15 research outputs found

    End-to-End Encrypted Group Messaging with Insider Security

    Get PDF
    Our society has become heavily dependent on electronic communication, and preserving the integrity of this communication has never been more important. Cryptography is a tool that can help to protect the security and privacy of these communications. Secure messaging protocols like OTR and Signal typically employ end-to-end encryption technology to mitigate some of the most egregious adversarial attacks, such as mass surveillance. However, the secure messaging protocols deployed today suffer from two major omissions: they do not natively support group conversations with three or more participants, and they do not fully defend against participants that behave maliciously. Secure messaging tools typically implement group conversations by establishing pairwise instances of a two-party secure messaging protocol, which limits their scalability and makes them vulnerable to insider attacks by malicious members of the group. Insiders can often perform attacks such as rendering the group permanently unusable, causing the state of the group to diverge for the other participants, or covertly remaining in the group after appearing to leave. It is increasingly important to prevent these insider attacks as group conversations become larger, because there are more potentially malicious participants. This dissertation introduces several new protocols that can be used to build modern communication tools with strong security and privacy properties, including resistance to insider attacks. Firstly, the dissertation addresses a weakness in current two-party secure messaging tools: malicious participants can leak portions of a conversation alongside cryptographic proof of authorship, undermining confidentiality. The dissertation introduces two new authenticated key exchange protocols, DAKEZ and XZDH, with deniability properties that can prevent this type of attack when integrated into a secure messaging protocol. DAKEZ provides strong deniability in interactive settings such as instant messaging, while XZDH provides deniability for non-interactive settings such as mobile messaging. These protocols are accompanied by composable security proofs. Secondly, the dissertation introduces Safehouse, a new protocol that can be used to implement secure group messaging tools for a wide range of applications. Safehouse solves the difficult cryptographic problems at the core of secure group messaging protocol design: it securely establishes and manages a shared encryption key for the group and ephemeral signing keys for the participants. These keys can be used to build chat rooms, team communication servers, video conferencing tools, and more. Safehouse enables a server to detect and reject protocol deviations, while still providing end-to-end encryption. This allows an honest server to completely prevent insider attacks launched by malicious participants. A malicious server can still perform a denial-of-service attack that renders the group unavailable or "forks" the group into subgroups that can never communicate again, but other attacks are prevented, even if the server colludes with a malicious participant. In particular, an adversary controlling the server and one or more participants cannot cause honest participants' group states to diverge (even in subtle ways) without also permanently preventing them from communicating, nor can the adversary arrange to covertly remain in the group after all of the malicious participants under its control are removed from the group. Safehouse supports non-interactive communication, dynamic group membership, mass membership changes, an invitation system, and secure property storage, while offering a variety of configurable security properties including forward secrecy, post-compromise security, long-term identity authentication, strong deniability, and anonymity preservation. The dissertation includes a complete proof-of-concept implementation of Safehouse and a sample application with a graphical client. Two sub-protocols of independent interest are also introduced: a new cryptographic primitive that can encrypt multiple private keys to several sets of recipients in a publicly verifiable and repeatable manner, and a round-efficient interactive group key exchange protocol that can instantiate multiple shared key pairs with a configurable knowledge relationship

    Unified field multiplier for GF(p) and GF(2 n) with novel digit encoding

    Get PDF
    In recent years, there has been an increase in demand for unified field multipliers for Elliptic Curve Cryptography in the electronics industry because they provide flexibility for customers to choose between Prime (GF(p)) and Binary (GF(2")) Galois Fields. Also, having the ability to carry out arithmetic over both GF(p) and GF(2") in the same hardware provides the possibility of performing any cryptographic operation that requires the use of both fields. The unified field multiplier is relatively future proof compared with multipliers that only perform arithmetic over a single chosen field. The security provided by the architecture is also very important. It is known that the longer the key length, the more susceptible the system is to differential power attacks due to the increased amount of data leakage. Therefore, it is beneficial to design hardware that is scalable, so that more data can be processed per cycle. Another advantage of designing a multiplier that is capable of dealing with long word length is improvement in performance in terms of delay, because less cycles are needed. This is very important because typical elliptic curve cryptography involves key size of 160 bits. A novel unified field radix-4 multiplier using Montgomery Multiplication for the use of G(p) and GF(2") has been proposed. This design makes use of the unexploited state in number representation for operation in GF(2") where all carries are suppressed. The addition is carried out using a modified (4:2) redundant adder to accommodate the extra 1 * state. The proposed adder and the partial product generator design are capable of radix-4 operation, which reduces the number of computation cycles required. Also, the proposed adder is more scalable than existing designs.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The Prom Problem: Fair and Privacy-Enhanced Matchmaking with Identity Linked Wishes

