451 research outputs found

    LO-Net: Deep Real-time Lidar Odometry

    Full text link
    We present a novel deep convolutional network pipeline, LO-Net, for real-time lidar odometry estimation. Unlike most existing lidar odometry (LO) estimations that go through individually designed feature selection, feature matching, and pose estimation pipeline, LO-Net can be trained in an end-to-end manner. With a new mask-weighted geometric constraint loss, LO-Net can effectively learn feature representation for LO estimation, and can implicitly exploit the sequential dependencies and dynamics in the data. We also design a scan-to-map module, which uses the geometric and semantic information learned in LO-Net, to improve the estimation accuracy. Experiments on benchmark datasets demonstrate that LO-Net outperforms existing learning based approaches and has similar accuracy with the state-of-the-art geometry-based approach, LOAM

    Enabling Multi-LiDAR Sensing in GNSS-Denied Environments: SLAM Dataset, Benchmark, and UAV Tracking with LiDAR-as-a-camera

    Get PDF
    The rise of Light Detection and Ranging (LiDAR) sensors has profoundly impacted industries ranging from automotive to urban planning. As these sensors become increasingly affordable and compact, their applications are diversifying, driving precision, and innovation. This thesis delves into LiDAR's advancements in autonomous robotic systems, with a focus on its role in simultaneous localization and mapping (SLAM) methodologies and LiDAR as a camera-based tracking for Unmanned Aerial Vehicles (UAV). Our contributions span two primary domains: the Multi-Modal LiDAR SLAM Benchmark, and the LiDAR-as-a-camera UAV Tracking. In the former, we have expanded our previous multi-modal LiDAR dataset by adding more data sequences from various scenarios. In contrast to the previous dataset, we employ different ground truth-generating approaches. We propose a new multi-modal multi-lidar SLAM-assisted and ICP-based sensor fusion method for generating ground truth maps. Additionally, we also supplement our data with new open road sequences with GNSS-RTK. This enriched dataset, supported by high-resolution LiDAR, provides detailed insights through an evaluation of ten configurations, pairing diverse LiDAR sensors with state-of-the-art SLAM algorithms. In the latter contribution, we leverage a custom YOLOv5 model trained on panoramic low-resolution images from LiDAR reflectivity (LiDAR-as-a-camera) to detect UAVs, demonstrating the superiority of this approach over point cloud or image-only methods. Additionally, we evaluated the real-time performance of our approach on the Nvidia Jetson Nano, a popular mobile computing platform. Overall, our research underscores the transformative potential of integrating advanced LiDAR sensors with autonomous robotics. By bridging the gaps between different technological approaches, we pave the way for more versatile and efficient applications in the future

    Advances in Simultaneous Localization and Mapping in Confined Underwater Environments Using Sonar and Optical Imaging.

    Full text link
    This thesis reports on the incorporation of surface information into a probabilistic simultaneous localization and mapping (SLAM) framework used on an autonomous underwater vehicle (AUV) designed for underwater inspection. AUVs operating in cluttered underwater environments, such as ship hulls or dams, are commonly equipped with Doppler-based sensors, which---in addition to navigation---provide a sparse representation of the environment in the form of a three-dimensional (3D) point cloud. The goal of this thesis is to develop perceptual algorithms that take full advantage of these sparse observations for correcting navigational drift and building a model of the environment. In particular, we focus on three objectives. First, we introduce a novel representation of this 3D point cloud as collections of planar features arranged in a factor graph. This factor graph representation probabalistically infers the spatial arrangement of each planar segment and can effectively model smooth surfaces (such as a ship hull). Second, we show how this technique can produce 3D models that serve as input to our pipeline that produces the first-ever 3D photomosaics using a two-dimensional (2D) imaging sonar. Finally, we propose a model-assisted bundle adjustment (BA) framework that allows for robust registration between surfaces observed from a Doppler sensor and visual features detected from optical images. Throughout this thesis, we show methods that produce 3D photomosaics using a combination of triangular meshes (derived from our SLAM framework or given a-priori), optical images, and sonar images. Overall, the contributions of this thesis greatly increase the accuracy, reliability, and utility of in-water ship hull inspection with AUVs despite the challenges they face in underwater environments. We provide results using the Hovering Autonomous Underwater Vehicle (HAUV) for autonomous ship hull inspection, which serves as the primary testbed for the algorithms presented in this thesis. The sensor payload of the HAUV consists primarily of: a Doppler velocity log (DVL) for underwater navigation and ranging, monocular and stereo cameras, and---for some applications---an imaging sonar.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120750/1/paulozog_1.pd

    Scan matching by cross-correlation and differential evolution

    Get PDF
    Scan matching is an important task, solved in the context of many high-level problems including pose estimation, indoor localization, simultaneous localization and mapping and others. Methods that are accurate and adaptive and at the same time computationally efficient are required to enable location-based services in autonomous mobile devices. Such devices usually have a wide range of high-resolution sensors but only a limited processing power and constrained energy supply. This work introduces a novel high-level scan matching strategy that uses a combination of two advanced algorithms recently used in this field: cross-correlation and differential evolution. The cross-correlation between two laser range scans is used as an efficient measure of scan alignment and the differential evolution algorithm is used to search for the parameters of a transformation that aligns the scans. The proposed method was experimentally validated and showed good ability to match laser range scans taken shortly after each other and an excellent ability to match laser range scans taken with longer time intervals between them.Web of Science88art. no. 85

    Learning and Searching Methods for Robust, Real-Time Visual Odometry.

