5,546 research outputs found

    Thinning-free Polygonal Approximation of Thick Digital Curves Using Cellular Envelope

    Get PDF
    Since the inception of successful rasterization of curves and objects in the digital space, several algorithms have been proposed for approximating a given digital curve. All these algorithms, however, resort to thinning as preprocessing before approximating a digital curve with changing thickness. Described in this paper is a novel thinning-free algorithm for polygonal approximation of an arbitrarily thick digital curve, using the concept of "cellular envelope", which is newly introduced in this paper. The cellular envelope, defined as the smallest set of cells containing the given curve, and hence bounded by two tightest (inner and outer) isothetic polygons, is constructed using a combinatorial technique. This envelope, in turn, is analyzed to determine a polygonal approximation of the curve as a sequence of cells using certain attributes of digital straightness. Since a real-world curve=curve-shaped object with varying thickness, unexpected disconnectedness, noisy information, etc., is unsuitable for the existing algorithms on polygonal approximation, the curve is encapsulated by the cellular envelope to enable the polygonal approximation. Owing to the implicit Euclidean-free metrics and combinatorial properties prevailing in the cellular plane, implementation of the proposed algorithm involves primitive integer operations only, leading to fast execution of the algorithm. Experimental results that include output polygons for different values of the approximation parameter corresponding to several real-world digital curves, a couple of measures on the quality of approximation, comparative results related with two other well-referred algorithms, and CPU times, have been presented to demonstrate the elegance and efficacy of the proposed algorithm

    Fast Frechet Distance Between Curves With Long Edges

    Full text link
    Computing the Fr\'echet distance between two polygonal curves takes roughly quadratic time. In this paper, we show that for a special class of curves the Fr\'echet distance computations become easier. Let PP and QQ be two polygonal curves in Rd\mathbb{R}^d with nn and mm vertices, respectively. We prove four results for the case when all edges of both curves are long compared to the Fr\'echet distance between them: (1) a linear-time algorithm for deciding the Fr\'echet distance between two curves, (2) an algorithm that computes the Fr\'echet distance in O((n+m)log⁥(n+m))O((n+m)\log (n+m)) time, (3) a linear-time d\sqrt{d}-approximation algorithm, and (4) a data structure that supports O(mlog⁥2n)O(m\log^2 n)-time decision queries, where mm is the number of vertices of the query curve and nn the number of vertices of the preprocessed curve

    Geodesics in Heat

    Full text link
    We introduce the heat method for computing the shortest geodesic distance to a specified subset (e.g., point or curve) of a given domain. The heat method is robust, efficient, and simple to implement since it is based on solving a pair of standard linear elliptic problems. The method represents a significant breakthrough in the practical computation of distance on a wide variety of geometric domains, since the resulting linear systems can be prefactored once and subsequently solved in near-linear time. In practice, distance can be updated via the heat method an order of magnitude faster than with state-of-the-art methods while maintaining a comparable level of accuracy. We provide numerical evidence that the method converges to the exact geodesic distance in the limit of refinement; we also explore smoothed approximations of distance suitable for applications where more regularity is required

    A New Method for Fast Computation of Moments Based on 8-neighbor Chain CodeApplied to 2-D Objects Recognition

    Get PDF
    2D moment invariants have been successfully applied in pattern recognition tasks. The main difficulty of using moment invariants is the computational burden. To improve the algorithm of moments computation through an iterative method, an approach for fast computation of moments based on the 8-neighbor chain code is proposed in this paper. Then artificial neural networks are applied for 2D shape recognition with moment invariants. Compared with the method of polygonal approximation, this approach shows higher accuracy in shape representation and faster recognition speed in experiment

    Polygonal Representation of Digital Curves

    Get PDF

    Multiorder polygonal approximation of digital curves

    Get PDF
    In this paper, we propose a quick threshold-free algorithm, which computes the angular shape of a 2D object from the points of its contour. For that, we have extended the method defined in [4, 5] to a multiorder analysis. It is based on the arithmetical definition of discrete lines [11] with variable thickness. We provide a framework to analyse a digital curve at different levels of thickness. The extremities of a segment provided at a high resolution are tracked at lower resolution in order to refine their location. The method is thresholdfree and automatically provides a partitioning of a digital curve into its meaningful parts

    On the Detection of Visual Features from Digital Curves using a Metaheuristic Approach

    Get PDF
    In computational shape analysis a crucial step consists in extracting meaningful features from digital curves. Dominant points are those points with curvature extreme on the curve that can suitably describe the curve both for visual perception and for recognition. Many approaches have been developed for detecting dominant points. In this paper we present a novel method that combines the dominant point detection and the ant colony optimization search. The method is inspired by the ant colony search (ACS) suggested by Yin in [1] but it results in a much more efficient and effective approximation algorithm. The excellent results have been compared both to works using an optimal search approach and to works based on exact approximation strateg

    Subset Warping: Rubber Sheeting with Cuts

    Full text link
    Image warping, often referred to as "rubber sheeting" represents the deformation of a domain image space into a range image space. In this paper, a technique is described which extends the definition of a rubber-sheet transformation to allow a polygonal region to be warped into one or more subsets of itself, where the subsets may be multiply connected. To do this, it constructs a set of "slits" in the domain image, which correspond to discontinuities in the range image, using a technique based on generalized Voronoi diagrams. The concept of medial axis is extended to describe inner and outer medial contours of a polygon. Polygonal regions are decomposed into annular subregions, and path homotopies are introduced to describe the annular subregions. These constructions motivate the definition of a ladder, which guides the construction of grid point pairs necessary to effect the warp itself
    • 

    corecore