    Get PDF
    In the Prom Problem (TPP), Alice wishes to attend a school dance with Bob and needs a risk-free, privacy preserving way to find out whether Bob shares that same wish. If not, no one should know that she inquired about it, not even Bob. TPP represents a special class of matchmaking challenges, augmenting the properties of privacy-enhanced matchmaking, further requiring fairness and support for identity linked wishes (ILW) – wishes involving specific identities that are only valid if all involved parties have those same wishes. The Horne-Nair (HN) protocol was proposed as a solution to TPP along with a sample pseudo-code embodiment leveraging an untrusted matchmaker. Neither identities nor pseudo-identities are included in any messages or stored in the matchmaker’s database. Privacy relevant data stay within user control. A security analysis and proof-of-concept implementation validated the approach, fairness was quantified, and a feasibility analysis demonstrated practicality in real-world networks and systems, thereby bounding risk prior to incurring the full costs of development. The SecretMatch™ Prom app leverages one embodiment of the patented HN protocol to achieve privacy-enhanced and fair matchmaking with ILW. The endeavor led to practical lessons learned and recommendations for privacy engineering in an era of rapidly evolving privacy legislation. Next steps include design of SecretMatch™ apps for contexts like voting negotiations in legislative bodies and executive recruiting. The roadmap toward a quantum resistant SecretMatch™ began with design of a Hybrid Post-Quantum Horne-Nair (HPQHN) protocol. Future directions include enhancements to HPQHN, a fully Post Quantum HN protocol, and more

    Short undeniable signatures:design, analysis, and applications

    Get PDF
    Digital signatures are one of the main achievements of public-key cryptography and constitute a fundamental tool to ensure data authentication. Although their universal verifiability has the advantage to facilitate their verification by the recipient, this property may have undesirable consequences when dealing with sensitive and private information. Motivated by such considerations, undeniable signatures, whose verification requires the cooperation of the signer in an interactive way, were invented. This thesis is mainly devoted to the design and analysis of short undeniable signatures. Exploiting their online property, we can achieve signatures with a fully scalable size depending on the security requirements. To this end, we develop a general framework based on the interpolation of group elements by a group homomorphism, leading to the design of a generic undeniable signature scheme. On the one hand, this paradigm allows to consider some previous undeniable signature schemes in a unified setting. On the other hand, by selecting group homomorphisms with a small group range, we obtain very short signatures. After providing theoretical results related to the interpolation of group homomorphisms, we develop some interactive proofs in which the prover convinces a verifier of the interpolation (resp. non-interpolation) of some given points by a group homomorphism which he keeps secret. Based on these protocols, we devise our new undeniable signature scheme and prove its security in a formal way. We theoretically analyze the special class of group characters on Z*n. After studying algorithmic aspects of the homomorphism evaluation, we compare the efficiency of different homomorphisms and show that the Legendre symbol leads to the fastest signature generation. We investigate potential applications based on the specific properties of our signature scheme. Finally, in a topic closely related to undeniable signatures, we revisit the designated confirmer signature of Chaum and formally prove the security of a generalized version

    Advances in cryptographic voting systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 241-254).Democracy depends on the proper administration of popular elections. Voters should receive assurance that their intent was correctly captured and that all eligible votes were correctly tallied. The election system as a whole should ensure that voter coercion is unlikely, even when voters are willing to be influenced. These conflicting requirements present a significant challenge: how can voters receive enough assurance to trust the election result, but not so much that they can prove to a potential coercer how they voted? This dissertation explores cryptographic techniques for implementing verifiable, secret-ballot elections. We present the power of cryptographic voting, in particular its ability to successfully achieve both verifiability and ballot secrecy, a combination that cannot be achieved by other means. We review a large portion of the literature on cryptographic voting. We propose three novel technical ideas: 1. a simple and inexpensive paper-base cryptographic voting system with some interesting advantages over existing techniques, 2. a theoretical model of incoercibility for human voters with their inherent limited computational ability, and a new ballot casting system that fits the new definition, and 3. a new theoretical construct for shuffling encrypted votes in full view of public observers.by Ben Adida.Ph.D

