of an IR microscope by integrating an optical camera for high 

temperature characterisation of electronic devices. 

High power IV measurements (in excess of 1000mW) were also made on the IR micro 

emitter chips to investigate the device failure point. The high DC input electrical power  results 

showed the MEMS micro-heater failed at around ~800mW (glitch in the IV characteristics) 

indicating the maximum safe operating temperature of the device is less than ~1300 °C. Further 

increase in the DC input power (approx. 1035mW) resulted in the device being burnt out which 

was attributed by SEM analysis to the failure of the micro-heater membrane. 
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Chapter 8  

Conclusions and Future work: 

8.1. Conclusions: 

Gas sensors are becoming an integral part of our everyday lives for applications in 

various fields, such as agriculture (e.g., monitoring methane emission from agricultural dairy 

farming) [1], [2], industrial, medical, scientific [3], automotive, domestic, and environmental 

monitoring [4], [5]. Micro-Electro-Mechanical Systems (MEMS) technology is crucial to the 

design and fabrication of miniaturised gas sensors offering low power consumption, low cost, 

high sensitivity and high selectivity. The MEMS micro-heater is a key element for most of the 

modern gas sensors [6] and a promising technology for a number of other applications. 

Knowledge about the thermal uniformity and accurate maximum operating temperature of the 

micro-heater is crucial to investigate the sensing performance and reliability of these gas 

sensing devices. This research has described high temperature thermal characterisation of novel 

micro-heaters used in infra-red (IR) micro-emitter chips (for gas sensing applications), based 

on tungsten CMOS technology [7].   

8.1.1. Infra-red thermal measurements:     

IR thermal microscopy has been widely used to characterise the thermal behaviour of 

micro-scale biased electronic devices, because it offers major benefits including non-contact 

and non-invasive measurements. It utilises naturally emitted IR radiation from the surface of 

the sample, resulting in a real-time two-dimensional (2D) thermal images [7]. The technique 

has been shown to be a useful tool for high temperature thermal characterisation (to 

temperatures approaching 700 °C) of MEMS based IR emitter chips, which were fabricated 

using tungsten CMOS technology, as discussed in Chapter 6.  

The research in this thesis has reported the use of IR microscopy to form 2D real-time 

thermal maps of miniature micro-heaters, primarily for IR micro-emitter chips for use in mid-

IR spectroscopy applications including non-dispersive IR (NDIR) gas sensing (as discussed in 

Chapter 5, section 5.3.3). The thermal maps have been used to understand information 

regarding the safe operating power limits, temperature uniformity across the micro-heater and 

to identify hotspots. It is important to assess the thermal uniformity across the micro-heater to 

ensure consistent IR emission and to minimise the localised hotspots, which could induce 

thermal stress leading to premature failure of the devices. The IR measured temperature 

profiles of the IR emitter chip showed the micro-heater had good thermal uniformity, with a 

maximum temperature variation across the heater surface of ~3%. This was further emphasised 

as the conventional IR measurements were in reasonable agreement with calculated electrical 

average temperature results in which the coefficients of resistance as a function of temperature 

of the micro-heater were used.  

 A factor limiting the accuracy of temperature measurements using conventional IR 

thermal microscopy is, uncertainty in the determination of the surface emissivity of the device 

being measured. This is mainly a concern for measurements made on low emissivity, and 
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optically transparent semiconductor materials, which allow the IR radiation from the 

subsurface layers to be collected by the microscope, leading to errors in measuring the surface 

emissivity. To overcome this limitation, a novel technique has been developed that employs a 

carbon based microparticle infra-red sensor (MPIRS) with a known, and high, surface 

emissivity [8]. The technique eliminates the need for a conventional high emissivity coating of 

black paint, which can average the temperature of hotspots across the surface (heat spreading) 

and can damage the device. Throughout this research further understanding has contributed to 

the novel MPIRS measurement technique, utilising IR thermal microscopy, and was discussed 

in Chapter 4 and Chapter 6. These contributions include showing a glass substrate is a 

convenient surface to pick a single MPIRS using the manipulation probe (also made of glass) 

and  then effectively transfer it to the point on the surface of the device under test (DUT) where 

the temperature is to be measured (Chapter 4). In addition, it was shown the background 

material surface emissivity will have an effect on the emitted radiance of the MPIRS, which is 

also a function of temperature. The work indicated that the MPIRS technique would be best 

adopted on materials with very low emissivity (for example gold) where the surface 

background radiation is a minimum. To make temperature measurements on semiconductor 

materials (for example, Si & GaAs) which are transparent to IR radiation, the actual surface 

emissivity value of the MPIRS needs to be established first (at least ≥0.6 as suggested in 

Chapter 4). A revised base-plate heater technique was developed, and for the first time the 

MPIRS radiance has been measured as a function of temperature to high operating temperatures 

(>300 °C). For these measurements the MPIRS was placed on a polished surface enabling a 

more accurate estimate of its surface emissivity to temperatures approaching 300 °C, by 

subtracting the residue background surface radiance from the total measured radiance.  

