312 research outputs found

    Pareto Optimized Large Mask Approach for Efficient and Background Humanoid Shape Removal

    Get PDF
    The purpose of automated video object removal is to not only detect and remove the object of interest automatically, but also to utilize background context to inpaint the foreground area. Video inpainting requires to fill spatiotemporal gaps in a video with convincing material, necessitating both temporal and spatial consistency; the inpainted part must seamlessly integrate into the background in a variety of scenes, and it must maintain a consistent appearance in subsequent frames even if its surroundings change noticeably. We introduce deep learning-based methodology for removing unwanted human-like shapes in videos. The method uses Pareto-optimized Generative Adversarial Networks (GANs) technology, which is a novel contribution. The system automatically selects the Region of Interest (ROI) for each humanoid shape and uses a skeleton detection module to determine which humanoid shape to retain. The semantic masks of human like shapes are created using a semantic-aware occlusion-robust model that has four primary components: feature extraction, and local, global, and semantic branches. The global branch encodes occlusion-aware information to make the extracted features resistant to occlusion, while the local branch retrieves fine-grained local characteristics. A modified big mask inpainting approach is employed to eliminate a person from the image, leveraging Fast Fourier convolutions and utilizing polygonal chains and rectangles with unpredictable aspect ratios. The inpainter network takes the input image and the mask to create an output image excluding the background humanoid shapes. The generator uses an encoder-decoder structure with included skip connections to recover spatial information and dilated convolution and squeeze and excitation blocks to make the regions behind the humanoid shapes consistent with their surroundings. The discriminator avoids dissimilar structure at the patch scale, and the refiner network catches features around the boundaries of each background humanoid shape. The efficiency was assessed using the Structural Learned Perceptual Image Patch Similarity, Frechet Inception Distance, and Similarity Index Measure metrics and showed promising results in fully automated background person removal task. The method is evaluated on two video object segmentation datasets (DAVIS indicating respective values of 0.02, FID of 5.01 and SSIM of 0.79 and YouTube-VOS, resulting in 0.03, 6.22, 0.78 respectively) as well a database of 66 distinct video sequences of people behind a desk in an office environment (0.02, 4.01, and 0.78 respectively).publishedVersio

    Paste, Inpaint and Harmonize via Denoising: Subject-Driven Image Editing with Pre-Trained Diffusion Model

    Full text link
    Text-to-image generative models have attracted rising attention for flexible image editing via user-specified descriptions. However, text descriptions alone are not enough to elaborate the details of subjects, often compromising the subjects' identity or requiring additional per-subject fine-tuning. We introduce a new framework called \textit{Paste, Inpaint and Harmonize via Denoising} (PhD), which leverages an exemplar image in addition to text descriptions to specify user intentions. In the pasting step, an off-the-shelf segmentation model is employed to identify a user-specified subject within an exemplar image which is subsequently inserted into a background image to serve as an initialization capturing both scene context and subject identity in one. To guarantee the visual coherence of the generated or edited image, we introduce an inpainting and harmonizing module to guide the pre-trained diffusion model to seamlessly blend the inserted subject into the scene naturally. As we keep the pre-trained diffusion model frozen, we preserve its strong image synthesis ability and text-driven ability, thus achieving high-quality results and flexible editing with diverse texts. In our experiments, we apply PhD to both subject-driven image editing tasks and explore text-driven scene generation given a reference subject. Both quantitative and qualitative comparisons with baseline methods demonstrate that our approach achieves state-of-the-art performance in both tasks. More qualitative results can be found at \url{https://sites.google.com/view/phd-demo-page}.Comment: 10 pages, 12 figure

    Structure-Guided Image Completion with Image-level and Object-level Semantic Discriminators

    Full text link
    Structure-guided image completion aims to inpaint a local region of an image according to an input guidance map from users. While such a task enables many practical applications for interactive editing, existing methods often struggle to hallucinate realistic object instances in complex natural scenes. Such a limitation is partially due to the lack of semantic-level constraints inside the hole region as well as the lack of a mechanism to enforce realistic object generation. In this work, we propose a learning paradigm that consists of semantic discriminators and object-level discriminators for improving the generation of complex semantics and objects. Specifically, the semantic discriminators leverage pretrained visual features to improve the realism of the generated visual concepts. Moreover, the object-level discriminators take aligned instances as inputs to enforce the realism of individual objects. Our proposed scheme significantly improves the generation quality and achieves state-of-the-art results on various tasks, including segmentation-guided completion, edge-guided manipulation and panoptically-guided manipulation on Places2 datasets. Furthermore, our trained model is flexible and can support multiple editing use cases, such as object insertion, replacement, removal and standard inpainting. In particular, our trained model combined with a novel automatic image completion pipeline achieves state-of-the-art results on the standard inpainting task.Comment: 18 pages, 16 figure

    3DFill:Reference-guided Image Inpainting by Self-supervised 3D Image Alignment

    Full text link
    Most existing image inpainting algorithms are based on a single view, struggling with large holes or the holes containing complicated scenes. Some reference-guided algorithms fill the hole by referring to another viewpoint image and use 2D image alignment. Due to the camera imaging process, simple 2D transformation is difficult to achieve a satisfactory result. In this paper, we propose 3DFill, a simple and efficient method for reference-guided image inpainting. Given a target image with arbitrary hole regions and a reference image from another viewpoint, the 3DFill first aligns the two images by a two-stage method: 3D projection + 2D transformation, which has better results than 2D image alignment. The 3D projection is an overall alignment between images and the 2D transformation is a local alignment focused on the hole region. The entire process of image alignment is self-supervised. We then fill the hole in the target image with the contents of the aligned image. Finally, we use a conditional generation network to refine the filled image to obtain the inpainting result. 3DFill achieves state-of-the-art performance on image inpainting across a variety of wide view shifts and has a faster inference speed than other inpainting models

    Livrable D2.2 of the PERSEE project : Analyse/Synthese de Texture

    Get PDF
    Livrable D2.2 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D2.2 du projet. Son titre : Analyse/Synthese de Textur
    corecore