    Location Privacy in VANETs: Improved Chaff-Based CMIX and Privacy-Preserving End-to-End Communication

    Get PDF
    VANETs communication systems are technologies and defined policies that can be formed to enable ITS applications to provide road traffic efficacy, warning about such issues as environmental dangers, journey circumstances, and in the provision of infotainment that considerably enhance transportation safety and quality. The entities in VANETs, generally vehicles, form part of a massive network known as the Internet of Vehicles (IoV). The deployment of large-scale VANETs systems is impossible without ensuring that such systems are themselves are safe and secure, protecting the privacy of their users. There is a risk that cars might be hacked, or their sensors become defective, causing inaccurate information to be sent across the network. Consequently, the activities and credentials of participating vehicles should be held responsible and quickly broadcast throughout a vast VANETs, considering the accountability in the system. The openness of wireless communication means that an observer can eavesdrop on vehicular communication and gain access or otherwise deduce users' sensitive information, and perhaps profile vehicles based on numerous factors such as tracing their travels and the identification of their home/work locations. In order to protect the system from malicious or compromised entities, as well as to preserve user privacy, the goal is to achieve communication security, i.e., keep users' identities hidden from both the outside world and the security infrastructure and service providers. Being held accountable while still maintaining one's privacy is a difficult balancing act. This thesis explores novel solution paths to the above challenges by investigating the impact of low-density messaging to improve the security of vehicle communications and accomplish unlinkability in VANETs. This is achieved by proposing an improved chaff-based CMIX protocol that uses fake messages to increase density to mitigate tracking in this scenario. Recently, Christian \etall \cite{vaas2018nowhere} proposed a Chaff-based CMIX scheme that sends fake messages under the presumption low-density conditions to enhance vehicle privacy and confuse attackers. To accomplish full unlinkability, we first show the following security and privacy vulnerabilities in the Christian \etall scheme: linkability attacks outside the CMIX may occur due to deterministic data-sharing during the authentication phase (e.g., duplicate certificates for each communication). Adversaries may inject fake certificates, which breaks Cuckoo Filters' (CFs) updates authenticity, and the injection may be deniable. CMIX symmetric key leakage outside the coverage may occur. We propose a VPKI-based protocol to mitigate these issues. First, we use a modified version of Wang \etall's \cite{wang2019practical} scheme to provide mutual authentication without revealing the real identity. To this end, a vehicle's messages are signed with a different pseudo-identity “certificate”. Furthermore, the density is increased via the sending of fake messages during low traffic periods to provide unlinkability outside the mix-zone. Second, unlike Christian \etall's scheme, we use the Adaptive Cuckoo Filter (ACF) instead of CF to overcome the effects of false positives on the whole filter. Moreover, to prevent any alteration of the ACFs, only RUSs distribute the updates, and they sign the new fingerprints. Third, mutual authentication prevents any leakage from the mix zones' symmetric keys by generating a fresh one for each communication through a Diffie–Hellman key exchange. As a second main contribution of this thesis, we focus on the V2V communication without the interference of a Trusted Third Party (TTP)s in case this has been corrupted, destroyed, or is out of range. This thesis presents a new and efficient end-to-end anonymous key exchange protocol based on Yang \etall's \cite{yang2015self} self-blindable signatures. In our protocol, vehicles first privately blind their own private certificates for each communication outside the mix-zone and then compute an anonymous shared key based on zero-knowledge proof of knowledge (PoK). The efficiency comes from the fact that once the signatures are verified, the ephemeral values in the PoK are also used to compute a shared key through an authenticated Diffie-Hellman key exchange protocol. Therefore, the protocol does not require any further external information to generate a shared key. Our protocol also does not require interfacing with the Roadside Units or Certificate Authorities, and hence can be securely run outside the mixed-zones. We demonstrate the security of our protocol in ideal/real simulation paradigms. Hence, our protocol achieves secure authentication, forward unlinkability, and accountability. Furthermore, the performance analysis shows that our protocol is more efficient in terms of computational and communications overheads compared to existing schemes.Kuwait Cultural Offic

