5 research outputs found

    Registration of dynamic MRI data and its impact on diagnostic process

    Get PDF
    This paper discusses impact of a novel registration algorithm for dynamic MRI data on diagnosis of rheumatoid arthritis. The algorithm is based on a hybrid Euclidean-Lagrangian approach. It was applied to data acquired with low and higheld MRI scanners. The scans were processed with region-of-interest based and voxel-by-voxel approaches before and after the egistration. In this paper, we demonstrate that diagnostic parameters extracted from the data before and after the registration vary dramatically, which has a crucial effect on diagnostic decision. Application of the the proposed algorithm signicantly reduces artefacts incurred due to patient motion, which permits reduction of variability of the enhancement curves, yielding more distinguishable uptake, equilibrium and wash-out phases and more precise quantitative data analysis

    Dynamic Contrast Enhanced MRI Can Monitor the Very Early Inflammatory Treatment Response upon Intra-Articular Steroid Injection in the Knee Joint: A Case Report with Review of the Literature

    Get PDF
    Dynamic contrast-enhanced MRI in inflammatory arthritis, especially in conjunction with computer-aided analysis using appropriate dedicated software, seems to be a highly sensitive tool for monitoring the early inflammatory treatment response in patients with rheumatoid arthritis. This paper gives a review of the current knowledge of the emerging technique. The potential of the technique is demonstrated and discussed in the context of a case report following the early effect of an intra-articular steroid injection in a patient with rheumatoid arthritis flare in the knee

    IRM de perfusion T1 dans le cancer de la prostate, analyse quantitative et Ă©tude de l’impact de la fonction d’entrĂ©e artĂ©rielle sur les capacitĂ©s diagnostiques des paramĂštres pharmacocinĂ©tiques