    Full text link
    Accurate position estimation provides a critical foundation for mobile robot perception and control. While well-studied, it remains difficult to provide timely, precise, and robust position estimates for applications that operate in uncontrolled environments, such as robotic exploration and autonomous driving. Continuous, high-rate egomotion estimation is possible using cameras and Visual Odometry (VO), which tracks the movement of sparse scene content known as image keypoints or features. However, high update rates, often 30~Hz or greater, leave little computation time per frame, while variability in scene content stresses robustness. Due to these challenges, implementing an accurate and robust visual odometry system remains difficult. This thesis investigates fundamental improvements throughout all stages of a visual odometry system, and has three primary contributions: The first contribution is a machine learning method for feature detector design. This method considers end-to-end motion estimation accuracy during learning. Consequently, accuracy and robustness are improved across multiple challenging datasets in comparison to state of the art alternatives. The second contribution is a proposed feature descriptor, TailoredBRIEF, that builds upon recent advances in the field in fast, low-memory descriptor extraction and matching. TailoredBRIEF is an in-situ descriptor learning method that improves feature matching accuracy by efficiently customizing descriptor structures on a per-feature basis. Further, a common asymmetry in vision system design between reference and query images is described and exploited, enabling approaches that would otherwise exceed runtime constraints. The final contribution is a new algorithm for visual motion estimation: Perspective Alignment Search~(PAS). Many vision systems depend on the unique appearance of features during matching, despite a large quantity of non-unique features in otherwise barren environments. A search-based method, PAS, is proposed to employ features that lack unique appearance through descriptorless matching. This method simplifies visual odometry pipelines, defining one method that subsumes feature matching, outlier rejection, and motion estimation. Throughout this work, evaluations of the proposed methods and systems are carried out on ground-truth datasets, often generated with custom experimental platforms in challenging environments. Particular focus is placed on preserving runtimes compatible with real-time operation, as is necessary for deployment in the field.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113365/1/chardson_1.pd