    Pseudorandom Functions: Three Decades Later

    Get PDF
    In 1984, Goldreich, Goldwasser and Micali formalized the concept of pseudorandom functions and proposed a construction based on any length-doubling pseudorandom generator. Since then, pseudorandom functions have turned out to be an extremely influential abstraction, with applications ranging from message authentication to barriers in proving computational complexity lower bounds. In this tutorial we survey various incarnations of pseudorandom functions, giving self-contained proofs of key results from the literature. Our main focus is on feasibility results and constructions, as well as on limitations of (and induced by) pseudorandom functions. Along the way we point out some open questions that we believe to be within reach of current techniques

    Secure multi party computations for electronic voting

    Get PDF
    Στην παρούσα εργασία, μελετούμε το πρόβλημα της ηλεκτρονικής ψηφοφορίας. Θεωρούμε ότι είναι έκφανση μιας γενικής διαδικασίας αποφάσεων που μπορεί να υλοποιηθεί μέσω υπολογισμών πολλαπλών οντοτήτων, οι οποίοι πρέπει να ικανοποιούν πολλές και αντικρουόμενες απαιτήσεις ασφαλείας. Έτσι μελετούμε σχετικές προσεγγίσεις οι οποίες βασιζονται σε κρυπτογραφικές τεχνικές, όπως τα ομομορφικά κρυπτοσυστήματα, τα δίκτυα μίξης και οι τυφλές υπογραφές. Αναλύουμε πώς προσφέρουν ακεραιότητα και ιδιωτικότητα (μυστικότητα) στην διαδικασία και την σχέση τους με την αποδοτικότητα. Εξετάζουμε τα είδη λειτουργιών κοινωνικής επιλογής που μπορούν να υποστηρίξουν και παρέχουμε δύο υλοποιήσεις. Επιπλέον ασχολούμαστε με την αντιμετώπιση ισχυρότερων αντιπάλων μη παρέχοντας αποδείξεις ψήφου ή προσφέροντας δυνατότητες αντίστασης στον εξαναγκασμό. Με βάση την τελευταία έννοια προτείνουμε μια τροποποίηση σε ένα ευρέως χρησιμοποιούμενο πρωτόκολλο. Τέλος μελετούμε δύο γνωστές υλοποιήσεις συστημάτων ηλεκτρονικής ψηφοφοριας το Helios και το Pret a Voter .In this thesis, we study the problem of electronic voting as a general decision making process that can be implemented using multi party computations, fulfilling strict and often conflicting security requirements. To this end, we review relevant cryptographic techniques and their combinations to form voting protocols. More specifically, we analyze schemes based on homomorphic cryptosystems, mixnets with proofs of shuffles and blind signatures. We analyze how they achieve integrity and privacy in the voting process, while keeping efficiency. We examine the types of social choice functions that can be supported by each protocol. We provide two proof of concept implementations. Moreover, we review ways to thwart stronger adversaries by adding receipt freeness and coercion resistance to voting systems. We build on the latter concept to propose a modification to a well known protocol. Finally, we study two actual e-Voting implementations namely Helios and Pret a Voter

