7,136 research outputs found

    Combining Multiple Algorithms for Road Network Tracking from Multiple Source Remotely Sensed Imagery: a Practical System and Performance Evaluation

    Get PDF
    In light of the increasing availability of commercial high-resolution imaging sensors, automatic interpretation tools are needed to extract road features. Currently, many approaches for road extraction are available, but it is acknowledged that there is no single method that would be successful in extracting all types of roads from any remotely sensed imagery. In this paper, a novel classification of roads is proposed, based on both the roads' geometrical, radiometric properties and the characteristics of the sensors. Subsequently, a general road tracking framework is proposed, and one or more suitable road trackers are designed or combined for each type of roads. Extensive experiments are performed to extract roads from aerial/satellite imagery, and the results show that a combination strategy can automatically extract more than 60% of the total roads from very high resolution imagery such as QuickBird and DMC images, with a time-saving of approximately 20%, and acceptable spatial accuracy. It is proven that a combination of multiple algorithms is more reliable, more efficient and more robust for extracting road networks from multiple-source remotely sensed imagery than the individual algorithms

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    SC-Fuse: A Feature Fusion Approach for Unpaved Road Detection from Remotely Sensed Images

    Get PDF
    Road network extraction from remote sensing imagery is crucial for numerous applications, ranging from autonomous navigation to urban and rural planning. A particularly challenging aspect is the detection of unpaved roads, often underrepresented in research and data. These roads display variability in texture, width, shape, and surroundings, making their detection quite complex. This thesis addresses these challenges by creating a specialized dataset and introducing the SC-Fuse model. Our custom dataset comprises high resolution remote sensing imagery which primarily targets unpaved roads of the American Midwest. To capture the diverse seasonal variation and their impact, the dataset includes images from different times of the year, capturing various weather conditions and offering a comprehensive view of these changing conditions. To detect roads from our custom dataset we developed SC-Fuse model, a novel deep learning architecture designed to extract unpaved road networks from satellite imagery. This model leverages the strengths of dual feature extractors: the Swin Transformer and a Residual CNN. By combining features from these, SC-fuse captures the local as well as the global context of the images. The fusion of these features is done by a Feature Fusion Module which uses Linear Attention Mechanism, to optimize the computational efficiency. A LinkNet based decoder is used to ensure precise road network reconstruction. The evaluation of SC-Fuse model is done using various metrics, including qualitative visual assessments, to test its effectiveness in unpaved road detection. Advisors: Ashok Samal and Cody Stoll

    Dynamics of Land Use and Land Cover Changes in Harare, Zimbabwe: A Case Study on the Linkage between Drivers and the Axis of Urban Expansion

    Get PDF
    With increasing population growth, the Harare Metropolitan Province has experienced accelerated land use and land cover (LULC) changes, influencing the city’s growth. This study aims to assess spatiotemporal urban LULC changes, the axis, and patterns of growth as well as drivers influencing urban growth over the past three decades in the Harare Metropolitan Province. The analysis was based on remotely sensed Landsat Thematic Mapper and Operational Land Imager data from 1984–2018, GIS application, and binary logistic regression. Supervised image classification using support vector machines was performed on Landsat 5 TM and Landsat 8 OLI data combined with the soil adjusted vegetation index, enhanced built-up and bareness index and modified difference water index. Statistical modelling was performed using binary logistic regression to identify the influence of the slope and the distance proximity characters as independent variables on urban growth. The overall mapping accuracy for all time periods was over 85%. Built-up areas extended from 279.5 km2 (1984) to 445 km2 (2018) with high-density residential areas growing dramatically from 51.2 km2 (1984) to 218.4 km2 (2018). The results suggest that urban growth was influenced mainly by the presence and density of road networks
    • …
    corecore