19 research outputs found

    Towards improved satellite telecommand link availability

    Get PDF
    Compliant with the Consultative Committee for Space Data Systems (CCSDS) set of protocols, we explore enhancing the availability service for space links. In particular, we consider specific improved defences against jamming attacks affecting symbol synchronization. More robust adaptive closed-loop symbol synchronizers are designated with a view to the planned update of the CCSDS standard for the telecommand synchronization and channel coding sublayer of the data link layer. It is shown that adaptive schemes exploiting instantaneous jammer state information are recommended to counter destructive attacks that may harm the availability

    Frame synchronization for pulsed jammed satellite telecommand links

    No full text
    A new issue of the satellite telecommand synchronization and channel coding sublayer protocol 1 includes LDPC coded communication link transmission units (CLTU) that contain a 64-bit start sequence. The novel data structures allow operation at lower signal-to-noise ratios than before, and offer improved protection against jamming attacks. This paper considers the corresponding CLTU frame synchronization process. We derive practical algorithms to locate the start sequence in the presence of high noise levels and pulsed jamming. The different algorithms are compared in terms of implementation complexity and performance under various jamming conditions. It is shown that among the considered frame synchronizers, those involving a full search over the entire observation window provide the desired accuracy, i.e., they guarantee a frame synchronization error probability that is significantly smaller than the codeword error rate, for codeword error rates near a target value of 10−4 . Among these synchronizers, the full-search hard-decision-directed correlation-based algorithm has the lowest complexity

    Performance of advanced telecommand frame synchronizer under pulsed jamming conditions

    Get PDF
    This paper studies frame synchronization for use with the advanced communication link transmission unit format that was recently proposed for updating the telecommand synchronization and channel coding standard for space applications. With a view to improving the robustness against jamming, future satellite telecommand systems are planning to adopt direct-sequence spread spectrum modulation and advanced channel coding. Compared to the frame synchronization algorithm specified in the current Consultative Committee for Space Data Systems (CCSDS) recommendation, we consider a longer start sequence and relax the condition for declaring synchronization. We investigate the performance of this algorithm in the presence of jamming, and show that the frame synchronizer can be designed such that the overall system’s robustness against pulsed jamming is limited by the robustness of the code rather than the synchronizer

    Proceedings of the Mobile Satellite Conference

    Get PDF
    A satellite-based mobile communications system provides voice and data communications to mobile users over a vast geographic area. The technical and service characteristics of mobile satellite systems (MSSs) are presented and form an in-depth view of the current MSS status at the system and subsystem levels. Major emphasis is placed on developments, current and future, in the following critical MSS technology areas: vehicle antennas, networking, modulation and coding, speech compression, channel characterization, space segment technology and MSS experiments. Also, the mobile satellite communications needs of government agencies are addressed, as is the MSS potential to fulfill them

    NASA compendium of satellite communications programs

    Get PDF
    A comprehensive review is given of worldwide satellite communication programs that range in time from the inception of satellite communications to mid-1974. Particular emphasis is placed on program results, including experiments conducted, communications system operational performance, and technology employed. The background for understanding these results is established through brief summaries of the program organization, system configuration, and satellite and ground terminal characteristics. Major consideration is given to the communications system aspects of each program, but general spacecraft technology and other experiments conducted as part of the same program are mentioned summarily

    Development of rear-end collision avoidance in automobiles

    Get PDF
    The goal of this work is to develop a Rear-End Collision Avoidance System for automobiles. In order to develop the Rear-end Collision Avoidance System, it is stated that the most important difference from the old practice is the fact that new design approach attempts to completely avoid collision instead of minimizing the damage by over-designing cars. Rear-end collisions are the third highest cause of multiple vehicle fatalities in the U.S. Their cause seems to be a result of poor driver awareness and communication. For example, car brake lights illuminate exactly the same whether the car is slowing, stopping or the driver is simply resting his foot on the pedal. In the development of Rear-End Collision Avoidance System (RECAS), a thorough review of hardware, software, driver/human factors, and current rear-end collision avoidance systems are included. Key sensor technologies are identified and reviewed in an attempt to ease the design effort. The characteristics and capabilities of alternative and emerging sensor technologies are also described and their performance compared. In designing a RECAS the first component is to monitor the distance and speed of the car ahead. If an unsafe condition is detected a warning is issued and the vehicle is decelerated (if necessary). The second component in the design effort utilizes the illumination of independent segments of brake lights corresponding to the stopping condition of the car. This communicates the stopping intensity to the following driver. The RECAS is designed the using the LabVIEW software. The simulation is designed to meet several criteria: System warnings should result in a minimum load on driver attention, and the system should also perform well in a variety of driving conditions. In order to illustrate and test the proposed RECAS methods, a Java program has been developed. This simulation animates a multi-car, multi-lane highway environment where car speeds are assigned randomly, and the proposed RECAS approaches demonstrate rear-end collision avoidance successfully. The Java simulation is an applet, which is easily accessible through the World Wide Web and also can be tested for different angles of the sensor

    Third International Symposium on Space Mission Operations and Ground Data Systems, part 1

    Get PDF
    Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The papers focus on improvements in the efficiency, effectiveness, productivity, and quality of data acquisition, ground systems, and mission operations. New technology, techniques, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations

    2016-2017 Catalog

    Get PDF
    The Trident Technical College Catalog includes course listings, student responsibilities, admission procedures, finances, and other resources

    2017-2018 Catalog

    Get PDF
    The Trident Technical College Catalog includes course listings, student responsibilities, admission procedures, finances, and other resources
    corecore