    Secure and Privacy-Preserving Vehicular Communications

    Get PDF
    Road safety has been drawing increasing attention in the public, and has been subject to extensive efforts from both industry and academia in mitigating the impact of traffic accidents. Recent advances in wireless technology promise new approaches to facilitating road safety and traffic management, where each vehicle (or referred to as On-board unit (OBU)) is allowed to communicate with each other as well as with Roadside units (RSUs), which are located in some critical sections of the road, such as a traffic light, an intersection, and a stop sign. With the OBUs and RSUs, a self-organized network, called Vehicular Ad Hoc Network (VANET), can thus be formed. Unfortunately, VANETs have faced various security threats and privacy concerns, which would jeopardize the public safety and become the main barrier to the acceptance of such a new technology. Hence, addressing security and privacy issues is a prerequisite for a market-ready VANET. Although many studies have recently addressed a significant amount of efforts in solving the related problems, few of the studies has taken the scalability issues into consideration. When the traffic density is getting large, a vehicle may become unable to verify the authenticity of the messages sent by its neighbors in a timely manner, which may result in message loss so that public safety may be at risk. Communication overhead is another issue that has not been well addressed in previously reported studies. Many efforts have been made in recent years in achieving efficient broadcast source authentication and data integrity by using fast symmetric cryptography. However, the dynamic nature of VANETs makes it very challenging in the applicability of these symmetric cryptography-based protocols. In this research, we propose a novel Secure and Efficient RSU-aided Privacy Preservation Protocol, called SERP^3, in order to achieve efficient secure and privacy-preserving Inter-Vehicle Communications (IVCs). With the commitments of one-way key chains distributed to vehicles by RSUs, a vehicle can effectively authenticate any received message from vehicles nearby even in the presence of frequent change of its neighborship. Compared with previously reported public key infrastructure (PKI)-based packet authentication protocols for security and privacy, the proposed protocol not only retains the security and privacy preservation properties, but also has less packet loss ratio and lower communication overhead, especially when the road traffic is heavy. Therefore, the protocol solves the scalability and communication overhead issues, while maintaining acceptable packet latency. However, RSU may not exist in some situations, for example, in the early stage deployment phase of VANET, where unfortunately, SERP^3 is not suitable. Thus, we propose a complementary Efficient and Cooperative Message Validation Protocol, called ECMVP, where each vehicle probabilistically validates a certain percentage of its received messages based on its own computing capacity and then reports any invalid messages detected by it. Since the ultimate goal of designing VANET is to develop vehicle safety/non-safety related applications to improve road safety and facilitate traffic management, two vehicle applications are further proposed in the research to exploit the advantages of vehicular communications. First, a novel vehicle safety application for achieving a secure road traffic control system in VANETs is developed. The proposed application helps circumvent vehicles safely and securely through the areas in any abnormal situation, such as a car crash scene, while ensuring the security and privacy of the drivers from various threats. It not only enhances traveler safety but also minimizes capacity restrictions due to any unusual situation. Second, the dissertation investigates a novel mobile payment system for highway toll collection by way of vehicular communications, which addresses all the issues in the currently existing toll collection technologies

    Design and Analysis of Opaque Signatures

    Get PDF
    Digital signatures were introduced to guarantee the authenticity and integrity of the underlying messages. A digital signature scheme comprises the key generation, the signature, and the verification algorithms. The key generation algorithm creates the signing and the verifying keys, called also the signer’s private and public keys respectively. The signature algorithm, which is run by the signer, produces a signature on the input message. Finally, the verification algorithm, run by anyone who knows the signer’s public key, checks whether a purported signature on some message is valid or not. The last property, namely the universal verification of digital signatures is undesirable in situations where the signed data is commercially or personally sensitive. Therefore, mechanisms which share most properties with digital signatures except for the universal verification were invented to respond to the aforementioned need; we call such mechanisms “opaque signatures”. In this thesis, we study the signatures where the verification cannot be achieved without the cooperation of a specific entity, namely the signer in case of undeniable signatures, or the confirmer in case of confirmer signatures; we make three main contributions. We first study the relationship between two security properties important for public key encryption, namely data privacy and key privacy. Our study is motivated by the fact that opaque signatures involve always an encryption layer that ensures their opacity. The properties required for this encryption vary according to whether we want to protect the identity (i.e. the key) of the signer or hide the validity of the signature. Therefore, it would be convenient to use existing work about the encryption scheme in order to derive one notion from the other. Next, we delve into the generic constructions of confirmer signatures from basic cryptographic primitives, e.g. digital signatures, encryption, or commitment schemes. In fact, generic constructions give easy-to-understand and easy-to-prove schemes, however, this convenience is often achieved at the expense of efficiency. In this contribution, which constitutes the core of this thesis, we first analyze the already existing constructions; our study concludes that the popular generic constructions of confirmer signatures necessitate strong security assumptions on the building blocks, which impacts negatively the efficiency of the resulting signatures. Next, we show that a small change in these constructionsmakes these assumptions drop drastically, allowing as a result constructions with instantiations that compete with the dedicated realizations of these signatures. Finally, we revisit two early undeniable signatures which were proposed with a conjectural security. We disprove the claimed security of the first scheme, and we provide a fix to it in order to achieve strong security properties. Next, we upgrade the second scheme so that it supports a iii desirable feature, and we provide a formal security treatment of the new scheme: we prove that it is secure assuming new reasonable assumptions on the underlying constituents
    corecore