    ์ฃผํ–‰๊ณ„ ๋ฐ ์ง€๋„ ์ž‘์„ฑ์„ ์œ„ํ•œ 3์ฐจ์› ํ™•๋ฅ ์  ์ •๊ทœ๋ถ„ํฌ๋ณ€ํ™˜์˜ ์ •ํ•ฉ ๋ฐฉ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ์ด๋ฒ”ํฌ.๋กœ๋ด‡์€ ๊ฑฐ๋ฆฌ์„ผ์„œ๋ฅผ ์ด์šฉํ•˜์—ฌ ์œ„์น˜ํ•œ ํ™˜๊ฒฝ์˜ ๊ณต๊ฐ„ ์ •๋ณด๋ฅผ ์ ๊ตฐ(point set) ํ˜•ํƒœ๋กœ ์ˆ˜์ง‘ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ด๋ ‡๊ฒŒ ์ˆ˜์ง‘ํ•œ ์ •๋ณด๋ฅผ ํ™˜๊ฒฝ์˜ ๋ณต์›์— ์ด์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ๋กœ๋ด‡์€ ์ ๊ตฐ๊ณผ ๋ชจ๋ธ์„ ์ •ํ•ฉํ•˜๋Š” ์œ„์น˜๋ฅผ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฑฐ๋ฆฌ์„ผ์„œ๊ฐ€ ์ˆ˜์ง‘ํ•œ ์ ๊ตฐ์ด 2์ฐจ์›์—์„œ 3์ฐจ์›์œผ๋กœ ํ™•์žฅ๋˜๊ณ  ํ•ด์ƒ๋„๊ฐ€ ๋†’์•„์ง€๋ฉด์„œ ์ ์˜ ๊ฐœ์ˆ˜๊ฐ€ ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜๋ฉด์„œ, NDT (normal distributions transform)๋ฅผ ์ด์šฉํ•œ ์ •ํ•ฉ์ด ICP (iterative closest point)์˜ ๋Œ€์•ˆ์œผ๋กœ ๋ถ€์ƒํ•˜์˜€๋‹ค. NDT๋Š” ์ ๊ตฐ์„ ๋ถ„ํฌ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ๊ณต๊ฐ„์„ ํ‘œํ˜„ํ•˜๋Š” ์••์ถ•๋œ ๊ณต๊ฐ„ ํ‘œํ˜„ ๋ฐฉ๋ฒ•์ด๋‹ค. ๋ถ„ํฌ์˜ ๊ฐœ์ˆ˜๊ฐ€ ์ ์˜ ๊ฐœ์ˆ˜์— ๋น„ํ•ด ์›”๋“ฑํžˆ ์ž‘๊ธฐ ๋•Œ๋ฌธ์— ICP์— ๋น„ํ•ด ๋น ๋ฅธ ์„ฑ๋Šฅ์„ ๊ฐ€์กŒ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ NDT ์ •ํ•ฉ ๊ธฐ๋ฐ˜ ์œ„์น˜ ์ถ”์ •์˜ ์„ฑ๋Šฅ์„ ์ขŒ์šฐํ•˜๋Š” ์…€์˜ ํฌ๊ธฐ, ์…€์˜ ์ค‘์ฒฉ ์ •๋„, ์…€์˜ ๋ฐฉํ–ฅ, ๋ถ„ํฌ์˜ ์Šค์ผ€์ผ, ๋Œ€์‘์Œ์˜ ๋น„์ค‘ ๋“ฑ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ค์ •ํ•˜๊ธฐ๊ฐ€ ๋งค์šฐ ์–ด๋ ต๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์–ด๋ ค์›€์— ๋Œ€์‘ํ•˜์—ฌ NDT ์ •ํ•ฉ ๊ธฐ๋ฐ˜ ์œ„์น˜ ์ถ”์ •์˜ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ํ‘œํ˜„๋ฒ•๊ณผ ์ •ํ•ฉ๋ฒ• 2๊ฐœ ํŒŒํŠธ๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ๋‹ค. ํ‘œํ˜„๋ฒ•์— ์žˆ์–ด ๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์Œ 3๊ฐœ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ฒซ์งธ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ถ„ํฌ์˜ ํ‡ดํ™”๋ฅผ ๋ง‰๊ธฐ ์œ„ํ•ด ๊ฒฝํ—˜์ ์œผ๋กœ ๊ณต๋ถ„์‚ฐ ํ–‰๋ ฌ์˜ ๊ณ ์œ ๊ฐ’์„ ์ˆ˜์ •ํ•˜์—ฌ ๊ณต๊ฐ„์  ํ˜•ํƒœ์˜ ์™œ๊ณก์„ ๊ฐ€์ ธ์˜ค๋Š” ๋ฌธ์ œ์ ๊ณผ ๊ณ ํ•ด์ƒ๋„์˜ NDT๋ฅผ ์ƒ์„ฑํ•  ๋•Œ ์…€๋‹น ์ ์˜ ๊ฐœ์ˆ˜๊ฐ€ ๊ฐ์†Œํ•˜๋ฉฐ ๊ตฌ์กฐ๋ฅผ ๋ฐ˜์˜ํ•˜๋Š” ๋ถ„ํฌ๊ฐ€ ํ˜•์„ฑ๋˜์ง€ ์•Š๋Š” ๋ฌธ์ œ์ ์„ ์ฃผ๋ชฉํ–ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ฐ ์ ์— ๋Œ€ํ•ด ๋ถˆํ™•์‹ค์„ฑ์„ ๋ถ€์—ฌํ•˜๊ณ , ํ‰๊ท ๊ณผ ๋ถ„์‚ฐ์˜ ๊ธฐ๋Œ€๊ฐ’์œผ๋กœ ์ˆ˜์ •ํ•œ ํ™•๋ฅ ์  NDT (PNDT, probabilistic NDT) ํ‘œํ˜„๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ณต๊ฐ„ ์ •๋ณด์˜ ๋ˆ„๋ฝ ์—†์ด ๋ชจ๋“  ์ ์„ ๋ถ„ํฌ๋กœ ๋ณ€ํ™˜ํ•œ NDT๋ฅผ ํ†ตํ•ด ํ–ฅ์ƒ๋œ ์ •ํ™•๋„๋ฅผ ๋ณด์ธ PNDT๋Š” ์ƒ˜ํ”Œ๋ง์„ ํ†ตํ•œ ๊ฐ€์„์„ ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ๋‘˜์งธ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ •์œก๋ฉด์ฒด๋ฅผ ์…€๋กœ ๋‹ค๋ฃจ๋ฉฐ, ์…€์„ ์ค‘์‹ฌ์ขŒํ‘œ์™€ ๋ณ€์˜ ๊ธธ์ด๋กœ ์ •์˜ํ•œ๋‹ค. ๋˜ํ•œ, ์…€๋“ค๋กœ ์ด๋ค„์ง„ ๊ฒฉ์ž๋ฅผ ๊ฐ ์…€์˜ ์ค‘์‹ฌ์  ์‚ฌ์ด์˜ ๊ฐ„๊ฒฉ๊ณผ ์…€์˜ ํฌ๊ธฐ๋กœ ์ •์˜ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ •์˜๋ฅผ ํ† ๋Œ€๋กœ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์…€์˜ ํ™•๋Œ€๋ฅผ ํ†ตํ•˜์—ฌ ์…€์„ ์ค‘์ฒฉ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•๊ณผ ์…€์˜ ๊ฐ„๊ฒฉ ์กฐ์ ˆ์„ ํ†ตํ•˜์—ฌ ์…€์„ ์ค‘์ฒฉ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด 2D NDT์—์„œ ์‚ฌ์šฉํ•œ ์…€์˜ ์‚ฝ์ž…๋ฒ•์„ ์ฃผ๋ชฉํ•˜์˜€๋‹ค. ๋‹จ์ˆœ์ž…๋ฐฉ๊ตฌ์กฐ๋ฅผ ์ด๋ฃจ๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ• ์™ธ์— ๋ฉด์‹ฌ์ž…๋ฐฉ๊ตฌ์กฐ์™€ ์ฒด์‹ฌ์ž…๋ฐฉ๊ตฌ์กฐ์˜ ์…€๋กœ ์ด๋ค„์ง„ ๊ฒฉ์ž๊ฐ€ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๊ทธ ๋‹ค์Œ ํ•ด๋‹น ๊ฒฉ์ž๋ฅผ ์ด์šฉํ•˜์—ฌ NDT๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ด๋ ‡๊ฒŒ ์ƒ์„ฑ๋œ NDT๋ฅผ ์ •ํ•ฉํ•  ๋•Œ ๋งŽ์€ ์‹œ๊ฐ„์„ ์†Œ์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋Œ€์‘์Œ ๊ฒ€์ƒ‰ ์˜์—ญ์„ ์ •์˜ํ•˜์—ฌ ์ •ํ•ฉ ์†๋„๋ฅผ ํ–ฅ์ƒํ•˜์˜€๋‹ค. ์…‹์งธ, ์ €์‚ฌ์–‘ ๋กœ๋ด‡๋“ค์€ ์ ๊ตฐ ์ง€๋„๋ฅผ NDT ์ง€๋„๋กœ ์••์ถ•ํ•˜์—ฌ ๋ณด๊ด€ํ•˜๋Š” ๊ฒƒ์ด ํšจ์œจ์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋กœ๋ด‡ ํฌ์ฆˆ๊ฐ€ ๊ฐฑ์‹ ๋˜๊ฑฐ๋‚˜, ๋‹ค๊ฐœ์ฒด ๋กœ๋ด‡๊ฐ„ ๋ž‘๋ฐ๋ทฐ๊ฐ€ ์ผ์–ด๋‚˜ ์ง€๋„๋ฅผ ๊ณต์œ  ๋ฐ ๊ฒฐํ•ฉํ•˜๋Š” ๊ฒฝ์šฐ NDT์˜ ๋ถ„ํฌ ํ˜•ํƒœ๊ฐ€ ์™œ๊ณก๋˜๋Š” ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ NDT ์žฌ์ƒ์„ฑ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ •ํ•ฉ๋ฒ•์— ์žˆ์–ด ๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์Œ 4๊ฐœ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ฒซ์งธ, ์ ๊ตฐ์˜ ๊ฐ ์ ์— ๋Œ€ํ•ด ๋Œ€์‘๋˜๋Š” ์ƒ‰์ƒ ์ •๋ณด๊ฐ€ ์ œ๊ณต๋  ๋•Œ ์ƒ‰์ƒ hue๋ฅผ ์ด์šฉํ•œ ํ–ฅ์ƒ๋œ NDT ์ •ํ•ฉ์œผ๋กœ ๊ฐ ๋Œ€์‘์Œ์— ๋Œ€ํ•ด hue์˜ ์œ ์‚ฌ๋„๋ฅผ ๋น„์ค‘์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ๋ชฉ์ ํ•จ์ˆ˜๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋‘˜์งธ, ๋ณธ ๋…ผ๋ฌธ์€์€ ๋‹ค์–‘ํ•œ ํฌ๊ธฐ์˜ ์œ„์น˜ ๋ณ€ํ™”๋Ÿ‰์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์ค‘ ๋ ˆ์ด์–ด NDT ์ •ํ•ฉ (ML-NDT, multi-layered NDT)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ‚ค๋ ˆ์ด์–ด NDT ์ •ํ•ฉ (KL-NDT, key-layered NDT)์„ ์ œ์•ˆํ•˜์˜€๋‹ค. KL-NDT๋Š” ๊ฐ ํ•ด์ƒ๋„์˜ ์…€์—์„œ ํ™œ์„ฑํ™”๋œ ์ ์˜ ๊ฐœ์ˆ˜ ๋ณ€ํ™”๋Ÿ‰์„ ์ฒ™๋„๋กœ ํ‚ค๋ ˆ์ด์–ด๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ๋˜ํ•œ ํ‚ค๋ ˆ์ด์–ด์—์„œ ์œ„์น˜์˜ ์ถ”์ •๊ฐ’์ด ์ˆ˜๋ ดํ•  ๋•Œ๊นŒ์ง€ ์ •ํ•ฉ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐฉ์‹์„ ์ทจํ•˜์—ฌ ๋‹ค์Œ ํ‚ค๋ ˆ์ด์–ด์— ๋” ์ข‹์€ ์ดˆ๊ธฐ๊ฐ’์„ ์ œ๊ณตํ•œ๋‹ค. ์…‹์งธ, ๋ณธ ๋…ผ๋ฌธ์€ ์ด์‚ฐ์ ์ธ ์…€๋กœ ์ธํ•ด NDT๊ฐ„ ์ •ํ•ฉ ๊ธฐ๋ฒ•์ธ NDT-D2D (distribution-to-distribution NDT)์˜ ๋ชฉ์  ํ•จ์ˆ˜๊ฐ€ ๋น„์„ ํ˜•์ด๋ฉฐ ๊ตญ์†Œ ์ตœ์ €์น˜์˜ ์™„ํ™”๋ฅผ ์œ„ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์‹ ๊ทœ NDT์™€ ๋ชจ๋ธ NDT์— ๋…๋ฆฝ๋œ ์Šค์ผ€์ผ์„ ์ •์˜ํ•˜๊ณ  ์Šค์ผ€์ผ์„ ๋ณ€ํ™”ํ•˜๋ฉฐ ์ •ํ•ฉํ•˜๋Š” ๋™์  ์Šค์ผ€์ผ ๊ธฐ๋ฐ˜ NDT ์ •ํ•ฉ (DSF-NDT-D2D, dynamic scaling factor-based NDT-D2D)์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ณธ ๋…ผ๋ฌธ์€ ์†Œ์Šค NDT์™€ ์ง€๋„๊ฐ„ ์ฆ๋Œ€์  ์ •ํ•ฉ์„ ์ด์šฉํ•œ ์ฃผํ–‰๊ณ„ ์ถ”์ • ๋ฐ ์ง€๋„ ์ž‘์„ฑ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๋กœ๋ด‡์˜ ํ˜„์žฌ ํฌ์ฆˆ์— ๋Œ€ํ•œ ์ดˆ๊ธฐ๊ฐ’์„ ์†Œ์Šค ์ ๊ตฐ์— ์ ์šฉํ•œ ๋’ค NDT๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ง€๋„ ์ƒ NDT์™€ ๊ฐ€๋Šฅํ•œ ํ•œ ์œ ์‚ฌํ•œ NDT๋ฅผ ์ž‘์„ฑํ•œ๋‹ค. ๊ทธ ๋‹ค์Œ ๋กœ๋ด‡ ํฌ์ฆˆ ๋ฐ ์†Œ์Šค NDT์˜ GC (Gaussian component)๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ๋ถ€๋ถ„์ง€๋„๋ฅผ ์ถ”์ถœํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ์ถ”์ถœํ•œ ๋ถ€๋ถ„์ง€๋„์™€ ์†Œ์Šค NDT๋Š” ๋‹ค์ค‘ ๋ ˆ์ด์–ด NDT ์ •ํ•ฉ์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ •ํ™•ํ•œ ์ฃผํ–‰๊ณ„๋ฅผ ์ถ”์ •ํ•˜๊ณ , ์ถ”์ • ํฌ์ฆˆ๋กœ ์†Œ์Šค ์ ๊ตฐ์„ ํšŒ์ „ ๋ฐ ์ด๋™ ํ›„ ๊ธฐ์กด ์ง€๋„๋ฅผ ๊ฐฑ์‹ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณผ์ •์„ ํ†ตํ•ด ์ด ๋ฐฉ๋ฒ•์€ ํ˜„์žฌ ์ตœ๊ณ  ์„ฑ๋Šฅ์„ ๊ฐ€์ง„ LOAM (lidar odometry and mapping)์— ๋น„ํ•˜์—ฌ ๋” ๋†’์€ ์ •ํ™•๋„์™€ ๋” ๋น ๋ฅธ ์ฒ˜๋ฆฌ์†๋„๋ฅผ ๋ณด์˜€๋‹ค.The robot is a self-operating device using its intelligence, and autonomous navigation is a critical form of intelligence for a robot. This dissertation focuses on localization and mapping using a 3D range sensor for autonomous navigation. The robot can collect spatial information from the environment using a range sensor. This information can be used to reconstruct the environment. Additionally, the robot can estimate pose variations by registering the source point set with the model. Given that the point set collected by the sensor is expanded in three dimensions and becomes dense, registration using the normal distribution transform (NDT) has emerged as an alternative to the most commonly used iterative closest point (ICP) method. NDT is a compact representation which describes using a set of GCs (GC) converted from a point set. Because the number of GCs is much smaller than the number of points, with regard to the computation time, NDT outperforms ICP. However, the NDT has issues to be resolved, such as the discretization of the point set and the objective function. This dissertation is divided into two parts: representation and registration. For the representation part, first we present the probabilistic NDT (PNDT) to deal with the destruction and degeneration problems caused by the small cell size and the sparse point set. PNDT assigns an uncertainty to each point sample to convert a point set with fewer than four points into a distribution. As a result, PNDT allows for more precise registration using small cells. Second, we present lattice adjustment and cell insertion methods to overlap cells to overcome the discreteness problem of the NDT. In the lattice adjustment method, a lattice is expressed as the distance between the cells and the side length of each cell. In the cell insertion method, simple, face-centered-cubic, and body-centered-cubic lattices are compared. Third, we present a means of regenerating the NDT for the target lattice. A single robot updates its poses using simultaneous localization and mapping (SLAM) and fuses the NDT at each pose to update its NDT map. Moreover, multiple robots share NDT maps built with inconsistent lattices and fuse the maps. Because the simple fusion of the NDT maps can change the centers, shapes, and normal vectors of GCs, the regeneration method subdivides the NDT into truncated GCs using the target lattice and regenerates the NDT. For the registration part, first we present a hue-assisted NDT registration if the robot acquires color information corresponding to each