    Get PDF
    Dynamic contrast enhanced (DCE)-MRI is a T1 weighted sequence performed before, during and after a bolus injection of a contrast agent (CA). It is included in the multi-parametric prostate MRI (mp-MRI) protocol using to assess the extent of prostate cancer (PCa). The rationale for using DCE-MRI in PCa is that on one hand angiogenesis has been shown to play a central role in the PCa development and metastasis and on the other hand that DCE-MRI is a non invasive method able to depict this angiogenesis in vivo. The quantitative analysis of DCE-MRI data is a complex and multi-step process. The principle is to use a pharmacokinetic (PK) model reflecting the theoretical distribution of the CA in a tissue to extract PK parameters that describe the perfusion and capillary permeability. These parameters are of growing interest, especially in the field of oncology, for their use in assessing the aggressiveness, the prognosis and the efficacy of anti-angiogenic or anti-vascular treatments. The potential utility of these parameters is significant; however, the parameters often lack reproducibility, particularly between different quantitative analysis software programs.Firstly, we developed a quantitative analysis software solution using the variable flip angle method to estimate the T1 mapping which is needed to convert the signal-time curves to CA concentration-time curves; using three different arterial input functions (AIF): an individual AIF (Ind) measured manually in a large artery, and two literature population average AIFs of Weinmann (W) and of Fritz-Hansen (FH); and using two PK models (Tofts and modified Tofts). The robustness of the software programs was assessed on synthetic DCE-MRI data set and on a clinical DCE-MRI data set. Secondly, we assessed the impact of the AIF selection on the PK parameters to distinguish PCa from benign tissue. 38 patients with clinically important peripheral PCa (≄0.5cc) were retrospectively included. These patients underwent 1.5T multiparametric prostate MR with PCa and benign regions of interest (ROI) selected using a visual registration with morphometric reconstruction obtained from radical prostatectomy. Using three pharmacokinetic (PK) analysis software programs, the mean Ktrans, ve and vp of ROIs were computed using three AIFs: Ind-AIF, W-AIF and FH-AIF. The Ktrans provided higher area under the receiver operating characteristic curves (AUROCC) than ve and vp. The Ktrans was significantly higher in the PCa ROIs than in the benign ROIs. AUROCCs obtained with W-AIF were significantly higher than FH-AIF (0.002≀p≀0.045) and similar to or higher than Ind-AIF (0.014≀p≀0.9). Ind-AIF and FH-AIF provided similar AUROCC (0.34≀p≀0.81).We have then demonstrated that the selection of AIF can modify the capacity of the PK parameter Ktrans to distinguish PCa from benign tissue and that W-AIF yielded a similar or higher performance than Ind-AIF and a higher performance than FH-AIF.La sĂ©quence d’IRM de perfusion pondĂ©rĂ©e T1 aprĂšs injection de Gadolinium (Gd), appelĂ©e dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) fait partie du protocole d’IRM multiparamĂ©trique (IRM-mp) rĂ©alisĂ©e pour le bilan d’extension du cancer prostatique (CaP). Le rationnel pour l’utilisation de cette sĂ©quence est d’une part le rĂŽle capital de la nĂ©oangiogĂ©nĂšse dans le dĂ©veloppement et la dissĂ©mination du CaP et d’autre part la possibilitĂ© d’imager l’angiogĂ©nĂšse in vivo et de façon non invasive. L’analyse quantitative nĂ©cessite un post-traitement multi-Ă©tapes complexe, dont le principe repose sur la modĂ©lisation pharmacocinĂ©tique (PC) de la biodistrubtion du Gd. Elle permet de calculer des paramĂštres PC reflĂ©tant la permĂ©abilitĂ© capillaire et/ou la perfusion. Dans le CaP, ces paramĂštres PC ont montrĂ© leur potentiel pour Ă©valuer l’agressivitĂ© tumorale, le pronostic, l’efficacitĂ© d’un traitement et/ou pour dĂ©terminer la dose efficace d’une nouvelle molĂ©cule anti-angiogĂ©niques ou antivasculaires en cours de dĂ©veloppement. NĂ©anmoins, ils manquent de reproductibilitĂ©, notamment du fait des diffĂ©rentes techniques de quantifications utilisĂ©es par les logiciels de post-traitement.Nous avons dĂ©veloppĂ© au sein du laboratoire un outil de quantification capable de calculer une cartographie T1(0) Ă  partir de la mĂ©thode des angles de bascule variables, nĂ©cessaire pour convertir les courbes du signal en courbe de concentration du Gd (Ct); de dĂ©terminer la fonction d’entrĂ©e artĂ©rielle (AIF – arterial input function) dans l’artĂšre fĂ©morale (Indivuduelle – Ind) ou lorsque cela n’était pas possible, d’utiliser une AIF issue de la littĂ©rature, telle que celle de Weinmann (W) ou de Fritz-Hansen (FH) ; et d’utiliser deux modĂšles PC, celui de Tofts et celui de Tofts modifiĂ©. Le logiciel a Ă©tĂ© validĂ© sur des donnĂ©es simulĂ©es et sur une petite sĂ©rie clinique.Nous avons ensuite Ă©tudiĂ© l’impact du choix de la fonction d’entrĂ©e artĂ©riel sur les paramĂštres PC et notamment sur leur capacitĂ© Ă  distinguer le CaP du tissu sain. 38 patients avec un CaP (>0,5cc) de la zone pĂ©riphĂ©rique (ZP) ont Ă©tĂ© rĂ©trospectivement inclus. Chaque patient avait bĂ©nĂ©ficiĂ© d’une IRM-mp sur laquelle deux rĂ©gions d’intĂ©rĂȘt (RI) : une tumorale et une bĂ©nigne ont Ă©tĂ© sĂ©lectionnĂ©es en utilisant une corrĂ©lation avec des cartes histo-morphomĂ©triques obtenues aprĂšs prostatectomie radicale. En utilisant trois logiciels d’analyse quantitative diffĂ©rents, les valeurs moyennes de Ktrans (constante de transfert), ve (fraction du volume interstitiel) and vp (fraction du volume plasmatique) dans les RI ont Ă©tĂ© calculĂ©es avec trois AIF diffĂ©rentes (AIF Ind, AIF de W et AIF de FH). Ktrans Ă©tait le paramĂštre PC qui permettait de mieux distinguer le CaP du tissu sain et ses valeurs Ă©taient significativement supĂ©rieures dans le CaP, quelque soit l’AIF ou le logiciel. L’AIF de W donnait des aires sous les courbes ROC (Receiver Operating Characteristic) significativement plus grandes que l’AIF de FH (0.002≀p≀0.045) et plus grandes ou Ă©gales Ă  l’AIF Ind (0.014≀p≀0.9). L’AIF Ind et de FH avaient des aires sous les courbes ROC comparables (0.34≀p≀0.81). Nous avons donc montrĂ© que les valeurs de Ktrans et sa capacitĂ© Ă  distinguer CaP du tissu sain variaient significativement avec le choix de l’AIF et que les meilleures performances Ă©taient obtenues avec l’AIF de W
    corecore