The research has reported the use of the MPIRS for IR thermal microscopy 

measurement, can reduce the uncertainties in the temperature measurement of samples with 

poor surface emissivity. The MPIRS technique has been used for improved high temperature 

thermal profiling of the MEMS micro-heaters to temperatures approaching 700 °C. 

Additionally, the first use of a single MPIRS for improved IR surface temperature 

measurements on MEMS micro-heater (with very low surface emissivity, <0.1) fabricated on 

semi-packaging geometry has also been demonstrated. The emitted radiance for sub-10µm 

diameter particles was shown to be lower than for larger particles, for example 20µm diameter 

(Chapter 4), and therefore can lead to an error in the temperature measurements. The effect of 

the MPIRS diameter size has on the IR temperature measurements was investigated. The results 

showed that the measured temperature profile using smaller particles (for example 3µm 

diameter) will underestimate the surface temperature by approximately 5% compared to 

temperature measurements made using larger size microparticles (15µm, 21µm or 43µm). The 

larger diameter particles were shown to give very similar measured temperature values. 

Therefore, the research suggests the MPIRS of diameter size (> 10µm) should be used to obtain 

more accurate temperature profiles on low emissivity devices.    
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8.1.2. Thermo-incandescence measurements: 

The CMOS based IR emitter chip is required to operate to temperatures in excess of 

800 °C for spectral sensing applications in the short-wave region of the IR spectrum (1.4µm – 

2.5µm) where many molecules have their absorption lines [9]. In this research work, a novel 

thermal measurement approach for high temperature characterisation (>800 °C) on electronic 

devices, using optical incandescence radiation thermography was demonstrated [10]. For this 

method, the QFI IR microscope facility at DMU was modified to include an optical camera, 

fitted with an IR rejection filter. The miniature micro-heater based on tungsten metallisation 

technology which was capable of operating to very high temperatures was shown to provide a 

consistent incandescence radiation and therefore could be successfully used as a thermal 

platform. To obtain the thermal profile at elevated temperatures (>800 °C), the intensity of the 

optical incandesce radiation as a function of operating temperature was used. Thermal-optical 

calibration was achieved by utilising the known melting point (MP) of different metal 

microparticles.  

The method has been used for the high temperature characterisation of the MEMS 

micro-heaters to approximately 1245 °C [10]. The estimated surface temperature obtained from 

the thermo-incandescence measurements were compared with the temperature results 

determined using electrical method. There was reasonable agreement between the optical and 

electrical temperature measurements (max error ± 3.5%) suggesting high temperature 

uniformity across the micro-heater of the IR emitter chip. The measurement technique can be 

utilised for increasing the temperature measurement range of an IR microscope by integrating 

an optical camera for high temperature characterisation of electronic devices.  

8.2. Future work: 

Many areas of this research work could be expanded into further research programmes 

to improve the accuracy of temperature measurements using infra-red and thermal-

incandescence microscopy. As discussed, the spatial thermal resolution of IR microscopy is 

dependent on the wavelength and therefore cannot be improved much further than 

approximately 2 microns. However, the thermal spatial resolution of the thermal-

incandescence microscopy has not been explored in this research. Other areas of continued 

research are;   

 The accuracy of the temperature measurements using the IR microscopy could be 

further improved by developing new methods of measuring or computing the surface 

emissivity of the device under test (DUT). This research work has shown the potential 

of using a MPIRS to obtain improved surface emissivity measurement on DUT. 

However, more work is required to calibrate the MPIRS surface emissivity more 

accurately, particularly taking into account the background radiation and the diameter 

of the MPIRS.  

 

 In this research work, the MPIRS radiance was calibrated to higher temperatures 

approaching 300 °C when it was placed on a uniform known low emissivity surface. In 

this approach the radiance emitted by the background could be taken into account when 
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calculating the surface emissivity of the MPIRS. This is often an unreal situation and 

further work is required to develop of an algorithm which would take into account the 

background radiation for different background surfaces where the MPIRS may be 

placed on. This research work also suggests the MPIRS may have a limiting diameter 

of 10µm which would reduce the thermal spatial resolution of the MPIRS measurement 

technique. This certainly requires further investigation and research.  

 

 The manipulation of the MPIRS requires further work. A single MPIRS which can be 

easily and quickly manipulated across the surface of DUT would improve the accuracy 

of temperature profiling across the metal and semiconductor surfaces of a device. This 

will require to develop a more precise and reliable single microparticle computer 

stepped manipulation process, which include more precise control of the electrostatic 

force between the microparticle and manipulation probe tip. It would then be possible 

to release and/or reposition of a microparticle sensor without the risk of manipulation 

probe touching the surface of delicate devices and also not requiring the removal of the 

bias probes.  