point sample from a vision sensor. Each GC of the NDT has a distribution of the hue and uses the similarity of the hue distributions as the weight in the objective function. Second, we present a key-layered NDT registration (KL-NDT) method. The multi-layered NDT registration (ML-NDT) registers points to the NDT in multiple resolutions of lattices. However, the initial cell size and the number of layers are difficult to determine. KL-NDT determines the key layers in which the registration is performed based on the change of the number of activated points. Third, we present a method involving dynamic scaling factors of the covariance. This method scales the source NDT at zero initially to avoid a negative correlation between the likelihood and rotational alignment. It also scales the target NDT from the maximum scale to the minimum scale. Finally, we present a method of incremental registration of PNDTs which outperforms the state-of-the-art lidar odometry and mapping method.1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 Point Set Registration . . . . . . . . . . . . . . . . . . . . . 7 1.3.2 Incremental Registration for Odometry Estimation . . . . . . 16 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Preliminaries 21 2.1 NDT Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 NDT Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 NDT Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 Transformation Matrix and The Parameter Vector . . . . . . . . . . . 27 2.5 Cubic Cell and Lattice . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.8 Evaluation of Registration . . . . . . . . . . . . . . . . . . . . . . . 31 2.9 Benchmark Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 Probabilistic NDT Representation 34 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Uncertainty of Point Based on Sensor Model . . . . . . . . . . . . . . 36 3.3 Probabilistic NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4 Generalization of NDT Registration Based on PNDT . . . . . . . . . 40 3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5.2 Evaluation of Representation . . . . . . . . . . . . . . . . . . 41 3.5.3 Evaluation of Registration . . . . . . . . . . . . . . . . . . . 46 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 Interpolation for NDT Using Overlapped Regular Cells 51 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Lattice Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3 Crystalline NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.4.1 Lattice Adjustment . . . . . . . . . . . . . . . . . . . . . . . 56 4.4.2 Performance of Crystalline NDT . . . . . . . . . . . . . . . . 60 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5 Regeneration of Normal Distributions Transform 65 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 67 5.2.1 Trivariate Normal Distribution . . . . . . . . . . . . . . . . . 