219 research outputs found

    ๊ฐœ์ธ ์‚ฌํšŒ๋ง ๋„คํŠธ์›Œํฌ ๋ถ„์„ ๊ธฐ๋ฐ˜ ์˜จ๋ผ์ธ ์‚ฌํšŒ ๊ณต๊ฒฉ์ž ํƒ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ๊น€์ข…๊ถŒ.In the last decade we have witnessed the explosive growth of online social networking services (SNSs) such as Facebook, Twitter, Weibo and LinkedIn. While SNSs provide diverse benefits โ€“ for example, fostering inter-personal relationships, community formations and news propagation, they also attracted uninvited nuiance. Spammers abuse SNSs as vehicles to spread spams rapidly and widely. Spams, unsolicited or inappropriate messages, significantly impair the credibility and reliability of services. Therefore, detecting spammers has become an urgent and critical issue in SNSs. This paper deals with spamming in Twitter and Weibo. Instead of spreading annoying messages to the public, a spammer follows (subscribes to) normal users, and followed a normal user. Sometimes a spammer makes link farm to increase target accounts explicit influence. Based on the assumption that the online relationships of spammers are different from those of normal users, I proposed classification schemes that detect online social attackers including spammers. I firstly focused on ego-network social relations and devised two features, structural features based on Triad Significance Profile (TSP) and relational semantic features based on hierarchical homophily in an ego-network. Experiments on real Twitter and Weibo datasets demonstrated that the proposed approach is very practical. The proposed features are scalable because instead of analyzing the whole network, they inspect user-centered ego-networks. My performance study showed that proposed methods yield significantly better performance than prior scheme in terms of true positives and false positives.์ตœ๊ทผ ์šฐ๋ฆฌ๋Š” Facebook, Twitter, Weibo, LinkedIn ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ์‚ฌํšŒ ๊ด€๊ณ„๋ง ์„œ๋น„์Šค๊ฐ€ ํญ๋ฐœ์ ์œผ๋กœ ์„ฑ์žฅํ•˜๋Š” ํ˜„์ƒ์„ ๋ชฉ๊ฒฉํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ ์‚ฌํšŒ ๊ด€๊ณ„๋ง ์„œ๋น„์Šค๊ฐ€ ๊ฐœ์ธ๊ณผ ๊ฐœ์ธ๊ฐ„์˜ ๊ด€๊ณ„ ๋ฐ ์ปค๋ฎค๋‹ˆํ‹ฐ ํ˜•์„ฑ๊ณผ ๋‰ด์Šค ์ „ํŒŒ ๋“ฑ์˜ ์—ฌ๋Ÿฌ ์ด์ ์„ ์ œ๊ณตํ•ด ์ฃผ๊ณ  ์žˆ๋Š”๋ฐ ๋ฐ˜ํ•ด ๋ฐ˜๊ฐ‘์ง€ ์•Š์€ ํ˜„์ƒ ์—ญ์‹œ ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋‹ค. ์ŠคํŒจ๋จธ๋“ค์€ ์‚ฌํšŒ ๊ด€๊ณ„๋ง ์„œ๋น„์Šค๋ฅผ ๋™๋ ฅ ์‚ผ์•„ ์ŠคํŒธ์„ ๋งค์šฐ ๋น ๋ฅด๊ณ  ๋„“๊ฒŒ ์ „ํŒŒํ•˜๋Š” ์‹์œผ๋กœ ์•…์šฉํ•˜๊ณ  ์žˆ๋‹ค. ์ŠคํŒธ์€ ์ˆ˜์‹ ์ž๊ฐ€ ์›์น˜ ์•Š๋Š” ๋ฉ”์‹œ์ง€๋“ค์„ ์ผ์ปฝ๋Š”๋ฐ ์ด๋Š” ์„œ๋น„์Šค์˜ ์‹ ๋ขฐ๋„์™€ ์•ˆ์ •์„ฑ์„ ํฌ๊ฒŒ ์†์ƒ์‹œํ‚จ๋‹ค. ๋”ฐ๋ผ์„œ, ์ŠคํŒจ๋จธ๋ฅผ ํƒ์ง€ํ•˜๋Š” ๊ฒƒ์ด ํ˜„์žฌ ์†Œ์…œ ๋ฏธ๋””์–ด์—์„œ ๋งค์šฐ ๊ธด๊ธ‰ํ•˜๊ณ  ์ค‘์š”ํ•œ ๋ฌธ์ œ๊ฐ€ ๋˜์—ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ‘œ์ ์ธ ์‚ฌํšŒ ๊ด€๊ณ„๋ง ์„œ๋น„์Šค๋“ค ์ค‘ Twitter์™€ Weibo์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ŠคํŒจ๋ฐ์„ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์œ ํ˜•์˜ ์ŠคํŒจ๋ฐ๋“ค์€ ๋ถˆํŠน์ • ๋‹ค์ˆ˜์—๊ฒŒ ๋ฉ”์‹œ์ง€๋ฅผ ์ „ํŒŒํ•˜๋Š” ๋Œ€์‹ ์—, ๋งŽ์€ ์ผ๋ฐ˜ ์‚ฌ์šฉ์ž๋“ค์„ 'ํŒ”๋กœ์šฐ(๊ตฌ๋…)'ํ•˜๊ณ  ์ด๋“ค๋กœ๋ถ€ํ„ฐ '๋งž ํŒ”๋กœ์ž‰(๋งž ๊ตฌ๋…)'์„ ์ด๋Œ์–ด ๋‚ด๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•˜๊ธฐ๋„ ํ•œ๋‹ค. ๋•Œ๋กœ๋Š” link farm์„ ์ด์šฉํ•ด ํŠน์ • ๊ณ„์ •์˜ ํŒ”๋กœ์›Œ ์ˆ˜๋ฅผ ๋†’์ด๊ณ  ๋ช…์‹œ์  ์˜ํ–ฅ๋ ฅ์„ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ๋„ ํ•œ๋‹ค. ์ŠคํŒจ๋จธ์˜ ์˜จ๋ผ์ธ ๊ด€๊ณ„๋ง์ด ์ผ๋ฐ˜ ์‚ฌ์šฉ์ž์˜ ์˜จ๋ผ์ธ ์‚ฌํšŒ๋ง๊ณผ ๋‹ค๋ฅผ ๊ฒƒ์ด๋ผ๋Š” ๊ฐ€์ • ํ•˜์—, ๋‚˜๋Š” ์ŠคํŒจ๋จธ๋“ค์„ ํฌํ•จํ•œ ์ผ๋ฐ˜์ ์ธ ์˜จ๋ผ์ธ ์‚ฌํšŒ๋ง ๊ณต๊ฒฉ์ž๋“ค์„ ํƒ์ง€ํ•˜๋Š” ๋ถ„๋ฅ˜ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๋‚˜๋Š” ๋จผ์ € ๊ฐœ์ธ ์‚ฌํšŒ๋ง ๋‚ด ์‚ฌํšŒ ๊ด€๊ณ„์— ์ฃผ๋ชฉํ•˜๊ณ  ๋‘ ๊ฐ€์ง€ ์ข…๋ฅ˜์˜ ๋ถ„๋ฅ˜ ํŠน์„ฑ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋“ค์€ ๊ฐœ์ธ ์‚ฌํšŒ๋ง์˜ Triad Significance Profile (TSP)์— ๊ธฐ๋ฐ˜ํ•œ ๊ตฌ์กฐ์  ํŠน์„ฑ๊ณผ Hierarchical homophily์— ๊ธฐ๋ฐ˜ํ•œ ๊ด€๊ณ„ ์˜๋ฏธ์  ํŠน์„ฑ์ด๋‹ค. ์‹ค์ œ Twitter์™€ Weibo ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์ด ๋งค์šฐ ์‹ค์šฉ์ ์ด๋ผ๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ œ์•ˆํ•œ ํŠน์„ฑ๋“ค์€ ์ „์ฒด ๋„คํŠธ์›Œํฌ๋ฅผ ๋ถ„์„ํ•˜์ง€ ์•Š์•„๋„ ๊ฐœ์ธ ์‚ฌํšŒ๋ง๋งŒ ๋ถ„์„ํ•˜๋ฉด ๋˜๊ธฐ ๋•Œ๋ฌธ์— scalableํ•˜๊ฒŒ ์ธก์ •๋  ์ˆ˜ ์žˆ๋‹ค. ๋‚˜์˜ ์„ฑ๋Šฅ ๋ถ„์„ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์ด ๊ธฐ์กด ๋ฐฉ๋ฒ•์— ๋น„ํ•ด true positive์™€ false positive ์ธก๋ฉด์—์„œ ์šฐ์ˆ˜ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค.1 Introduction 1 2 Related Work 6 2.1 OSN Spammer Detection Approaches 6 2.1.1 Contents-based Approach 6 2.1.2 Social Network-based Approach 7 2.1.3 Subnetwork-based Approach 8 2.1.4 Behavior-based Approach 9 2.2 Link Spam Detection 10 2.3 Data mining schemes for Spammer Detection 10 2.4 Sybil Detection 12 3 Triad Significance Profile Analysis 14 3.1 Motivation 14 3.2 Twitter Dataset 18 3.3 Indegree and Outdegree of Dataset 20 3.4 Twitter spammer Detection with TSP 22 3.5 TSP-Filtering 27 3.6 Performance Evaluation of TSP-Filtering 29 4 Hierarchical Homophily Analysis 33 4.1 Motivation 33 4.2 Hierarchical Homophily in OSN 37 4.2.1 Basic Analysis of Datasets 39 4.2.2 Status gap distribution and Assortativity 44 4.2.3 Hierarchical gap distribution 49 4.3 Performance Evaluation of HH-Filtering 53 5 Overall Performance Evaluation 58 6 Conclusion 63 Bibliography 65Docto