 

 To further develop the MPIRS technique for measuring the temperature of packaged 

devices in particular the temperature of bond wires which are often high grade gold 

with a low surface emissivity. 

 

 Part of this research work was to investigate the temperature uniformity and maximum 

operating temperature of the MEMS micro-heaters which can be used as the mid and 

short-wave IR sources, for use in non-dispersive infra-red (NDIR) gas sensing and 

absorption spectroscopy applications. This could be a large topic for future 

development of smart gas sensors with a range of application in medicine, personnel 

detection of gas agents using mobile phones etc. This will require the integration of the 

MEMS micro-heaters with other technologies, and the construction of the MEMS 

micro-heater to operate at very high temperature greater than 1200 °C. The high 

temperatures will require new thermal measurement techniques, not only to measure 

the temperature accurately, but also to determine the uniformity across the surface of 

the micro-heater.  

This research has opened a new approach for measuring high temperatures by integrating 

IR and optical incandescent thermal microscopy. The work has shown it is possible to measure 

seamlessly over a temperature range from approximately from 40 °C to 1200 °C. The optical 

incandescent measurement technique with further development may show potential of high 

thermal spatial resolution, enabling the identification of hotspots which could be potential 

failure points when the heater is operated to temperatures in excess of 1000 °C. 
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APPENDIX – 4A 

Table: 8.1: Emissivity measurement results (two-temperature emissivity) on a black tape 

measured using ×25 lens. 

 

Temperature range (ºC) 

Emissivity (ɛ) 

Aluminium background Black tape background 

Ra = 70 ºC and Rb = 100 ºC 0.97 1.19 

Ra = 75 ºC and Rb = 105 ºC 0.94 1.17 

Ra = 80 ºC and Rb = 110 ºC 0.96 1.13 

Ra = 85 ºC and Rb = 115 ºC 0.94 1.14 

Ra = 90 ºC and Rb = 120 ºC 0.95 1.15 

Average 0.952 1.16 

 

APPENDIX – 4B 

Table: 8.2: Comparison between the temperature results measured using MPIRS when 

deposited on aluminium base-plate and using thermocouple.  

Temperature (°C) 

Thermocouple results Carbon MPIRS sensor 

results 

49.9 49.6 

59.9 59.92 

70 69.83 

80.1 80.1 

90 90.02 

100 100 

109.9 109.93 

120 120.4 

130 130.1 
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APPENDIX – 4C 

Table: 8.3: IR radiance level measured from the surface of MPIRS at high temperatures.  

Temperature 

(°C) 

MPIRS - 1  

(size ~ 20 µm) 

radiance  

(mw/cm2.str) 

MPIRS - 2  

(size ~21µm) 

radiance  

(mw/cm2.str) 

MPIRS - 3  

(size ~20µm) 

radiance 

(mw/cm2.str) 

MPIRS - 4  

(size ~23µm) 

radiance 

(mw/cm2.str) 

140 2.026 2.01 2.001 2.057 

150 2.535 2.522 2.54 2.593 

160 3.148 3.151 3.154 3.276 

170 3.93 3.919 3.934 4.057 

180 4.779 4.853 4.853 4.919 

190 5.858 5.867 5.94 6.111 

200 7.214 7.115 7.108 7.264 

210 8.637 8.683 8.577 8.872 

220 10.293 10.144 10.214 10.5 

230 12.164 12.09 11.935 12.162 

240 14.101 13.849 14.144 14.343 

250 16.226 16.173 16.495 17 

260 18.955 19.017 19.201 19.43 

270 21.743 21.816 22.218 22.4 

280 25.091 24.874 25.207 25.676 

290 29.032 28.83 29.036 29.396 

300 32.522 32.333 32.696 33.473 

310 37.119 36.846 37.27 38.1 
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APPENDIX – 6A 

Table 8.1: Initial IV characteristics of an untested IR micro-emitter 

 (device CCS113C-chip-C7). 

Power (mW) Applied current 

(mA)  

Measured 

voltage (V) 

 Wait Time 

514.2 120mA 4.285V 0 min 

510.24 120mA 4.252V  after 1 min, 

511.7 120.4mA 4.250V after 2 min, 

513.34 120.9mA 4.246V after 5 min, 

517.696 122.3mA 4.233V after 15 min, 

518.721 122.6mA 4.231V after 20 min,  

519.02 122.7mA 4.230V after 25 min, 

519.32 122.8mA 4.229V after 30 min, 

519.32 122.8mA 4.229V after 35 min,  
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