67 5.2.2 Truncated Trivariate Normal Distribution . . . . . . . . . . . 67 5.3 Regeneration of NDT . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.1 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.2 Subdivision of Gaussian Components . . . . . . . . . . . . . 70 5.3.3 Fusion of Gaussian Components . . . . . . . . . . . . . . . . 72 5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.4.1 Evaluation Metrics for Representation . . . . . . . . . . . . . 73 5.4.2 Representation Performance of the Regenerated NDT . . . . . 75 5.4.3 Computation Performance of the Regeneration . . . . . . . . 82 5.4.4 Application of Map Fusion . . . . . . . . . . . . . . . . . . . 83 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6 Hue-Assisted Registration 91 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.2 Preliminary of the HSV Model . . . . . . . . . . . . . . . . . . . . . 92 6.3 Colored Octree for Subdivision . . . . . . . . . . . . . . . . . . . . . 94 6.4 HA-NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.5.1 Evaluation of HA-NDT against nhue . . . . . . . . . . . . . . 97 6.5.2 Evaluation of NDT and HA-NDT . . . . . . . . . . . . . . . 98 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7 Key-Layered NDT Registration 103 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.2 Key-layered NDT-P2D . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.3.1 Evaluation of KL-NDT-P2D and ML-NDT-P2D . . . . . . . . 108 7.3.2 Evaluation of KL-NDT-D2D and ML-NDT-D2D . . . . . . . 111 7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 8 Scaled NDT and The Multi-scale Registration 113 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.2 Scaled NDT representation and L2 distance . . . . . . . . . . . . . . 114 8.3 NDT-D2D with dynamic scaling factors of covariances . . . . . . . . 116 8.4 Range of scaling factors . . . . . . . . . . . . . . . . . . . . . . . . . 120 8.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 8.5.1 Evaluation of the presented method without initial guess . . . 122 8.5.2 Application of odometry estimation . . . . . . . . . . . . . . 125 8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 9 Scan-to-map Registration 129 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 9.2 Multi-layered PNDT . . . . . . . . . . . . . . . . . . . . . . . . . . 130 9.3 NDT Incremental Registration . . . . . . . . . . . . . . . . . . . . . 132 9.3.1 Initialization of PNDT-Map . . . . . . . . . . . . . . . . . . 133 9.3.2 Generation of Source ML-PNDT . . . . . . . . . . . . . . . . 134 9.3.3 Reconstruction of The Target ML-PNDT . . . . . . . . . . . 134 9.3.4 Pose Estimation Based on Multi-layered Registration . . . . . 135 9.3.5 Update of PNDT-Map . . . . . . . . . . . . . . . . . . . . . 136 9.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10 Conclusions 142 Bibliography 145 ์ดˆ๋ก 159 ๊ฐ์‚ฌ์˜ ๊ธ€ 162Docto
    • โ€ฆ
    corecore