    BlogForever: D2.5 Weblog Spam Filtering Report and Associated Methodology

    Get PDF
    This report is written as a first attempt to define the BlogForever spam detection strategy. It comprises a survey of weblog spam technology and approaches to their detection. While the report was written to help identify possible approaches to spam detection as a component within the BlogForver software, the discussion has been extended to include observations related to the historical, social and practical value of spam, and proposals of other ways of dealing with spam within the repository without necessarily removing them. It contains a general overview of spam types, ready-made anti-spam APIs available for weblogs, possible methods that have been suggested for preventing the introduction of spam into a blog, and research related to spam focusing on those that appear in the weblog context, concluding in a proposal for a spam detection workflow that might form the basis for the spam detection component of the BlogForever software

    Follow spam detection based on Cascaded Social Information

    Get PDF
    In the last decade we have witnessed the explosive growth of online social networking services (SNSs) such as Facebook, Twitter, RenRen and LinkedIn. While SNSs provide diverse benefits for example, forstering inter-personal relationships, community formations and news propagation, they also attracted uninvited nuiance. Spammers abuse SNSs as vehicles to spread spams rapidly and widely. Spams, unsolicited or inappropriate messages, significantly impair the credibility and reliability of services. Therefore, detecting spammers has become an urgent and critical issue in SNSs. This paper deals with Follow spam in Twitter. Instead of spreading annoying messages to the public, a spammer follows (subscribes to) legitimate users, and followed a legitimate user. Based on the assumption that the online relationships of spammers are different from those of legitimate users, we proposed classification schemes that detect follow spammers. Particularly, we focused on cascaded social relations and devised two schemes, TSP-Filtering and SS-Filtering, each of which utilizes Triad Significance Profile (TSP) and Social status (SS) in a two-hop subnetwork centered at each other. We also propose an emsemble technique, Cascaded-Filtering, that combine both TSP and SS properties. Our experiments on real Twitter datasets demonstrated that the proposed three approaches are very practical. The proposed schemes are scalable because instead of analyzing the whole network, they inspect user-centered two hop social networks. Our performance study showed that proposed methods yield significantly better performance than prior scheme in terms of true positives and false positives.OAIID:RECH_ACHV_DSTSH_NO:T201620357RECH_ACHV_FG:RR00200001ADJUST_YN:EMP_ID:A001118CITE_RATE:3.364FILENAME:Follow spam detection based on cascaded social information.pdfDEPT_NM:์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€EMAIL:[email protected]_YN:YFILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/be43ae94-4659-467d-bc0f-17dc45d3e775/linkCONFIRM:

    Graph Mining for Cybersecurity: A Survey

    Full text link
    The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society. Securing cyberspace has become an utmost concern for organizations and governments. Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities. In recent years, with the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance. It is imperative to summarize existing graph-based cybersecurity solutions to provide a guide for future studies. Therefore, as a key contribution of this paper, we provide a comprehensive review of graph mining for cybersecurity, including an overview of cybersecurity tasks, the typical graph mining techniques, and the general process of applying them to cybersecurity, as well as various solutions for different cybersecurity tasks. For each task, we probe into relevant methods and highlight the graph types, graph approaches, and task levels in their modeling. Furthermore, we collect open datasets and toolkits for graph-based cybersecurity. Finally, we outlook the potential directions of this field for future research
    • โ€ฆ
    corecore